

Citation: Snider DM, Venkiteswaran JJ, Schiff SL, Spoelstra J (2015) From the Ground Up: Global Nitrous Oxide Sources are Constrained by Stable Isotope Values. PLoS ONE 10(3): e0118954. doi:10.1371/journal.pone.0118954

Academic Editor: Shuijin Hu, North Carolina State University, UNITED STATES

Received: April 10, 2014

Accepted: January 8, 2015

Published: March 26, 2015

Copyright: © 2015 Snider et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files. In addition, the data and an R file that contains the code to perform the statistical analyses and create the figures shown here are found at https://github.com/jjvenky/Global-N2O-Ellipses.

Funding: This research was supported by the Natural Sciences and Engineering Research Council of Canada 'Strategic Projects' awarded to SLS: STPGP 322062-05, STPGP 365226-08, STPGP 381058-09, <u>www.nserc-crsng.gc.ca</u>; Natural Sciences and Engineering Research Council of Canada 'Strategic Project' co-funded by BIOCAP awarded to **RESEARCH ARTICLE**

From the Ground Up: Global Nitrous Oxide Sources are Constrained by Stable Isotope Values

David M. Snider¹*, Jason J. Venkiteswaran^{2,3}*, Sherry L. Schiff³, John Spoelstra^{1,3}

1 National Water Research Institute, Canada Centre for Inland Waters, Environment Canada, Burlington, ON, L7R 4A6, Canada, 2 Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada, 3 Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

* dave.snider@ec.gc.ca (DMS); jvenkiteswaran@wlu.ca (JJV)

Abstract

Rising concentrations of nitrous oxide (N_2O) in the atmosphere are causing widespread concern because this trace gas plays a key role in the destruction of stratospheric ozone and it is a strong greenhouse gas. The successful mitigation of N₂O emissions requires a solid understanding of the relative importance of all N2O sources and sinks. Stable isotope ratio measurements (δ^{15} N-N₂O and δ^{18} O-N₂O), including the intramolecular distribution of ¹⁵N (site preference), are one way to track different sources if they are isotopically distinct. 'Top-down' isotope mass-balance studies have had limited success balancing the global N₂O budget thus far because the isotopic signatures of soil, freshwater, and marine sources are poorly constrained and a comprehensive analysis of global N₂O stable isotope measurements has not been done. Here we used a robust analysis of all available in situ measurements to define key global N₂O sources. We showed that the marine source is isotopically distinct from soil and freshwater N₂O (the continental source). Further, the global average source (sum of all natural and anthropogenic sources) is largely controlled by soils and freshwaters. These findings substantiate past modelling studies that relied on several assumptions about the global N₂O cycle. Finally, a two-box-model and a Bayesian isotope mixing model revealed marine and continental N₂O sources have relative contributions of 24-26% and 74-76% to the total, respectively. Further, the Bayesian modeling exercise indicated the N_2O flux from freshwaters may be much larger than currently thought.

Introduction

Since the advent of the Haber-Bosch process one century ago, humans have vastly perturbed the global nitrogen (N) cycle. Current anthropogenic activities contribute 51% of the total N fixed worldwide (210 of 413 Tg N yr⁻¹) [1]. One negative consequence of this is an increase in atmospheric nitrous oxide (N₂O) [2], a long-lived trace gas that contributes to climate warming and the destruction of stratospheric ozone [3]. The current concentration of N₂O in the

SLS: STPGP 336807-06, www.nserc-crsng.gc.ca and www.biocap.ca; Natural Sciences and Engineering Research Council of Canada 'Strategic Project' awarded to JS and SLS: STPGP 357056-07, www. nserc-crsng.gc.ca; Natural Sciences and Engineering Research Council of Canada 'Discovery Grant' awarded to SLS: RGPIN 33854, www.nserc-crsng.gc. ca; Ontario Ministry of Agriculture and Food 'Environmental Sustainability Directed Research Program' projects awarded to JS: Project 09M1, Project 11M1, www.omafra.gov.on.ca; Canadian Foundation for Climate and Atmospheric Sciences project awarded to SLS: GR-428; Banting Postdoctoral Fellowship awarded to DMS, www. banting.fellowships-bourses.gc.ca; and Norfolk Land Stewardship Council project awarded to JS, www. hnstewardshipcouncils.org/norfolk_land_ stewardship_council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

troposphere is 325 parts per billion (ppb) [4]. Future concentrations of atmospheric N_2O are difficult to predict, yet this information is an essential input parameter for global climate change models. Further, both the prediction and mitigation of N_2O concentrations depend on an accurate understanding of the emissions from key N_2O sources.

Most emissions of N₂O (natural and anthropogenic) occur from terrestrial, freshwater, and marine environments, where N compounds are processed by nitrifying and denitrifying microorganisms. These processes account for ~ 89% of the total annual N₂O emissions, or almost 16 Teragrams (Tg = 10^{12} g) N/year [5]. However, scientists' best estimates of the N₂O budget are still highly uncertain. The most recent Intergovernmental Panel on Climate Change Assessment Report (IPCC-AR5) reveals wide ranges in the relative uncertainty of many individual N₂O sources. In addition, the uncertainty on the annual cumulative emissions of N₂O for 2006 from natural soils, oceans, rivers, estuaries, coastal zones, and agriculture combined ranged between 6.9–26.1 Tg N [5].

The clear separation and accounting of individual N₂O sources remains challenging, but is essential if we are to make meaningful reductions in emissions. Measurements of stable isotope ratios (δ^{15} N-N₂O and δ^{18} O-N₂O) and the intramolecular site preference (SP) of 15 N are one way to track sources if they are isotopically distinct. Several accounts of the global N₂O budget have used 'top-down' isotope mass-balance models to estimate the strength and isotopic composition of anthropogenic and natural N₂O sources [2,6–11]. In this approach, changes in atmospheric N₂O over time are modelled by comparing our modern-day atmosphere (a mixture of post-industrial, anthropogenic N2O and natural N2O) to relic air trapped in glacial firn and ice. All these studies have assumed that soils are the main source of post-industrial N₂O because its calculated isotopic composition was most similar to a limited body of published soil N₂O measurements. Yet we do not have a clear synthesis of the isotopic character of individual N₂O sources. For example, freshwaters and estuaries may contribute up to 25% of anthropogenic N₂O emissions [5], but prior to 2009 there was only one publication reporting freshwater δ^{15} N-N₂O and δ^{18} O-N₂O values [12] (<u>S1 Dataset</u>). In reality, there is extreme variation in the measured values of δ^{15} N-N₂O and δ^{18} O-N₂O (Fig. 1), and no systematic examination of individual sources has occurred.

In this paper, we use a 'bottom-up' approach to define key N₂O sources and demonstrate that their global average δ^{15} N and δ^{18} O values are isotopically unique. Further we use these *in situ* N₂O isotope data to substantiate what 'top-down' global atmospheric models have predicted; soils, and not marine or freshwater ecosystems, are the main source of rising atmospheric N₂O levels.

Methods

We mined 1920 data points from 52 studies that measured *in situ* δ^{15} N-N₂O and δ^{18} O-N₂O in atmospheric, terrestrial and marine systems from 1987 to present [2,10–60]. If the published data was not tabulated, we used the software 'g3data' (*http://www.frantz.fi/software/g3data. php*) to extract data from figures [61]. The accuracy of our method was tested by plotting a subset of data from Well *et al.* [51], re-extracting it, and then comparing it to the original values. The mean (min/max) difference (‰) was 0.06 (0.00/0.13) for δ^{15} N and 0.02 (0.00/0.07) for δ^{18} O. This represents a worst-case accuracy of our ability to extract data from figures because the test data had an unusually wide range (-80 to +120‰ for δ^{15} N, and 0 to +120‰ for δ^{18} O-N₂O reported vs. atmospheric O₂ were converted to δ^{18} O-N₂O vs. Vienna Standard Mean Ocean Water (VSMOW) according to Kim and Craig [19].

