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Abstract 

Living systems continually respond to signals from the surrounding environment. Survival requires 
that their responses adapt quickly and robustly to the changes in the environment. One particularly 
challenging example is olfactory navigation in turbulent plumes, where animals experience highly 
intermittent odor signals while odor concentration varies over many length- and timescales. Here, 
we show theoretically that Drosophila olfactory receptor neurons (ORNs) can exploit proximity to a 
bifurcation point of their firing dynamics to reliably extract information about the timing and intensity 
of fluctuations in the odor signal, which have been shown to be critical for odor-guided navigation. 
Close to the bifurcation, the system is intrinsically invariant to signal variance, and information about 
the timing, duration, and intensity of odor fluctuations is transferred efficiently. Importantly, we find 
that proximity to the bifurcation is maintained by mean adaptation alone and therefore does not 
require any additional feedback mechanism or fine-tuning. Using a biophysical model with calcium-
based feedback, we demonstrate that this mechanism can explain the measured adaptation 
characteristics of Drosophila ORNs. 

 
 
Introduction 
 
Successful olfactory navigation depends on the ability of animals to make informed navigational 
decisions, which in turn requires accurate sensory processing to extract relevant information from 
odor signals. Animals navigate turbulent odor plumes (1-3) by turning upwind when they detect 
odor and crosswind otherwise (4-13). For this strategy to be successful, they must extract from the 
signal not only the intensity of the odor filaments they encounter but also temporal information, 
such as when and how frequently odor filaments arrive, how long they last, and when they end 
(Fig. 1A) (4, 8, 14-20). Information about the timing of odor signals is also critical for detecting the 
direction of motion of odor filaments (21) and resolving odor sources in space (15, 17). To reliably 
extract such information from an odor signal, the olfactory system must adapt its sensitivity to the 
ambient statistics of the odor concentration, which in turbulent plumes can span orders of 
magnitude (1-3, 22). 

Odor detection starts with odorant molecules binding to olfactory receptors (ORs). Different types 
of ORs are expressed in the corresponding olfactory receptor neurons (ORNs), which share similar 
response functions but with shifted sensitivities (23, 24). In Drosophila, ORNs adapt their gain in 
response to changes in mean odor intensity according to Weber-Fechner’s law (25, 26). Adaptation 
to the mean signal intensity takes place upstream of the firing machinery at the level of the receptors 
via a feedback mechanism involving calcium (25-29). ORNs also display finite yet rapid adaptation  
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Fig. 1. Firing rates for continuous current waveforms can be approximated by binary switching 
currents crossing the spiking threshold. (A) Flies navigate odor plumes using information about the 
intensity and timing of the odor fluctuations they encounter. (B) The response dynamics of a neuron spiking 
above and below the firing threshold. Top: Input current over time for a current temporarily above (right, grey) 
and below (left, black) the firing threshold. Middle: corresponding membrane voltage over time. Bottom: 
Average firing rate 𝑟 as a function of a fixed input current. The simulated neuron is quiescent below the 

threshold current 𝐼b, while the firing rate suddenly and monotonically rises with the current above the threshold. 
(C) For dynamic (non-static) currents, the dose-response curve from (B) may not apply. Top: a static current 
(black) and a current with a brief dip below the firing threshold (red). Middle and bottom plots: corresponding 
neuron membrane voltages for two currents. For the current with a dip, the neuron crosses into a non-firing 
regime and causes a brief delay in spikes, compared to the response to the static current (dotted line and 
arrow). This delay will manifest as a reduction – but not zeroing – of the firing rate, obscuring the fact that the 
neuron is crossing into a quiescent state. (D) Extrapolating from (C), the response of the neuron to a fluctuating 
but continuous current that always remains within the firing regime, i.e., above 𝐼b  (top, black), produces 
membrane voltages (middle, black) and firing rates (bottom, black) that can be well-approximated by a binary 
current that continuously crosses 𝐼b, provided the switch points are chosen judiciously (blue). 

 

to changes in the signal variance via an unknown mechanism that involves both signal transduction 
and the firing machinery (29). Finally, measurements of the cross-correlations between odor signal 
and firing rate show that Drosophila ORNs maintain a high degree of temporal precision, where the 
delay between odor onset and firing response stays invariant to mean odor intensity (24, 27, 29, 
30). Together, these adaptation properties suggest that ORNs can precisely and robustly encode 
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the timing and intensity of fluctuations in the odor signal, but the mechanism underlying such 
precision remains unclear. 

When Drosophila ORNs are exposed to a fluctuating odor signal of constant but low mean intensity, 
the firing rate exhibits a bimodal distribution (29), indicating that the neuron is transitioning between 
a state of “firing” and “resting.” This observation strongly suggests that the neuron is operating near 
a bifurcation of the firing machinery, consistent with past computational studies on contrast 
adaptation (31-34).  

To further examine the implications of this observation, consider a spiking conductance-based 
neuron model built on the Hodgkin-Huxley framework, which relates changes in intracellular ion 
concentrations to changes in the membrane voltage. As the injected current crosses a firing 
threshold, the model exhibits a qualitative change in dynamics from a constant voltage to periodic 
spiking (Fig. 1B). In the theory of nonlinear dynamical systems, such transitions are known as 
bifurcations; accordingly, we define the firing threshold as the bifurcation point and the 
corresponding current as 𝐼b. For constant currents above 𝐼b, the voltage spikes periodically and the 
firing rate stays constant, while the neuron does not fire below the firing threshold. In the firing 
regime, neurons increase their firing rate monotonically with injected current (Fig. 1B). But near 𝐼b, 
the distinction between the “firing” and “resting” states is more ambiguous. Consider a brief change 
in current, from above 𝐼b to below 𝐼b and back above (Fig. 1C). While the neuron has technically 
switched between two states, this state change is masked in the voltage trace, which only exhibits 
a delay in spike timing and therefore a brief reduction in firing rate. Thus, for dynamic input currents 
near 𝐼b, the neuron can act much like it does above 𝐼b – encoding signals with a continuous-value 
firing rate rather than as a discrete 2-state ON/OFF system (Fig. 1D).  

In this paper, we investigate how proximity to a bifurcation of the firing dynamics in ORNs 
contributes to odor information encoding. We use a Morris-Lecar type model (35), a highly 
simplified membrane dynamics model in the Hodgkin-Huxley family, whose phase space is fully 
described in two dimensions. We show that proximity to the bifurcation enables variance adaptation 
and enhances the encoding of information about the timing, duration, and intensity of odor 
fluctuations, such as those experienced by an animal in turbulent plumes. We devise a biophysical 
model of Drosophila ORNs incorporating calcium dynamics, which achieves intrinsic adaptation to 
the signal mean and thereby also provides variance adaptation by keeping the neuron near the 
bifurcation.  

 
Results 
 
Intrinsic variance adaptation irrespective of bifurcation type. Drosophila ORNs intrinsically 
adapt their response to changes in signal variance (29), allowing them to adjust their sensitivity to 
the given odor signal. Previous studies have proposed that neurons constantly crossing the firing 
threshold can implement a simple strategy for intrinsic variance adaptation (32, 34, 36). Here, we 
demonstrate intrinsic variance adaption due to proximity to a bifurcation and characterize the 
adaptive behavior against different bifurcation types. We use a 2-dimensional Hodgkin-Huxley 
conductance-based neuron model known as the Morris-Lecar model (Na+K model) (35), in which 
inward-flowing Na+ and outward-flowing K+ channels drive spike generation. We drive the neuron 
model with a fluctuating current 𝐼(𝑡) defined by an Ornstein-Uhlenbeck (O-U) stochastic process 

with input correlation timescale 𝜏𝑠 , standard deviation 𝜎 , and mean 𝜇 . Once the spikes are 

generated, we compute the firing rate 𝑟(𝑡) by convolving the binary sequence of threshold voltage 

crossings with a linear filter with timescale 𝜏𝑟 (Fig. 2A, see Methods). 

When we drive the Na+K model with a fluctuating O-U input current 𝐼(𝑡) but with the mean around 
the bifurcation point (e.g., 𝜇 = 𝐼b = 4.54 𝑝𝐴), we see a smooth, continuous response much like in a 

traditional 𝐼 - 𝑟  curve (Fig. 2B), unlike the dose-response derived for constant, non-fluctuating 
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signals (Fig. 1B). However, the 𝐼-𝑟 curve has a distinct dependence on the amount of signal 

fluctuation 𝜎. Inputs with higher variance (Fig. 2B, dark red) have broader 𝐼- 𝑟 curves. When the 
input drops below 𝐼b, changes in the firing rate only depend on the excursion time below 𝐼b but not 
on the magnitude of the drop. Since this excursion time depends on the input correlation timescale 
of the O-U input, rescaling the input by its 𝜎 collapses the distinct 𝐼-𝑟 curves onto a single curve 

when 𝐼 < 𝐼b (Fig. 2C), indicating intrinsic adaption to the variance of the input. 