Fig 1. Global N₂O isotope measurements from atmospheric, marine, and terrestrial samples. All the data compiled in this study that fit within the axis ranges shown are plotted here. Each point represents one measurement, or in a few cases a reported average value, and is two-thirds transparent to allow the density of data to be displayed. Standard ellipses encompass ~40% of the data (Fig. 2) and are shown for the six non-atmospheric categories. Most data fall to the left of the current tropospheric value. Stratospheric data falls along a line ($\delta^{18}O = 0.89 \times \delta^{15}N + 38.4$) (R² = 0.999) that originates from the tropospheric value, and is caused by isotopic fractionation during N₂O destruction [13].

Twenty-seven studies also measured the intramolecular distribution of ¹⁵N in the linear NNO molecule (780 data points) and these data are provided in the supplementary datasets (S1 Dataset and S2 Dataset). This difference between the central ($\delta^{15}N^{\alpha}$) and terminal ($\delta^{15}N^{\beta}$) ¹⁵N enrichment is often expressed as the site preference (SP). This parameter is thought to be a unique indicator of the microbial pathway that produces N₂O and not to be affected by variations in the isotopic ratios of substrates. Recently, this idea has been called into question by Yang *et al.* [62], who showed that SP can vary depending on the growth conditions of microbial cultures. Regardless, if the SP of different global sources is unique it can be used in conjunction with traditional measures of δ^{15} N-N₂O and δ^{18} O-N₂O values to separate sources in three-dimensional isotope space.

To this compendium of published data we added 1367 new *in situ* δ^{15} N-N₂O and δ^{18} O-N₂O data from 16 sites across Ontario and New Brunswick, Canada (<u>S1 Dataset</u>). Soil pore gas and static flux chambers were sampled at four Ontario sites. Urban wastewater treatment plants, streams, rivers, and agricultural drainage tile outlets were sampled across four watersheds in Ontario and New Brunswick. Groundwaters were sampled from numerous domestic

n	Sample-size-corrected ellipse area (‰ air N ₂ × ‰ VSMOW)	Mean δ ¹⁵ N ± 1σ (‰)	Mean δ ¹⁸ Ο ± 1σ (‰)	Correlation (r)	Semi- major axis	Semi- minor axis	Slope of ellipse	Theta (θ, rads)
288	44	20.31 ± 20.79	56.39 ± 18.44	0.9994	27.8	0.5	0.89	0.73
225	0.47	6.55 ± 0.47	44.40 ±0.34	0.3758	0.5	0.3	0.46	0.43
884	296	-14.85 ± 12.01	31.23 ± 9.89	0.6083	14.0	6.7	0.73	0.63
738	203	-4.65 ± 9.84	41.77 ± 8.79	0.6656	12.1	5.4	0.85	0.70
495	92	6.63 ± 3.50	47.35 ± 9.54	0.4866	9.7	3.0	5.05	1.38
530	768	–13.97 ± 15.46	45.34 ± 17.74	0.4552	20.2	12.1	1.35	0.93
35	3086	-40.84 ± 30.75	29.03 ± 31.82	0.2256	34.7	27.9	1.16	0.86
92	545	-11.56 ± 12.70	31.51 ± 14.14	0.2922	15.4	11.2	1.43	0.96
	 n 288 225 884 738 495 530 35 92 	n Sample-size-corrected ellipse area (‰ air N2 × ‰) 288 44 225 0.47 884 296 738 203 495 92 530 768 353 3086 92 545	nSample-size-corrected ellipse area (% air N2 × % SMOW)Mean $\delta^{15}N$ ± 10 (%)28844 20.31 ± 20.79 2250.47 6.55 ± 0.47 884296 -14.85 ± 12.01 738203 -4.65 ± 9.84 49592 6.63 ± 3.50 530768 -13.97 ± 15.46 353086 -40.84 ± 30.75 92545 -11.56 ± 12.70	nSample-size-corrected ellipse area (‰ air N2 × ‰)Mean $\delta^{15}N$ ± 10 (‰)Mean $\delta^{18}O$ ± 10 (‰)28844 20.31 ± 20.79 56.39 ± 10.401 2250.47 6.55 ± 0.47 44.40 ± 0.34 884296 -14.85 ± 12.01 31.23 ± 9.89 738203 -4.65 ± 9.84 41.77 ± 8.79 49592 6.63 ± 3.50 47.35 ± 9.44 530768 -13.97 ± 15.46 17.74 353086 -40.84 ± 30.75 29.03 ± 30.82 92 545 -11.56 ± 12.70 31.51 ± 12.70	nSample-size-corrected ellipse area (%o air N2 \times %oMean δ^{15} N 1σ (%o)Mean δ^{18} O 1σ (%o)Correlation (r)28844 $20.31 \pm 2 \\ 20.79$ $56.39 \pm 1 \\ 8.44$ 0.3994 2250.47 6.55 ± 0.47 44.40 ± 0.34 0.3758 884296 $-14.85 \pm 1 \\ 2.01$ $31.23 \pm 2 \\ 9.89$ 0.6083 738203 -4.65 ± 9.84 $41.77 \pm 2 \\ 8.79$ 0.6656 49592 $-13.97 \pm 1 \\ 5.46$ $45.34 \pm 1 \\ 7.74$ 0.4552 530768 $-13.97 \pm 1 \\ 5.46$ $45.34 \pm 1 \\ 7.74$ 0.4552 92 545 $-11.56 \pm 1 \\ 2.70$ $31.51 \pm 1 \\ 14.14$ 0.2922	nSample-size-corrected ellipse area (% air N2 \times %)Mean δ^{15} N ± 10 (%)Mean δ^{18} O ± 10 (%)Correlation shadeSemi- major axis28844 20.31 ± 0 20.79 56.39 ± 0 18.44 0.9994 27.8 2250.47 6.55 ± 0.47 44.40 ± 0.34 18.44 0.3758 0.5 884 296 203 -14.85 ± 0.47 31.23 ± 0.6083 14.0 738 203 -4.65 ± 9.84 12.01 0.6656 12.1 495 92 -4.65 ± 9.84 41.77 ± 0.6656 9.7 530 768 $-13.97 \pm 0.532 \pm 0.4864$ 0.4552 20.2 531 3086 $-40.84 \pm 0.512 \pm 0.31 \pm 0.2256$ 34.7 92 545 $-11.56 \pm 0.232 \pm 0.232 \pm 0.2225$ $15.4 \pm 0.2322 \pm 0.232 \pm 0.2325$	nSample-size-corrected blipse area (% air N2 \times %)Mean δ^{15} N 10 (%)Mean δ^{18} O 10 (%)Correlation (n)Semi- major axisSemi- 	nSample-size-corrected silpse area (% air N2 x %)Mean δ16Mean δ18Correlation silpseSemi- major silsSemi- silpseSlope of silpse2884420.31 ± 20.7956.39 ± 18.440.999427.800.50.892250.476.55 ± 0.4744.40 ± 0.340.37580.50.300.46884296-14.85 ± 12.0131.23 ± 0.890.608314.006.710.73738203-4.65 ± 9.8417.77 ± 9.540.665612.105.40.8549592-13.97 ± 15.465.34 ± 9.750.48669.73.05.055303086-40.84 ± 9.07529.03 ± 31.81 ±0.252634.727.91.1692545-11.56 ± 12.7031.51 ± 14.140.292215.411.21.43

Table 1. Summary statistics of global δ^{15} N-N₂O and δ^{18} O-N₂O values as standard ellipses^{*}.

*A visual description of the standard ellipse is found in Fig. 2.

doi:10.1371/journal.pone.0118954.t001

and monitoring wells (some multi-level) distributed across nine research sites in Ontario and New Brunswick.

Liquid samples were stripped of N₂O using an off-line purge-and-trap system described in Baulch *et al.* [35]. With the exception of samples from one location (ERS) that were analyzed at UC Davis-SIF, all analyses occurred at the University of Waterloo on an IsoPrime isotope ratio mass spectrometer (IRMS) with a TraceGas pre-concentrator with an analytical precision of 0.2‰ (δ^{15} N-N₂O) and 0.4‰ (δ^{18} O-N₂O). All samples were analyzed alongside an internal N₂O isotope standard that was previously calibrated at the University of Waterloo against local tropospheric air (assumed to be equal to 6.72‰ for δ^{15} N and 44.62‰ for δ^{18} O [17]). This internal standard gas was also submitted to UC Davis-SIF for isotopic analysis, and the standard deviation of 8 replicates (at varying concentrations including ambient) was 0.34‰ (for δ^{15} N) and 0.77‰ (for δ^{18} O). The absolute difference in the assigned value of this internal standard gas (blind inter-lab comparison) was 0.29‰ (for δ^{15} N) and 0.81‰ (for δ^{18} O). Given there are no internationally-recognized standardization methods or materials for N₂O isotope analysis, these inter-laboratory results are in good agreement with one another. All values are reported here in units of per mill (‰) relative to air-N₂ and VSMOW for δ^{15} N and δ^{18} O, respectively.

All data were categorized as either Antarctic, freshwater, groundwater, marine, soil, stratosphere, troposphere, or urban wastewater, and a bivariate ellipse-based metric [63] was used to analyze and describe individual N₂O reservoirs (<u>Table 1</u>). This circular statistical analysis is an improvement over other techniques that qualitatively summarize isotope data with a polygon or a freeform shape e.g., [6,15,46,47]. There is often a high degree of covariance between δ^{15} N-N₂O and δ^{18} O-N₂O and this statistical technique provides an accurate description of the central tendency of the data. By definition, the standard ellipse contains ~40% of the data, is centered on the mean and has standard deviations of the bivariate data as semi-axes (Fig. 2) [63,64]. The data and an R file that contains the code to perform the statistical analyses and create the figures shown here are found at <u>https://github.com/jjvenky/Global-N2O-Ellipses</u>.

Fig 2. The standard ellipse of a bivariate sample. The urban wastewater N₂O isotope data from Townsend-Small *et al.* [41], Toyoda *et al.* [65], and this study (n = 83) are summarized here with a standard ellipse. The centre of the ellipse is located at the sample mean (\bar{x} , \bar{y}), where the semi-major (a) and semi-minor (b) axes intersect. The major axis is inclined versus the positive x axis by the angle θ . The tangent lines parallel to the x and y axes are related to the standard deviations (σ_x , σ_y) and the correlation coefficient (r). The two regression lines shown intersect the ellipse at the points of tangency [64].

Results and Discussion

The data are highly non-uniform within and between categories (Figs. <u>1</u> and <u>3</u>), and even within individual field sites (<u>S1 Dataset</u>). Historically, this has made it challenging to define an 'isotopic signature' for a given environment. Multiple factors cause this variability: (1) N₂O is produced by nitrification and denitrification, and the isotopic composition of N and oxygen (O) endmembers can vary widely [<u>26,31,32,54</u>]; (2) the apparent fractionation of ¹⁵N/¹⁴N and ¹⁸O/¹⁶O during N transformations is not constant, nor is it easily predicted; and (3) oxygen exchange between N₂O precursors and water imparts a large control on δ^{18} O-N₂O values during N₂O formation. While the exact mechanisms are not fully understood, it appears that greater amounts of exchange occur in unsaturated environments than in saturated ones [<u>66–68</u>]. Additionally, the reduction of N₂O to N₂ in anaerobic environments causes enrichment of ¹⁵N and ¹⁸O isotopes in the remaining N₂O pool, which displaces δ^{15} N-N₂O and δ^{18} O-N₂O values away from their original source values [<u>26,51</u>]. An initial analysis of all the data compiled in this study shows there is no clear separation of sources because each is described by an ellipse that overlaps at least one other source category (Figs. <u>1</u> and <u>3</u>).

A similar comparison of all the published SP data (excluding Antarctic and groundwater categories) shows poor isotopic separation of sources (Fig. 4). It is difficult to determine how much of this variability is real, and how much is due to standardization issues and differences

Fig 3. Global N₂O isotope measurements from atmospheric samples and key environmental sources: freshwater, marine and soil (n = 2117). Data from municipal wastewater treatment plants is also included (n = 92). Each point represents one measurement, or in a few cases a reported average value. The colour of each point is two-thirds transparent to allow the density of data to be displayed. Although the ellipses are the same as in Fig. 1, the scales of the axes are narrowed to better show the data relative to current atmospheric values.

in measurement techniques. A recent inter-laboratory assessment of the methods used to determine nitrogen isotopomers revealed poor SP reproducibility [69]. Eleven laboratories employing either IRMS or laser spectroscopy techniques analyzed a single N₂O target gas and the resulting standard deviation for SP was 4.24‰. Further, the inter-lab variation in the mean SP value was high, spanning a range of 11.62‰ [69]. This may help explain why there are two distinct groupings of SP data in each of the troposphere [2,17] and the stratosphere [29,45,58]

Fig 4. A comparison of ¹⁵N site preference values (*y*-axes) and (a) δ^{15} N-N₂O (left panel) and (b) δ^{18} O-N₂O (right panel) measurements from freshwaters, oceans, soils, atmosphere, and urban wastewater (*n* = 651). Measurements of ¹⁵N site preference from the Antarctic (*n* = 18) and groundwaters (*n* = 111) are not shown here, but are tabulated in S1 Dataset.

(Fig. 4). Reaching an international consensus on standardization methods for the measurement and reporting of nitrogen isotopomers should vastly improve the utility of this data in source-apportionment studies at all scales. Finally, we note the reproducibility of δ^{15} N-N₂O and δ^{18} O-N₂O measurements in this recent round-robin test was much better than for SP, which gives us confidence in our ability to use these data here to make useful comparisons. The standard deviation (and range) of the N₂O target gas in the inter-lab comparison was 1.37‰ (1.89‰) for δ^{15} N-N₂O and 1.00‰ (3.47‰) for δ^{18} O-N₂O [69].

Much of the low concentration data from soils and surface waters are highly influenced by mixing with tropospheric N₂O. This is evident by the high density of soil, freshwater and marine data that lies near the tropospheric N₂O value (Fig. 3). In contrast, groundwater N₂O, which does not mix with the atmosphere following recharge, is unaffected by this mixing process. Other processes such as substrate enrichment and N2O consumption control the isotopic composition of groundwater N2O, which displays extreme variability even within the same location (Fig. 1) [50,51]. Only 15 studies reported flux-weighted average δ^{15} N-N₂O, SP, and/or δ^{18} O-N₂O values, or provided enough information for us to calculate these values (2 freshwater studies, 2 marine studies, 10 soil studies, and 1 urban wastewater study; Fig. 5; S2 Dataset). The available flux-weighted data from soil and freshwater environments shows much overlap among this combined continental source, but the flux-weighted marine source appears to be unique. Importantly, there are very few flux-weighted data from all sources so robust conclusions cannot be made at this time. Additionally, these data were not weighted equally across studies so conclusions drawn from this analysis can be misleading. Only some of the values are time-weighted, and the sample size used to calculate the flux-weighted average varies from 3 to \sim 50 (S2 Dataset). Emissions of N₂O from soils (and potentially freshwaters and oceans) are inherently episodic, so future estimates of the flux-weighted average should attempt to include multiple measurements made over long timescales (months to years and encompassing seasonal differences) whenever possible.

Fig 5. Emission-weighted average δ^{15} N-N₂O and δ^{18} O-N₂O from continental and marine environments. A small number of studies reported flux-weighted or flux and time-weighted average values. A few other studies provided information that allowed us to calculate these values. Equal weighting criteria were not applied in each case because not all values are time-weighted. Additional factors such as the sample size (*n*), antecedent conditions of N₂O substrate(s), and time of year also different among studies (see <u>S2 Dataset</u>).

The results of our analyses shown in Figs. 1 and 3 are not flux-weighted, nor are all the categories important atmospheric sources. For example, the most recent IPCC assessment reports that human excreta (all forms of treated/untreated sewage) contributes between 0.1–0.3 Tg N yr⁻¹ as N₂O, or only ~ 1.1% of all natural and anthropogenic sources [5]. Of this, N₂O emissions from urban wastewater treatment plants constitutes a very small fraction. To address this, we analyzed subsets of the data from important atmospheric sources (freshwaters, oceans, and soils) that were not strongly influenced by mixing with tropospheric N₂O, and thereby make an important contribution to the flux-weighted average source value (<u>Table 2</u>; Fig. 6). To do this we filtered the data to include: (i) all reports of emitted N₂O, regardless of the strength of the flux (two freshwater studies [13,46], two marine studies [16,43] and several soil studies) (see <u>S2 Dataset</u>); (ii) isotope data in the soil profile that had concentrations of N₂O >650 ppb v/v (or 200% ambient); and (iii) isotope data in freshwater and near-surface marine environments (depths >100 m) with dissolved N₂O concentrations >200% saturation with respect to atmospheric N₂O [70].