 

 

Fig. 2. The dose-response of conductance-based neuron models is intrinsically adaptive (invariant) to 
input signal variance regardless of the bifurcation type. (A) A schematic showing how input current is 

translated to firing rate in a conductance-based neuron model. Here, the input current 𝐼(𝑡) is modeled as an 

O-U process with input correlation timescale 𝜏𝑠 = 200 𝑚𝑠, mean 𝜇 = 4.54 𝑝𝐴, and standard deviation 𝜎 = 0.1. 
The firing rates are calculated by binarizing and filtering the spikes with an exponential filter 𝑓 with firing rate 

filter timescale 𝜏𝑟. This model has Na+ and K+ channels driving action potentials and fires when the injected 

current is above 𝐼𝑏 = 4.54 𝑝𝐴. (B) Dose-response curves of the firing rate as a function of the input current 

difference from the firing threshold (𝐼𝑏 = 4.54 𝑝𝐴) obtained from the Na+K model with an SNIC bifurcation. The 

different curves correspond to increasing fluctuations with size 𝜎, ranging from 𝜎 = 0.04 𝑝𝐴 (light red) to 1.6 𝑝𝐴 

(dark red). (C) When rescaled by the magnitude of 𝜎, the dose-response curves collapse to a single curve, 

implying that the system inversely adapts its gain with 𝜎. (D) Dose-response curves from a neuron model with 

a Hopf subcritical bifurcation, where the firing rate is discontinuous at the threshold current 𝐼𝑏 = 101 𝑝𝐴. (E) 

The same plot with the x-axis rescaled by 𝜎, as in (C).  

 

The bifurcation-induced variance adaptation is not unique to this model. Though neurons can differ 
widely in their response properties, the nature of the quiescence-to-firing bifurcation falls into only 
a few universality classes. The Na+K model exhibits a saddle node on an invariant circle (SNIC) 
bifurcation, in which the spiking frequency goes arbitrarily close to zero near 𝐼b. Another common 
bifurcation observed in neurons is a Hopf bifurcation, which exhibits a discontinuity in the 
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frequency-current response and can be either subcritical or supercritical. When modeling a spiking 
neuron model exhibiting a Hopf bifurcation (see Methods), we observed a similar collapse of the 𝐼-

𝑟 curves despite the different spiking behavior near the critical current 𝐼b  exhibited by the two 
models (Fig. 2D, E). Note that precise adaptation breaks down above the bifurcation point due to 
the nonlinear yet monotonic relationship between the input and the firing rate in this regime. In a 
simpler threshold model, where the magnitude of the signal is fully binarized, adaptation occurs 
both above and below the threshold (34), unlike in the neuron models considered here. 

Bifurcation helps maintain coding capacity across signal variance. When navigating an odor 
environment, flies need to detect and integrate various features from the odor signal. We quantify 
the coding capacity of a neuron by calculating the mutual information (MI) between input current 𝐼 

and firing rate 𝑟, defined as 

𝑀𝐼(𝐼, 𝑟) = ∑ 𝑃(𝐼)

𝐼

∑ 𝑃(𝑟|𝐼) log 𝑃(𝑟|𝐼)

𝑟

− ∑ 𝑃(𝑟) log 𝑃(𝑟)

𝑟

, [1] 

where 𝑃(𝐼) and 𝑃(𝑟) are the probability distributions of the current and firing rate, respectively (see 
Methods). Like above, we use as input a correlated O-U current with a mean equal to the bifurcation 
current 𝐼b and verified that the numerical MI calculation is robust to the binning process (see SI 

Appendix, Fig. S1). Since scaling of the 𝐼-𝑟 curve with signal strength 𝜎 only occurs when the 
current is below the bifurcation point (Fig. 2C, E), we consider two separate quantities, MI and MI-
, defined as the mutual information calculated over the entire signal and the mutual information 
calculated over only the times when the signal is below the threshold (𝐼 < 𝐼b), respectively. MI- 
quantifies the contribution of the sub-threshold regime to the information transfer. MI- and MI 
encode different types of information used by animals during odor-guided navigation. Intuitively, 
mutual information below the bifurcation point (MI-) is correlated to the time since the last odor 
encounter. In contrast, mutual information over the entire signal (MI) encodes the relative changes 
in the odor concentration. 

We find that MI monotonically increases as 𝜎 increases over two orders of magnitude (Fig. 3A). 
This is expected since a highly variable odor landscape leads to a wider range of signal and 
response magnitudes. In contrast, MI- is largely independent of 𝜎 (Fig. 3B, Fig. S2) since for inputs 
below 𝐼b , adaptation to variance in the input automatically takes place. Furthermore, the MI- 

distribution is asymmetric with respect to 𝐼b , as the amount of encoded information quickly 

diminishes when 𝜇 < 𝐼b. Generally, when 𝜎 is small and 𝜇 is far from the bifurcation point, the rate 
of threshold crossing goes down, leading to a decrease in MI. For MI-, this effect is exacerbated 
when 𝜇 < 𝐼b since spiking occurs too sporadically to maintain the firing rate, eventually yielding 

zero firing rate for most times when 𝐼 < 𝐼b. Finally, MI- stays elevated over a range of filter time 

scales 𝜏𝑟 (Fig. 3C, D). 