Most of the freshwater and soil data were retained (71% and 90%, respectively), and the ellipses of these data subsets are similar to the ellipses for all data in these categories (Table 1). Although the median δ^{15} N and δ^{18} O values of freshwater and soil N₂O are significantly different (p < 0.001, Mann-Whitney test), their ellipses intersect one another at the 1 σ level (Fig. 6–top panel), and we conclude that these sources are not isotopically distinct at the global scale.

Table 2. Summary statistics of filtered δ^{15} N-N₂O and δ^{18} O-N₂O data. These values show a subset of data that were not strongly influenced by mixing with tropospheric N₂O, and thereby make an important contribution to the flux-weighted average source value (see Fig. 6).

Category	n	Sample-size-corrected ellipse area (‰ air N ₂ × ‰ VSMOW)	Mean δ ¹⁵ N ± 1σ (‰)	Mean δ ¹⁸ Ο ± 1σ (‰)	Correlation (r)	Semi- major axis	Semi- minor axis	Slope of ellipse	Theta (θ, rads)
Soil	794	288	-16.66 ± 11.24	30.05 ± 9.63	0.5341	13.0	7.0	0.75	0.64
Freshwater	527	215	-7.78 ± 9.72	40.75 ± 9.63	0.6821	12.5	5.5	0.99	0.78
Marine	62	22	5.14 ± 1.93	44.76 ± 3.62	0.0435	3.6	1.9	30.87	1.54
Continental*	1321	299	–13.11 ± 11.51	34.32 ± 10.96	0.6577	14.5	6.6	0.93	0.75

*The continental source, operationally defined here as Soil + Freshwater, is used along with the Marine source in our box-model calculations.

doi:10.1371/journal.pone.0118954.t002

In order to further delineate freshwater and soil N_2O more stable isotope measurements from freshwaters are needed; especially from non-temperate environments because the current data coverage from these systems is lacking. Measurements of SP may prove to be a useful means of separating these sources because the ellipses that describe SP vs. $\delta^{15}N_{bulk}$ for freshwater and soils do not overlap (Fig. 6–middle panel).

Of the 495 published marine values compiled here, only 62 originated from the top 100 m of the ocean and were >200% saturation. Relative to continental N₂O sources, the δ^{15} N and δ^{18} O values of near-surface oceanic N₂O sources are poorly constrained. We found no reports of N₂O isotope values from estuaries, which could represent an important fraction of the marine source but should be similar to marine or freshwater values. Tropical systems including reservoirs are also poorly studied. Future campaigns to more fully characterize δ^{15} N and δ^{18} O values of N₂O emissions from aquatic environments, especially those impacted by anthropogenic N sources, are needed.

Although N₂O generated from fossil fuel and biomass combustion may contribute ~8% of the total source (or ~20% of the anthropogenic source [5]), its isotopic composition is largely unknown. A lab-scale investigation of coal combustion revealed δ^{15} N-N₂O and δ^{18} O-N₂O values that were both enriched (unstaged combustion) and slightly depleted (air-staged combustion) relative to tropospheric N₂O [71], indicating coal-derived N₂O isotope values might be similar to marine sources but are dependent upon combustion conditions. A controlled study of gasoline-powered automobile exhaust concluded the average δ^{15} N-N₂O and δ^{18} O-N₂O values are similar to freshwater sources (-4.9 ±8.2‰ and +43.5 ± 13.9‰, respectively) [72]. Finally, N₂O derived from biomass burning appears to closely resemble the δ^{15} N and δ^{18} O values of its endmembers; biomass-N and atmospheric O₂, respectively [73]. We recognize the need to further investigate these potentially important sources and evaluate how they might affect the global N₂O isotope budget.

After analyzing the filtered δ^{15} N-N₂O and δ^{18} O-N₂O data, the 'bottom-up' global N₂O sources defined here were compared to estimates derived from 'top-down' atmospheric models (Fig. 7). Modelled estimates of the average anthropogenic and natural source fall within (or very close to) the soil ellipse *and* along a mixing line between soil and tropospheric N₂O. All but two of the modelled estimates fall outside the freshwater ellipse, indicating the bulk of the combined anthropogenic and natural sources are not from freshwaters. If freshwaters were a major source of atmospheric N₂O, a mixing line between freshwater and tropospheric N₂O would be much closer to the anthropogenic and natural source values. It is not, and therefore

Fig 6. Nitrous oxide isotope measurements of key sources in the global isotope budget. Soil, freshwater and marine data were filtered to exclude samples that were highly influenced by mixing with tropospheric N₂O: (a) δ^{15} N-N₂O vs. δ^{18} O-N₂O (top panel, *n* = 1383); (b) SP vs. δ^{15} N-N₂O (middle panel; *n* = 235); and (c) SP vs. δ^{18} O-N₂O (bottom panel; *n* = 235). The filtering criteria are described in the text.

doi:10.1371/journal.pone.0118954.g006

we confirm what 'top-down' approaches have previously inferred: soil is the main source of N_2O to the atmosphere.

We used the newly constrained δ^{15} N-N₂O and δ^{18} O-N₂O values for freshwater and soil (the combined continental source) and the ocean source to model their relative contributions to the total annual flux of N₂O. We began with a box-model approach similar to that presented in [8,9,11,29]. We adapted the following isotope mass-balance equation for atmospheric N₂O from Park *et al.* [29]:

$$Burden \times \frac{\partial \delta_{Trop}}{\partial t} = \sum Sources(\delta_{Sources} - \delta_{Trop}) - (\varepsilon \times L)$$
(1)

where, *Burden* = Present-day burden of N₂O in the troposphere [1553 (\pm 21.742) Tg N] as reported by Stocker *et al.* [5]. This estimate is for year 2011, and is updated from data provided in Prather *et al.* [74], who report an uncertainty of 1.4% for year 2010.

 $\frac{\partial \delta_{Trop}}{\partial t}$ = Deseasonalized, linear trend in archived samples of tropospheric N₂O measured by Park *et al.* [2]. The linear trends for δ^{15} N-N₂O and δ^{18} O-N₂O are -0.035% yr⁻¹ (± 0.002) and -0.022% yr⁻¹ (± 0.004), respectively.

 Σ Source = Annual N₂O emissions from all sources (17.9 Tg N yr⁻¹) [5]. For our calculations we applied an uncertainty of 25% to this parameter.

 $\delta_{Sources}$ = Flux-weighted δ^{15} N-N₂O or δ^{18} O-N₂O value (‰) of the average modern source (all natural and anthropogenic sources).

 $\delta_{Trop} = \delta^{15}$ N-N₂O or δ^{18} O-N₂O value (‰) of the modern troposphere (provided in <u>Table 1</u>).

 ε = Apparent enrichment factor (‰) for N₂O destruction processes in the stratosphere. These values are taken from <u>Table 3</u> in Park *et al.* [29], and are –14.9‰ (± 0.5) for ¹⁵N and –13.5‰ (± 0.5) for ¹⁸O. Note, the ratio of enrichment factors provided by Park *et al.* [29] (¹⁸O: ¹⁵N = 0.906) is very close to the slope of the regression line of the stratospheric N₂O data shown in Fig. 1 (δ ¹⁸O-N₂O: δ ¹⁵N-N₂O = 0.886).

L = Photochemical loss rate of N₂O in the stratosphere (14.3 Tg N yr⁻¹) [5]. Following [29], we applied an uncertainty of 25% in our calculations.

The term $(-\varepsilon \times L)$ is a very close approximation of the 'Net Isotope Flux' (‰ Tg N yr⁻¹) as defined in [29], and is the net annual flux of N₂O isotopologues from the stratosphere to the troposphere.