MI characteristics are closely related to the mechanistic origin of the variance adaptation near 𝐼b. 
When the model neuron generates spike events from an input, this amounts to a binarization of the 
signal (Fig. 2A). If we considered the mutual information between a static, temporally uncorrelated 
signal and its response (as in Fig. 1B), MI would not exceed 1 bit and MI- would be 0. However, in 
the neuron model, the observed MI is significantly higher than 1 bit due to the temporal correlation 
present in the input signal and thereby in the firing rates (34, 37). Since this correlation persists 
over the input correlation timescale 𝜏𝑠, the coding capacity of the neuron depends on the relative 

magnitude of the input timescale 𝜏𝑠 and the filtering rate timescale 𝜏𝑟. When 𝜏𝑟 ≫ 𝜏𝑠, all fluctuations 

average out, and MI barely exceeds 0 bit (Fig. 3D). When 𝜏𝑟 ≪ 𝜏𝑠, the output converges to a binary 
time series, and MI does not exceed 1 bit (and 0 bit for MI-). Calculating MI- for a range of input 
and filtering timescales, we find that the optimal coding capacity lies on the manifold 𝜏𝑟 ~ 𝜏𝑠/10 
(Fig. 3D; Fig. S3), consistent with observations in a simpler binary switching model (34). 
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Fig. 3. Bifurcation-induced variance adaptation maintains coding capacity. (A) Mutual information 
between the distribution of input current 𝐼 (modeled as an O-U process with mean 𝜇, standard deviation 𝜎, 

and correlation timescale 𝜏𝑠 = 500 𝑚𝑠) and the firing rate 𝑟 as a function of the strength of the fluctuations in 

the input current (MI, black). Green: same but only for currents below the threshold (𝐼 < 𝐼b, MI-). MI increases 
monotonically with the signal variance. Meanwhile, MI- remains largely independent of the signal variance 
over two orders of magnitude. The firing rate filter timescale is 𝜏𝑟 = 55 𝑚𝑠. (B) MI- as a function of the mean 

𝜇 and standard deviation 𝜎 of the input current. The blue box corresponds to 𝜇 ~ 𝐼b = 4.54 𝑝𝐴. (C) MI- as a 

function of 𝜎 and 𝜏𝑟. MI- is maximized when 𝜏𝑟 = 40 𝑚𝑠, which is ~1/10 of the input 𝜏𝑠 (blue dashed line). (D) 

MI- as a function of 𝜏𝑠 and 𝜏𝑟 shows that information transfer is bounded by the constraint 𝜏𝑟 ≲ 1/5 𝜏𝑠 and 

large enough input timescale 𝜏𝑠 to cover the inter-spike interval.  

 

This insight can be exploited to improve coding capacity in traditional linear-nonlinear (LN) neuron 
models (see SI Appendix) consisting of a Gaussian filter followed by a rectified linear unit (ReLU). 
Standard LN models do not exhibit variance adaptation (Fig. S4, red). However, substituting the 
ReLU for the SNIC bifurcating 𝐼-𝑟 curve (Fig. 1B), we see an imperfect gain control (Fig. S4, 
orange) since the response changes are magnified for transitions between the active and quiescent 
states but diminished within the active state. Additionally, switching the order of operation from LN 
to nonlinear-linear (NL) shows a significant improvement (~15%) in coding capacity (Fig. S4C) 
while keeping the gain adaptation (Fig. S4, blue). Compared to standard LN models, this new 
architecture better reflects the generation of firing rates from spiking neurons and significantly 
improves the approximation of sensory neuron dynamics. 

Bifurcation enhances information encoding from temporal odor cues. In turbulent odor 
environments, animals use the timing of their encounters with odor filaments to decide when to 
orient upwind or crosswind (2, 8, 20, 38, 39). Here, we examine how the ORN’s ability to encode 
odor timing information varies with the proximity to the bifurcation. We used the critical current value 
𝐼b as the threshold to define when the signal is detected or not. As temporal cues of interest, we 

consider Δ𝑡ON, the time difference between subsequent positive crossings of the threshold; Δ𝑡OFF, 

the time difference between subsequent negative crossings of the firing threshold; 𝑡dur
enc, the duration 

of ‘odor encounters’ (signal above the firing threshold); and 𝑡dur
bnk, the duration of ‘blanks’ (signal 

below the firing threshold) (Fig. 4A). From our simulations, we obtain the stationary distributions of 
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Δ𝑡ON, Δ𝑡OFF, 𝑡dur
enc, and 𝑡dur

bnk and calculate the mutual information between these distributions and 

that of the firing rate 𝑟.   

 

 

Fig. 4. The coding capacity of signal timing is elevated when ORN is proximal to the bifurcation point. 
(A) A schematic illustrating different temporal statistics that ORNs may encode for odor-guided navigation. 
Odor encounters and odor blanks correspond to the stimulus crossing the firing threshold from below/above. 
The timings between subsequent encounters or blanks are defined as Δ𝑡ON  and Δ𝑡OFF, respectively. The 

duration of odor encounters 𝑡dur
enc and blanks 𝑡dur

bnk denote the time from an encounter to a blank or a blank to 

an encounter, respectively. (B) MI between the distribution of encounter times Δ𝑡ON and the firing rate 𝑟 as a 

function of signal mean 𝜇 and standard deviation 𝜎. MI increases and saturates as encounter frequency 

increases, which depends on the relative values of 𝜇  and 𝜎 . When 𝜇  is close to 𝐼b = 4.54 𝑝𝐴 (blue box), 

information about Δ𝑡ON is encoded over the widest range of 𝜎. (C-E) Same as (B) for the distributions of blank 

times Δ𝑡OFF, encounter duration 𝑡dur
enc, and blank duration 𝑡dur

bnk. Unlike other temporal cues, information about 

encounter duration becomes small when 𝜇 < 𝐼b. 

 

We find that significant information about the signal timing is encoded across a range of mean 𝜇 
and standard deviation 𝜎 of the input current (Fig. 4B-E). Furthermore, when 𝜇 ~ 𝐼b, information 

about the signal timing stays elevated over more than two orders of magnitude of 𝜎 (blue box in 

Fig. 4B-E). The MI distributions for Δ𝑡ON  and Δ𝑡OFF  are similar and symmetric along the firing 

threshold 𝐼b. Interestingly, MI from encounter duration 𝑡dur
enc lacks symmetry along 𝐼b, as the amount 

of encoded information diminishes when 𝜇 < 𝐼b (Fig. 4D). There is a general trend of increasing MI 
as the input variance increases, reflecting the fact that higher frequency of threshold crossing 
translates to increase in coding capacity. However, MI saturates as the threshold crossing 
frequency saturates, which is limited by the timescales of the O-U process. 

Encounter frequency and duration are critical components of the Drosophila odor-guided navigation 
strategy in turbulent plumes (8, 11, 21). Interestingly, the ORN efficiently transmits information 
about the duration of odor encounters 𝑡dur

enc, but only when 𝜇 ≥ 𝐼b (Fig. 4D), suggesting that odor 

encounter duration is less informative when the signal intensity is low, which is typically the case 
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in turbulent plumes (8, 11, 16, 18). The MI of the 𝑡dur
enc depends asymmetrically on 𝜇 − 𝐼b (Fig. 4D) 

because the duration of an encounter effectively disregards information encoded by fluctuations 
that take place when the signal is above 𝐼b. When 𝜇 < 𝐼b, any fluctuations above 𝐼b result in a short 
encounter duration, which carries no information about the magnitude of the fluctuation. However, 
when 𝜇 > 𝐼b, the signal below 𝐼b rapidly drives the firing rate down to the lower bound of 0 𝐻𝑧. This 

also explains why the blank duration does not exhibit asymmetry along 𝜇 ~ 𝐼b, as blank duration 

only tracks signals below 𝐼b. We can test this effect by modifying the O-U signal such that the O-U 
input above 𝐼b is discretized as a single value, thereby creating an upper bound for the firing rate. 

Indeed, with this modified O-U signal, the MI of the 𝑡dur
enc becomes symmetric around 𝐼b (Fig. S5).  

Our results are robust to different types of input signals. We calculated the mutual information 
between odor timing and firing rate using as input experimentally measured time traces of odor 
signals experienced by walking flies freely navigating complex odor plumes (8). In these traces, the 
distributions of odor encounter durations and blank durations exhibit near power-law behavior over 
a few decades (see Fig. 1I in ref (8)) and therefore are very different from the Gaussian statistics 
of an O-U signal. Nonetheless, we found that the MI distributions are qualitatively similar to those 
obtained in response to the O-U process (compare Fig. S6B to Fig. 4). We also check that the MI 
becomes smaller when using temporally decorrelated Gaussian white noise as input, as expected 
(Fig. S5). 

Mean adaptation maintains ORNs near the bifurcation point. So far, we have shown that 
proximity to a bifurcation enhances the transmission of olfactory information through a binary 
switching process. In practice, this requires that the signal mean is always positioned close to the 
bifurcation point 𝐼b, which is an ostensibly stringent condition. How do ORNs maintain encoding 
fidelity in naturalistic conditions, where background stimuli intensities vary substantially between 
environments? 