Equation 1 can be rearranged to solve for $\delta_{Sources}$ (Eq. 2), and all the known quantities provided above can be substituted into Eq. 2 to derive a flux-weighted, average modern source value ($\delta_{Sources}$) for δ^{15} N-N₂O and δ^{18} O-N₂O (‰).

$$\delta_{\text{Sources}} = \frac{\left(Burden \times \frac{\partial \delta_{\text{Trop}}}{\partial t}\right) + (\varepsilon \times L) + \left(\sum \text{Sources} \times \delta_{\text{Trop}}\right)}{\sum \text{Sources}}$$
(2)

Accordingly, we derive an average modern source value (± propagated standard deviation) for δ^{15} N-N₂O and δ^{18} O-N₂O of -8.4‰ (± 4.0) and +31.7‰ (± 13.9), respectively.

Fig 7. A comparison of bottom-up measurements to top-down estimates of N₂O sources. Previous top-down studies have used a variety of modelling approaches to apportion the global N₂O budget into different sources, identified here by colour. Ishijima *et al.* [10] measured N₂O in firn air and calculated the isotopic composition of the anthropogenic source for two time periods: 1952 1970 and 1970 2001 that differed markedly in δ^{15} N. Park et al. [2] constrained the pre-industrial, natural N₂O source from δ^{15} N-N₂O and δ^{18} O-N₂O measurements in firn air and then calculated the current anthropogenic N₂O source using recent archived air samples. Rahn and Wahlen [6] evaluated a depleted ocean scenario [DOS, originally proposed by Kim and Craig [20]], and an enriched ocean scenario [EOS, originally proposed by Kim and Craig [19]] to calculate corresponding terrestrial N₂O sources. Röckmann *et al.* [9] measured N₂O in firn air and modelled the pre-industrial (natural) source, the modern global average source (pink circle with black outline), and the anthropogenic source to calculate a depleted ocean scenario [T1] measured firn air and gas trapped in an ice core to calculate a range of values for the isotopic composition of the average anthropogenic. N₂O source. Toyoda *et al.* [7] estimated the δ^{15} N and δ^{18} O value of the oceanic N₂O source using 'Keeling Plots' of detailed water column data. Toyoda *et al.* [8] monitored the isotopic ratio of tropospheric N₂O in the northern hemisphere on a monthly basis from 2000–2011, and then used a box-model to estimate the current anthropogenic source. For reference, we show the Continental N₂O source, which is used along with the Marine source in our box-model calculations, and is operationally defined as Soil + Freshwater.

doi:10.1371/journal.pone.0118954.g007

Table 3. MixSIAR model output summary.

LOS ONE

	Category	Mean Contribution	Standard Deviation (σ)	Confidence Interval							
				2.5%	5%	25%	50%	75%	95%	97.5%	
2-isotope ($\delta^{15}N_{bulk}, \delta^{18}O$) mixing model	Soil	0.34	0.23	0.02	0.03	0.15	0.31	0.51	0.77	0.83	
	Freshwater	0.24	0.16	0.01	0.02	0.11	0.22	0.35	0.51	0.57	
	Marine	0.42	0.21	0.03	0.07	0.26	0.43	0.58	0.77	0.83	
3-isotope ($\delta^{15}N_{bulk}, \delta^{18}O, SP$) mixing	Soil	0.33	0.22	0.02	0.03	0.15	0.31	0.49	0.72	0.78	
model	Freshwater	0.24	0.16	0.01	0.02	0.11	0.21	0.35	0.53	0.59	
	Marine	0.43	0.19	0.07	0.13	0.30	0.42	0.55	0.75	0.82	

doi:10.1371/journal.pone.0118954.t003

If we were to assume that all N₂O fluxes (*F*) originate only from marine and continental sources, then:

$$\sum Sources \approx F_{Ocean} + F_{Cont} \approx 17.9 \,\mathrm{Tg} \,\mathrm{N} \,\mathrm{yr}^{-1} \tag{3}$$

and the flux-weighted modern source value is approximated by:

$$\delta_{Sources} \approx \frac{(\delta_{Cont} \times F_{Cont}) + (\delta_{Ocean} \times F_{Ocean})}{\sum Sources}$$
(4)

where the δ value of the continental and ocean sources are given in <u>Table 2</u>.

Combining $\underline{Eq. 2}$ with $\underline{Eq. 4}$ yields:

$$(\delta_{Cont} \times F_{Cont}) + (\delta_{Ocean} \times F_{Ocean}) \approx \left(Burden \times \frac{\partial \delta_{Trop}}{\partial t}\right) + (\varepsilon \times L) + \left(\sum Sources \times \delta_{Trop}\right)$$
(5)

Given the assumption that $F_{Cont} \approx \Sigma$ Sources – F_{Ocean} (Eq. 3), we can approximate F_{ocean} by:

$$F_{Ocean} \approx \frac{\left(Burden \times \frac{\partial \delta_{Trop}}{\partial t}\right) + (\varepsilon \times L) + \sum Sources(\delta_{Trop} - \delta_{Cont})}{\delta_{Ocean} - \delta_{Cont}}$$
(6)

Accordingly, using N isotope ratios we derive a value for F_{ocean} of ~4.6 (± 12.6) Tg N yr⁻¹, which is ~26% of all sources (17.9 Tg N yr⁻¹) [5]. The F_{Cont} is found by difference, and is approximately equal to 13.3 (± 13.4) Tg N yr⁻¹, or 74% of all natural and anthropogenic N₂O sources. The largest source of uncertainty in the N isotope mass-balance lies in the δ^{15} N value of the continental source (1 σ = 11.5‰), followed by Σ *Sources* and *L*, which have a relative uncertainty of 25% in our model.

The most recent N₂O budget estimates the combined soil, freshwater, and ocean flux to be $\sim 15.7 \text{ Tg N yr}^{-1}$, or 87.7% of the total source [5]. Our approach assumes the Σ *Sources* = 17.9 Tg N yr⁻¹ (as reported in IPCC-AR5) because other terms in the mass-balance (e.g., N₂O burden and loss rate) are based on a budget that includes all known sources. As such, we ignore the contributions from smaller sources such as human sewage, fossil fuels, industry, biomass combustion, and chemical production processes in the atmosphere, which have a combined annual flux of $\sim 2.2 \text{ Tg N yr}^{-1}$ [5]. Despite this, our result for F_{ocean} is similar to the estimate provided in IPCC-AR5, which shows oceans contribute 21% of the annual N₂O budget [5].

The O isotope mass-balance fails to derive a positive ocean flux ($F_{ocean} = -4.5 \pm 19.9$ Tg N yr⁻¹). This is because the δ^{18} O separation between the troposphere and the continental source is smaller than it is for δ^{15} N, and the term Σ *Sources* ($\delta_{Trop} - \delta_{Cont}$) is too small to make the numerator in Eq. 6 a net positive number. However, decreasing the loss rate (L) by 4 Tg N

 yr^{-1} and increasing Σ *Sources* by the same amount yields a positive ocean flux = 4.6 Tg N yr^{-1}. Therefore, if the uncertainty of these parameters is reduced in the future we may find that the O isotope budget balances.

Finally, we used a stable isotope Bayesian mixing model (MixSIAR) [75] to determine the proportions of soil, freshwater, and marine N_2O that best predicted the average modern source (anthropogenic plus natural) (Eq. 7).

$$\delta_{\text{Sources}} = (\delta_{\text{Soil}} \times F_{\text{Soil}}) + (\delta_{\text{Freshwater}} \times F_{\text{Freshwater}}) + (\delta_{\text{Ocean}} \times F_{\text{Ocean}}) \tag{7}$$

where, $F_{Soil} + F_{Freshwater} + F_{Ocean} = 1$.

MixSIAR, which is a front-end interface of the model SIAR (Stable Isotope Analysis in R) [76], is an ecological mixing model traditionally used to describe food web and predator-prey relationships. Values of $\delta^{15}N_{bulk}$ - N_2O , $\delta^{15}N^{\alpha}$ - N_2O , $\delta^{15}N^{\beta}$ - N_2O , and $\delta^{18}O$ - N_2O for the average modern source (the mixture) were taken from Röckmann *et al.* [9]. These estimates are almost identical to the ones calculated in our 2-box-model (above), and Röckmann *et al.* [9] provided ¹⁵N isotopomers, which allowed us to use 3 variables in our model runs ($\delta^{15}N_{bulk}$, $\delta^{18}O$, and SP). A series of Markov Chain Monte Carlo simulations, using values for soil, freshwater, and marine N₂O (filtered, raw data compiled in this study), were done to find mixing solutions that best fit the average modern source (Table 3). Gelman-Rubin and Geweke diagnostic tests indicated a chain length of 300,000, burn in of 200,000, thinning of 50 (2-isotope) or 100 (3-isotope), and 3 chains were appropriate.

Model runs using only the δ^{15} N-N₂O and δ^{18} O-N₂O data (2-isotope mixing model, n = 1383 data pairs) produced results very similar to the model runs that also included SP data (3-isotope mixing model, n = 235 data triads). Overall, this Bayesian modeling exercise predicted the soil, freshwater, and ocean contributions ($\pm 1\sigma$) to the average modern N₂O source were 0.43 (0.20), 0.34 (0.22), and 0.24 (0.16), respectively (Table 3). Unlike the box-model, this approach does not place *a priori* bounds on the data, and is not constrained by terms such as the stratospheric N₂O loss rate (*L*), which have large uncertainty. However, this method also ignores the contributions of several small sources, which have a combined contribution of ~ 12.3% to the total budget presented in IPCC-AR5 [5].

Both SIAR and the box-model predict the ocean flux to be 24% and 26% of the total, respectively, which closely confirms the scientific community's best estimate of the ocean flux as presented in IPCC-AR5 (21% of the total source). Further, the SIAR model output shows that freshwaters may contribute much more N₂O than previously thought. The current N₂O budget estimates the combined flux from rivers, estuaries, and coastal zones is 0.6 Tg N yr⁻¹, or just 3% of the total source. While we acknowledge that there is δ^{15} N- δ^{18} O overlap in the soil and freshwater source (Fig. 6-top and bottom panels), these sources appear to be unique in δ^{15} N-SP space (Fig. 6-middle panel). Therefore, we suggest there is a great need to quantify N₂O fluxes from freshwaters, estuaries, and coastal zones, which have received considerably less attention than soil and off-shore marine environments.

Supporting Information

S1 Dataset. A comma-delimited text file with all the data collected and analyzed in this study. In addition to δ^{15} N-N₂O, SP and δ^{18} O-N₂O values, we provide a reference citation, the category, a brief site description, and the criteria used to filter the data subsets (S1_Dataset. csv). (CSV)

S2 Dataset. A comma-delimited text file with weighted average δ^{15} N-N₂O, SP and δ^{18} O-N₂O values from select freshwater, soil and urban wastewater studies (S2_Dataset.csv). (CSV)

Acknowledgments

We thank the following people for their contributions in obtaining the new data presented in this study: R. Aravena, R. Elgood, J. Harbin, M. Levesque, W. Mark, M. Rempel, W. Robertson, M. Rosamond, A. Rossi, N. Senger, S. Thuss, A. Vandenhoff, and C. Wagner-Riddle. We are indebted to Hadley Wickham for the creation of ggplot2; an implementation of the Grammar of Graphics in R. We are especially grateful to all the anonymous reviewers who provided us with helpful suggestions as this manuscript evolved.

Author Contributions

Conceived and designed the experiments: DMS JJV SLS JS. Performed the experiments: DMS JJV. Analyzed the data: DMS JJV. Wrote the paper: DMS JJV SLS JS.

References

- Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, et al. The global nitrogen cycle in the twentyfirst century. Philos Trans R Soc B Biol Sci. 2013; 368: 20130164–20130164. doi:<u>10.1098/rstb.2013</u>. <u>0164</u> PMID: <u>23713126</u>
- Park S, Croteau P, Boering KA, Etheridge DM, Ferretti D, Fraser PJ, et al. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat Geosci. 2012; 5: 261–265. doi:10.1038/ ngeo1421
- Ravishankara AR, Daniel JS, Portmann RW. Nitrous Oxide (N₂O): The dominant ozone-depleting substance emitted in the 21st century. Science. 2009; 326: 123–125. doi:<u>10.1126/science.1176985</u> PMID: <u>19713491</u>
- Prinn RG, Weiss RF, Fraser PJ, Simmonds PG, Cunnold DM, Alyea FN, et al. A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J Geophys Res Atmospheres. 2000; 105: 17751–17792. doi:10.1029/2000JD900141
- Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al., editors. Climate Change 2013: The Physical Science Basis. Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2013. 1535 p.
- 6. Rahn T, Wahlen M. A reassessment of the global isotopic budget of atmospheric nitrous oxide. Glob Biogeochem Cycles. 2000; 14: 537–543. doi:10.1029/1999GB900070
- Toyoda S, Yoshida N, Miwa T, Matsui Y, Yamagishi H, Tsunogai U. Production mechanism and global budget of N₂O inferred from its isotopomers in the western North Pacific. Geophys Res Lett. 2002; 29: 7-1–7-4. doi:10.1029/2001GL014311
- Toyoda S, Kuroki N, Yoshida N, Ishijima K, Tohjima Y, Machida T. Decadal time series of tropospheric abundance of N₂O isotopomers and isotopologues in the Northern Hemisphere obtained by the longterm observation at Hateruma Island, Japan. J Geophys Res Atmospheres. 2013; 118: 3369–3381. doi:10.1002/jgrd.50221
- 9. Röckmann T, Kaiser J, Brenninkmeijer CAM. The isotopic fingerprint of the pre-industrial and the anthropogenic N₂O source. Atmospheric Chem Phys. 2003; 3: 315–323.
- Ishijima K, Sugawara S, Kawamura K, Hashida G, Morimoto S, Murayama S, et al. Temporal variations of the atmospheric nitrous oxide concentration and its delta N-15 and delta O-18 for the latter half of the 20th century reconstructed from firn air analyses. J Geophys Res-Atmospheres. 2007; 112. doi:<u>10. 1029/2006JD007208</u>
- Sowers T, Rodebaugh A, Yoshida N, Toyoda S. Extending records of the isotopic composition of atmospheric N₂O back to 1800 A.D. from air trapped in snow at the South Pole and the Greenland Ice Sheet Project II ice core. Glob Biogeochem Cycles. 2002; 16: 76-1–76-10. doi:10.1029/2002GB001911
- Boontanon N, Ueda S, Kanatharana P, Wada E. Intramolecular stable isotope ratios of N₂O in the tropical swamp forest in Thailand. Naturwissenschaften. 2000; 87: 188–192. doi:10.1007/s001140050701 PMID: 10840807