Various sensory neurons exhibit adaptation to the signal mean (40-44). A simple mechanism of 
mean adaptation is negative integral feedback, in which the cumulative deviation of a system’s 
response from the baseline is fed back as an inhibitory input, pushing the system back as the 
response deviates from the baseline. Such negative feedback mechanisms have been observed 

in cellular (45, 46) and neural systems, including Drosophila olfaction (25, 27, 29). The adaptation 

in a sensory neuron is often associated with receptors and slow ion channel dynamics (47). In 
particular, the cytoplasmic calcium level is a critical component of adaptation in Drosophila ORNs 
(25, 29, 48, 49), suggesting the calcium influx through Drosophila OR is a good candidate to model 
the adaptive behavior. 

We extend the conductance-based model (Na+K model) used above into a biophysical model of a 
Drosophila ORN (Na+K+Ca model) by incorporating the calcium influx through OR and cytoplasmic 
calcium-mediated regulation of the receptor activity (50) (see Methods). We model adaptation 
assuming that the cytoplasmic calcium dynamics are determined by the influx and the outflux of 
calcium ions based on the activation of the OR and the calcium pump, 

𝑑𝐶

𝑑𝑡
=

1

𝜏𝑐

(𝑔𝑠𝑆 − 𝑔𝑐𝐶). [2] 

Here, 𝐶  is the cytoplasmic calcium concentration [𝐶𝑎2+], 𝑆  is the odor concentration, 𝜏𝑐  is the 

adaptation time scale, and 𝑔𝑠  and 𝑔𝑐  are constants (Fig. 5A). The ORs, together with the co-
receptor Orco, form non-selective cation channels permeating sodium and calcium ions (49), and 
previous studies have shown that the adaptation behavior is independent of the firing activity and 
results from odorant binding to ORs (27, 29). We assume an active inhibition of OR by calcium 
ions, perhaps through a calmodulin-based mechanism (51) or calcium-dependent phosphatase-
based dephosphorylation that targets Orco (48, 52) (Fig. 5B). Assuming odor binding and unbinding 
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is fast, we model the dependency of the input current 𝐼𝑠  on odor concentration 𝑆 and calcium 

concentration 𝐶 as 

𝐼𝑠 =
𝑔𝐼𝑆

𝐾𝑠 + 𝑆 +
𝐶
𝐾𝑐

, [3]
 

where 𝑔𝐼 is a proportionality constant, 𝐾𝑠 controls the sensitivity to the odor, and 𝐾𝑐 determines the 
strength of the inhibition via calcium. Thus, the model contains a negative feedback loop modulated 
by calcium concentration, which relies on the fast sodium influx and the slow calcium extrusion. 
Combining Equations [2] and [3] with the conductance-based model (Methods), our biophysical 

model responds to fast changes in signal amplitude and adapts back to ~30 𝐻𝑧 following a step 
increase in odor concentration in accordance with experimental data (29, 53) irrespective of the 
background odor level (Fig. 5B).   

 

 

Fig. 5. Overview of the biophysical model of ORNs with calcium-mediated mean adaptation. (A) Mean 
adaptation in Drosophila ORNs is mediated by cytoplasmic calcium level. Odorant drives response by binding 
to olfactory receptors (OrX). Active receptors drive calcium influx along with sodium ions, which, in return, 
regulates the receptor activity through a calmodulin-based process or calcium-dependent phosphatase-based 
dephosphorylation that targets Orco, decreasing the receptor activity. Meanwhile, cytoplasmic calcium ions 
are sequestered in the mitochondria or pumped out, slowly recovering the sensitivity towards a fixed steady 
state under a continuous odor input. (B) The firing rate adapts to about ~30 𝐻𝑧 independent of the background 
odor concentration, as shown experimentally in ORN ab3A in response to ethyl acetate. To leverage 
bifurcation-induced benefits, we chose a steady state firing rate that corresponds to a signal slightly above the 
bifurcation point. Left: an odor signal trace where the mean concentration changes by an order of magnitude 
from 4.5 to 45 A.U. but with the same variance. Right: while the increase in odorant concentration creates a 
transient increase in firing rate, the ORN quickly adapts to the same average firing rate of ~30 𝐻𝑧. 

 

The biophysical model also reproduces several key dynamical properties of ORNs. First, the firing 
lag, defined as the peak of the cross-correlation between the input and the response, is nearly 
invariant to the changes in the signal mean 𝜇 (Fig. 6A) as measured in ORNs (29). This implies 
that our model remains temporally precise over diverse odor concentrations. The absolute lag 
(~7 𝑚𝑠) suggested by the model is comparable to the smallest value of experimentally reported 
odor-evoked first spike latency in Drosophila (54). We also confirmed that the biophysical model 
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reproduces the gain adaptation properties of ORNs, namely the gain is inversely proportional to 
the mean odor intensity, thus following Weber-Fechner’s law (25, 29, 53) (Fig. S7), and scales with 
the signal variance quantitatively similarly to the experiments (29). 