- Rahn T, Wahlen M. Stable isotope enrichment in stratospheric nitrous oxide. Science. 1997; 278: 1776–1778. doi:10.1126/science.278.5344.1776 PMID: <u>9388175</u>
- Croteau P, Atlas EL, Schauffler SM, Blake DR, Diskin GS, Boering KA. Effect of local and regional sources on the isotopic composition of nitrous oxide in the tropical free troposphere and tropopause layer. J Geophys Res. 2010; 115. doi:10.1029/2009JD013117 PMID: 20463844
- Dore JE, Popp BN, Karl DM, Sansone FJ. A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters. Nature. 1998; 396: 63–66. doi:10.1038/23921
- Frame CH, Deal E, Nevison CD, Casciotti KL. N₂O production in the eastern South Atlantic: Analysis of N₂O stable isotopic and concentration data. Glob Biogeochem Cycles. 2014; 28. doi:<u>10.1002/</u> 2013GB004790
- Kaiser J, Röckmann T, Brenninkmeijer CAM. Complete and accurate mass spectrometric isotope analysis of tropospheric nitrous oxide. J Geophys Res. 2003; 108. doi:<u>10.1029/2003JD003613</u> PMID: <u>14686320</u>
- Kaiser J, Engel A, Borchers R, Röckmann T. Probing stratospheric transport and chemistry with new balloon and aircraft observations of the meridional and vertical N₂O isotope distribution. Atmospheric Chem Phys. 2006; 6: 3535–3556.
- Kim K, Craig H. Two-isotope characterization of N₂O in the Pacific Ocean and constraints on its origin in deep water. Nature. 1990; 347: 58–61. doi:10.1038/347058a0
- Kim K, Craig H. Nitrogen-15 and Oxygen-18 characteristics of nitrous oxide: a global perspective. Science. 1993; 262: 1855–1857. doi:10.1126/science.262.5141.1855
- Koba K, Osaka K, Tobari Y, Toyoda S, Ohte N, Katsuyama M, et al. Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements. Geochim Cosmochim Acta. 2009; 73: 3115–3133. doi:10.1016/j.gca.2009.03.022
- 22. Koehler B, Corre MD, Steger K, Well R, Zehe E, Sueta JP, et al. An in-depth look into a tropical lowland forest soil: nitrogen-addition effects on the contents of N₂O, CO₂ and CH₄ and N₂O isotopic signatures down to 2-m depth. Biogeochemistry. 2012; 111: 695–713. doi:10.1007/s10533-012-9711-6
- Li L, Spoelstra J, Robertson WD, Schiff SL, Elgood RJ. Nitrous oxide as an indicator of nitrogen transformation in a septic system plume. J Hydrol. 2014; 519: 1882–1894. doi:10.1016/j.jhydrol.2014.09.037
- Maeda K, Toyoda S, Shimojima R, Osada T, Hanajima D, Morioka R, et al. Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoa abundance in betaproteobacterial ammonia-oxidizing bacteria. Appl Environ Microbiol. 2010; 76: 1555–1562. doi:10.1128/AEM.01394-09 PMID: 20048060
- Mander Ü, Well R, Weymann D, Soosaar K, Maddison M, Kanal A, et al. Isotopologue ratios of N₂O and N₂ measurements underpin the importance of denitrification in differently N-loaded riparian alder forests. Environ Sci Technol. 2014; 48: 11910–11918. doi:10.1021/es501727h PMID: 25264900
- 26. Mandernack KW, Rahn T, Kinney C, Wahlen M. The biogeochemical controls of the δ¹⁵N and δ¹⁸O of N₂O produced in landfill cover soils. J Geophys Res-Atmospheres. 2000; 105: 17709–17720. doi:<u>10.1029/2000JD900055</u>
- Naqvi SWA, Yoshinari T, Jayakumar DA, Altabet MA, Narvekar PV, Devol AH, et al. Budgetary and biogeochemical implications of N₂O isotope signatures in the Arabian Sea. Nature. 1998; 394: 462–464. doi:10.1038/28828
- Ostrom NE, Sutka R, Ostrom PH, Grandy AS, Huizinga KM, Gandhi H, et al. Isotopologue data reveal bacterial denitrification as the primary source of N₂O during a high flux event following cultivation of a native temperate grassland. Soil Biol Biochem. 2010; 42: 499–506. doi:10.1016/j.soilbio.2009.12.003
- Park S, Atlas EL, Boering KA. Measurements of N₂O isotopologues in the stratosphere: Influence of transport on the apparent enrichment factors and the isotopologue fluxes to the troposphere. J Geophys Res. 2004; 109. doi:10.1029/2003JD003731
- 30. Park S, Pérez T, Boering KA, Trumbore SE, Gil J, Marquina S, et al. Can N₂O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N₂O production and consumption in tropical soils? Glob Biogeochem Cycles. 2011; 25, GB1001. doi:10.1029/2009GB003615
- Pérez T, Trumbore SE, Tyler SC, Matson PA, Ortiz-Monasterio I, Rahn T, et al. Identifying the agricultural imprint on the global N₂O budget using stable isotopes. J Geophys Res-Atmospheres. 2001; 106: 9869–9878. doi:10.1029/2000JD900809
- Pérez T, Trumbore SE, Tyler SC, Davidson EA, Keller M, de Camargo PB. Isotopic variability of N₂O emissions from tropical forest soils. Glob Biogeochem Cycles. 2000; 14: 525–535. doi:<u>10.1029/</u> <u>1999GB001181</u>
- Peters B, Casciotti KL, Samarkin VA, Madigan MT, Schutte CA, Joye SB. Stable isotope analyses of NO2–, NO3–, and N₂O in the hypersaline ponds and soils of the McMurdo Dry Valleys, Antarctica. Geochim Cosmochim Acta. 2014; 135: 87–101. doi:<u>10.1016/j.gca.2014.03.024</u>

- Priscu JC, Christner BC, Dore JE, Westley MB, Popp BN, Casciotti KL, et al. Supersaturated N₂O in a perennially ice-covered Antarctic lake: Molecular and stable isotopic evidence for a biogeochemical relict. Limnol Oceanogr. 2008; 53: 2439–2450.
- Baulch HM, Schiff SL, Thuss SJ, Dillon PJ. Isotopic character of nitrous oxide emitted from streams. Environ Sci Technol. 2011; 45: 4682–4688. doi:10.1021/es104116a PMID: 21534582
- Rock L, Ellert BH, Mayer B, Norman AL. Isotopic composition of tropospheric and soil N₂O from successive depths of agricultural plots with contrasting crops and nitrogen amendments. J Geophys Res. 2007; 112. doi:10.1029/2006JD008330
- Samarkin VA, Madigan MT, Bowles MW, Casciotti KL, Priscu JC, McKay CP, et al. Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geosci. 2010; 3: 341–344. doi:<u>10. 1038/ngeo847</u>
- Santoro AE, Casciotti KL, Francis CA. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current: Nitrification in the central California Current. Environ Microbiol. 2010; 12: 1989–2006. doi:10.1111/j.1462-2920.2010.02205.x PMID: 20345944
- Sasaki Y, Koba K, Yamamoto M, Makabe A, Ueno Y, Nakagawa M, et al. Biogeochemistry of nitrous oxide in Lake Kizaki, Japan, elucidated by nitrous oxide isotopomer analysis. J Geophys Res. 2011; 116. doi:10.1029/2010JG001589 PMID: 24307747
- 40. Smemo KA, Ostrom NE, Opdyke MR, Ostrom PH, Bohm S, Robertson GP. Improving process-based estimates of N₂O emissions from soil using temporally extensive chamber techniques and stable isotopes. Nutr Cycl Agroecosystems. 2011; 91: 145–154. doi:10.1007/s10705-011-9452-2
- Townsend-Small A, Pataki DE, Tseng LY, Tsai C-Y, Rosso D. nitrous oxide emissions from wastewater treatment and water reclamation plants in Southern California. J Environ Qual. 2011; 40: 1542. doi:<u>10. 2134/jeq2011.0059</u> PMID: <u>21869516</u>
- Townsend-Small A, Pataki DE, Czimczik CI, Tyler SC. Nitrous oxide emissions and isotopic composition in urban and agricultural systems in Southern California. J Geophys Res. 2011; 116. doi:<u>10.1029/2010JG001494</u> PMID: <u>24307747</u>
- 43. Townsend-Small A, Prokopenko MG, Berelson WM. Nitrous oxide cycling in the water column and sediments of the oxygen minimum zone, eastern subtropical North Pacific, Southern California, and Northern Mexico (23°N-34°N). J Geophys Res Oceans. 2014; 119: 3158–3170. doi:10.1002/2013JC009580
- Toyoda S, Yoshida N, Urabe T, Aoki S, Nakazawa T, Sugawara S, et al. Fractionation of N₂O isotopomers in the stratosphere. J Geophys Res-Atmospheres. 2001; 106: 7515–7522. doi:<u>10.1029/2000JD900680</u>
- 45. Toyoda S, Yoshida N, Urabe T, Nakayama Y, Suzuki T, Tsuji K, et al. Temporal and latitudinal distributions of stratospheric N₂O isotopomers. J Geophys Res. 2004; 109. doi:10.1029/2003JD004316
- 46. Toyoda S, Iwai H, Koba K, Yoshida N. Isotopomeric analysis of N₂O dissolved in a river in the Tokyo metropolitan area. Rapid Commun Mass Spectrom. 2009; 23: 809–821. doi:<u>10.1002/rcm.3945</u> PMID: <u>19222057</u>
- Toyoda S, Yano M, Nishimura S, Akiyama H, Hayakawa A, Koba K, et al. Characterization and production and consumption processes of N₂O emitted from temperate agricultural soils determined via isotopomer ratio analysis. Glob Biogeochem Cycles. 2011; 25, GB2008. doi:10.1029/2009GB003769
- Tumendelger A, Toyoda S, Yoshida N. Isotopic analysis of N₂O produced in a conventional wastewater treatment system operated under different aeration conditions. Rapid Commun Mass Spectrom. 2014; 28: 1883–1892. doi:10.1002/rcm.6973 PMID: 25088132
- 49. Van Groenigen JW, Zwart KB, Harris D, van Kessel C. Vertical gradients of δ¹⁵N and δ¹⁸O in soil atmospheric N₂O—temporal dynamics in a sandy soil. Rapid Commun Mass Spectrom. 2005; 19: 1289–1295. doi:10.1002/rcm.1929 PMID: 15838846
- Well R, Flessa H, Jaradat F, Toyoda S, Yoshida N. Measurement of isotopomer signatures of N₂O in groundwater. J Geophys Res. 2005; 110. doi:10.1029/2005JG000044
- Well R, Eschenbach W, Flessa H, von der Heide C, Weymann D. Are dual isotope and isotopomer ratios of N₂O useful indicators for N₂O turnover during denitrification in nitrate-contaminated aquifers? Geochim Cosmochim Acta. 2012; 90: 265–282. doi:10.1016/j.gca.2012.04.045
- Westley MB, Yamagishi H, Popp BN, Yoshida N. Nitrous oxide cycling in the Black Sea inferred from stable isotope and isotopomer distributions. Deep Sea Res Part II. 2006; 53: 1802–1816. doi:<u>10.1016/j. dsr2.2006.03.012</u>
- Xiong ZQ, Khalil MAK, Xing G, Shearer MJ, Butenhoff C. Isotopic signatures and concentration profiles of nitrous oxide in a rice-based ecosystem during the drained crop-growing season. J Geophys Res. 2009; 114. doi:10.1029/2008JG000827

- Yamagishi H, Westley MB, Popp BN, Toyoda S, Yoshida N, Watanabe S, et al. Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California. J Geophys Res. 2007; 112. doi:10.1029/2006JG000227
- 55. Yamulki S, Toyoda S, Yoshida N, Veldkamp E, Grant B, Bol R. Diurnal fluxes and the isotopomer ratios of N₂O in a temperate grassland following urine amendment. Rapid Commun Mass Spectrom. 2001; 15: 1263–1269. doi:10.1002/rcm.352 PMID: 11466781
- 56. Yano M, Toyoda S, Tokida T, Hayashi K, Hasegawa T, Makabe A, et al. Isotopomer analysis of production, consumption and soil-to-atmosphere emission processes of N₂O at the beginning of paddy field irrigation. Soil Biol Biochem. 2014; 70: 66–78. doi:10.1016/j.soilbio.2013.11.026
- 57. Yoshinari T, Altabet MA, Naqvi SWA, Codispoti L, Jayakumar A, Kuhland M, et al. Nitrogen and oxygen isotopic composition of N₂O from suboxic waters of the eastern tropical North Pacific and the Arabian Sea-Measurement by continuous-flow isotope-ratio monitoring. Mar Chem. 1997; 56: 253–264. doi:10.1016/S0304-4203(96)00073-4
- Yoshida N, Toyoda S. Constraining the atmospheric N₂O budget from intramolecular site preference in N₂O isotopomers. Nature. 2000; 405: 330–334. doi:<u>10.1038/35012558</u> PMID: <u>10830958</u>
- Zhu R, Liu Y, Li X, Sun J, Xu H, Sun L. Stable isotope natural abundance of nitrous oxide emitted from Antarctic tundra soils: effects of sea animal excrement depositions. Rapid Commun Mass Spectrom. 2008; 22: 3570–3578. doi:10.1002/rcm.3762 PMID: 18932270
- Zou Y, Hirono Y, Yanai Y, Hattori S, Toyoda S, Yoshida N. Isotopomer analysis of nitrous oxide accumulated in soil cultivated with tea (*Camellia sinensis*) in Shizuoka, central Japan. Soil Biol Biochem. 2014; 77: 276–291. doi:10.1016/j.soilbio.2014.06.016
- Bauer B, Reynolds M. Recovering data from scanned graphs: Performance of Frantz's g3data software. Behav Res Methods. 2008; 40: 858–868. doi:10.3758/BRM.40.3.858 PMID: 18697681
- Yang H, Gandhi H, Ostrom NE, Hegg EL. Isotopic fractionation by a fungal P450 nitric oxide reductase during the production of N₂O. Environ Sci Technol. 2014; 48: 10707–10715. doi:<u>10.1021/es501912d</u> PMID: <u>25121461</u>
- Jackson AL, Inger R, Parnell AC, Bearhop S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R: Bayesian isotopic niche metrics. J Anim Ecol. 2011; 80: 595–602. doi:10.1111/j.1365-2656.2011.01806.x PMID: 21401589
- 64. Batschelet E. Circular Statistics in Biology. London: Academic Press; 1981.
- 65. Toyoda S, Suzuki Y, Hattori S, Yamada K, Fujii A, Yoshida N, et al. Isotopomer analysis of production and consumption mechanisms of N₂O and CH₄ in an advanced wastewater treatment system. Environ Sci Technol. 2011; 45: 917–922. doi:10.1021/es102985u PMID: 21171662
- Kool DM, Wrage N, Oenema O, Harris D, Van Groenigen JW. The 18O signature of biogenic nitrous oxide is determined by O exchange with water. Rapid Commun Mass Spectrom. 2009; 23: 104–108. doi:10.1002/rcm.3859 PMID: 19061209
- Snider DM, Venkiteswaran JJ, Schiff SL, Spoelstra J. Deciphering the oxygen isotope composition of nitrous oxide produced by nitrification. Glob Change Biol. 2012; 18: 356–370. doi:<u>10.1111/j.1365-2486.</u> 2011.02547.x
- Snider DM, Venkiteswaran JJ, Schiff SL, Spoelstra J. A new mechanistic model of δ¹⁸O- N₂O formation by denitrification. Geochim Cosmochim Acta. 2013; 112: 102–115. doi:10.1016/j.gca.2013.03.003
- Mohn J, Wolf B, Toyoda S, Lin C-T, Liang M-C, Brüggemann N, et al. Interlaboratory assessment of nitrous oxide isotopomer analysis by isotope ratio mass spectrometry and laser spectroscopy: current status and perspectives. Rapid Commun Mass Spectrom. 2014; 28: 1995–2007. doi:10.1002/rcm. 6982 PMID: 25132300
- 70. Thuss SJ, Venkiteswaran JJ, Schiff SL. Proper interpretation of dissolved nitrous oxide isotopes, production pathways, and emissions requires a modelling approach. PLoS ONE. 2014; 9: e90641. doi:10. 1371/journal.pone.0090641 PMID: 24608915
- Ogawa M, Yoshida N. Intramolecular distribution of stable nitrogen and oxygen isotopes of nitrous oxide emitted during coal combustion. Chemosphere. 2005; 61: 877–887. doi:<u>10.1016/j.chemosphere.</u> 2005.04.096 PMID: <u>15993467</u>
- 72. Toyoda S, Yamamoto S, Arai S, Nara H, Yoshida N, Kashiwakura K, et al. Isotopomeric characterization of N₂O produced, consumed, and emitted by automobiles. Rapid Commun Mass Spectrom. 2008; 22: 603–612. doi:10.1002/rcm.3400 PMID: 18247408
- Ogawa M, Yoshida N. Nitrous oxide emission from the burning of agricultural residue. Atmos Environ. 2005; 39: 3421–3429. doi:10.1016/j.atmosenv.2005.01.059 PMID: 15952345
- Prather MJ, Holmes CD, Hsu J. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys Res Lett. 2012; 39, L09803. doi:10.1029/ 2012GL051440

- 75. Stock BC, Semmens BX. MixSIAR GUI User Manual, version 2.1.2. 2013. Available: <u>https://github.</u> com/brianstock/MixSIAR.
- 76. Parnell AC, Inger R, Bearhop S, Jackson AL. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE. 2010; 5: e9672. doi:<u>10.1371/journal.pone.0009672</u> PMID: <u>20300637</u>