 

 

Fig. 6. Mean adaptation maintains robust bifurcation-induced information transmission across 
stimulus backgrounds. (A) Right: the lag between the input signal and the firing rate is quantified from the 

peak in the cross-correlation between the two time traces. Left: differences in firing lag (Δlag) with respect to 
the lag at 𝜇 = 4 𝑝𝐴 (right, black line) as a function of the mean signal intensity 𝜇  for Na+K (green) and 

Na+K+Ca (red) models. The input signal standard deviation is 𝜎 = 0.4. The firing lag does not increase 

significantly with the mean signal intensity. 𝜌 and 𝑝 denote the Spearman correlation coefficient and the 

corresponding p-value. (B) MI- from the Na+K+Ca model using O-U odor signals with 𝜇 ranging from 4 to 15 

A.U. and 𝜎 ranging from 0.01 to 3.16. Once rescaled by the signal mean, the curves collapse (right). (C-E) MI 

between the firing rate and the distributions of encounter times Δ𝑡ON , blank times Δ𝑡OFF , and encounter 

duration 𝑡dur
enc, as a function of 𝜇 and 𝜎 given the firing rate threshold of ~30 𝐻𝑧. 

 

To quantify the coding capacity of the biophysical model, we stimulated it with odor signals modeled 
as O-U processes. As before, MI- is elevated over a range of signal fluctuations. Moreover, 
because the gain scales inversely with the mean signal intensity, plotting MI- versus 𝜎/𝜇  collapses 
all plots onto a single curve (Fig. 6B). Therefore, the system transmits information about the 
fluctuations in a manner that is largely invariant with respect to the mean signal intensity. To analyze 
how information about odor timing is transmitted, we defined odor encounters and blanks using the 
baseline firing frequency of 30 𝐻𝑧  as the crossing point instead of 𝐼b = 4.54 𝑝𝐴  since mean 
adaptation dynamically adjusts the firing threshold. This can be viewed as a “novelty detection,” 
where sudden deviations from the steady state are identified. We observe that adaptation to the 
mean signal intensity enables the model to consistently encode the timing and intensity of odor 
fluctuations over a wide range of mean odor concentration and variance (Fig. 6C-E). 
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These results demonstrate that by maintaining their operation in the vicinity of the bifurcation via a 
calcium-mediated adaptation mechanism, ORNs can robustly encode the intensity and timing of 
fluctuations in odor signal, which are critical for odor-guided navigation.  

 
Discussion  
 
Proximity to a bifurcation enhances information transmission in a model neuron. In this work, 
we quantify information transmission in a model ORN via the mutual information between the firing 
rate and summary statistics of the signal (odor) input. We show that information about the timing 
and intensity of fluctuations in odor signals are robustly encoded when the ORN firing dynamics 
operate close to its bifurcation. Proximity to the bifurcation also entails intrinsic variance adaptation 
(55, 56), further benefitting olfactory information processing. Importantly, adaptation to the signal 
mean can naturally drive the ORN dynamics to the bifurcation and thereby maximize information 
transmission without the need for an additional tuning mechanism.  

Intrinsic gain control in Drosophila ORNs. Adaptation to variance in the input stimulus is 
observed in all sensory modalities (29, 57-62), and several intrinsic mechanisms for gain control 
have been suggested (34, 63-67).  

In our biophysical model of Drosophila ORNs, variance adaptation occurs intrinsically as a 
consequence of mean or spike frequency adaptation via calcium. Interestingly, due to the large 
susceptibility at the bifurcation point, an adapted firing rate anywhere in the steep part of the 
response curve will keep the neuron very close to the firing-quiescent bifurcation. For instance, if 
the firing rate of Drosophila ORNs adapts to approximately 30 𝐻𝑧 as we have shown previously in 

vivo (29), the corresponding injected current is within 0.5 𝑝𝐴 of the bifurcation point of our model 
(Fig. 1B). ORNs may therefore be able to retain a state of criticality without the need for fine-tuning. 
This robust tuning to a critical (bifurcation) point with enhanced signal sensitivity is reminiscent of 
other sensory systems, such as the thermal sensing of pit vipers (68), chemosensing in E. coli (69, 
70), and sound amplification in the inner ear (55, 71-74). The underlying feedback motif also 
belongs to a wider class of integral feedback mechanisms, which exhibit precise adaptation even 
in networks with noisy dynamics (75).  

Implication for olfactory navigation. In odor-guided navigation, temporal odor cues correlate to 
specific behavioral features such as moving, stopping, and turning (4, 8, 10, 11, 16, 18, 76, 77). In 
this work, we have shown that the frequency and duration of odor encounters are well-encoded by 
ORNs. We also find that their information content varies depending on context. For example, odor 
encounter durations are less informative when odor concentration is low as is typically the case in 
turbulent plumes. This is consistent with experimental findings showing that walking flies rely on 
odor duration to navigate diffusion-dominated plumes but less so in complex plumes, where odor 
encounters are brief and blanks much longer (8, 11, 18). Finally, we found that proximity to the 
bifurcation also enhanced information transmission when we used experimentally measured odor 
signals (instead of an O-U process) as input to our model. Specifically, we used time traces of odor 
encounters experienced by freely navigating flies in a turbulent plume (8). The statistics of these 
odor signals are very different from those of an O-U process. Nonetheless, we found that the MI 
distributions from the signal timing are similar for both the non-adapting (Na+K model; Fig. S6B) 
and the adapting models (Na+K+Ca model; Fig. S6C). This implies that the large information 
transmission at the bifurcation is broadly independent of the plume characteristics and has 
relevance in real-world odor-guided navigation. 

 
Materials and Methods 
 
Odor signal modeling. A stochastic naturalistic odor signal environment is simulated as an 
Ornstein-Uhlenbeck process, defined as 
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𝑆(𝑡 + 𝑑𝑡) = 𝑆(𝑡) −
1

𝜏𝑠

𝑆(𝑡)𝑑𝑡 + 𝑐
1
2𝑁(𝑡)(𝑑𝑡)

1
2, 

where 𝜏𝑠  is the input correlation timescale, 𝑐  is the diffusion constant, and 𝑁(𝑡)  denotes an 

independent normal-distributed random variable at each time 𝑡 with mean 0 and variance 1. The 

variance of the odor signal 𝑆(𝑡) is equal to 𝜎2 = 𝑐𝜏𝑠/2. 

Conductance-based neuron model. We use a 2-dimensional Hodgkin-Huxley type model known 
as the Morris-Lecar model (35). This model tracks potassium and sodium ion concentrations in the 
intra- and extracellular media as well as a leak current and exhibits a SNIC bifurcation. The potential 
difference across the neuronal cell membrane 𝑉(𝑡) and the fraction of potassium channel gates in 

the open state 𝑛(𝑡) are defined by the following sets of differential equations, 

𝑑𝑉

𝑑𝑡
= (𝐼𝑠 + 𝑔𝐿(𝐸𝐿 − 𝑉) + 𝑔𝑁𝑎  𝑚∞(𝑉)(𝐸𝑁𝑎 − 𝑉) + 𝑛 𝑔𝐾(𝐸𝐾 − 𝑉))/𝐶 

𝑑

𝑑𝑡
𝑛(𝑡) =

(𝑛∞ − 𝑛)

𝜏𝑛  
, 

where 𝑚∞ = (1 + 𝑒
𝑉𝑚−𝑉

𝑘𝑚 )
−1

 and 𝑛∞ = (1 + 𝑒
𝑉𝑛−𝑉

𝑘𝑛 )
−1

. 

The parameters are set as 𝑔𝐿 = 8, 𝑔𝑁𝑎 = 20, 𝑔𝐾 = 10, 𝐸𝐿 = −80, 𝐸𝑁𝑎 = 60, 𝐸𝐾 = −90, 𝐶 = 1, 𝑉𝑚 =
−20, 𝑉𝑛 = −25, 𝑘𝑚 = 15, 𝑘𝑛 = 5, 𝜏𝑛 = 1.  An Ornstein-Uhlenbeck signal 𝑆(𝑡) is used as the input 
𝐼𝑠 . A timestep of 0.05 𝑚𝑠  is used to iterate the equations by the Euler method unless noted 
otherwise. Simulations are run for at least 20 seconds. 

In principle, this model contains two voltage-gating variables, 𝑛  and 𝑚 , where 𝑛  controls the 

fraction of open potassium channels, and 𝑚 controls the fraction of open sodium channels. The 

characteristic timescale of the gating variable 𝑚(𝑡) is assumed to be much faster than fluctuations 
in 𝑉(𝑡) and treated as an instantaneous function of 𝑉 (𝑚∞(𝑉)). Therefore, the current position of 

the system at any given time can be fully described by the values of 𝑉 and 𝑛. The dynamics of 
other ions present in the intra- and extracellular media, such as calcium and chlorine, are not 
explicitly considered except when the mean adaptation is implemented. 

To test the robustness of variance adaptation across different bifurcation types, we used the Hopf 
bifurcating model described in (78). Here, the slow current is driven by calcium, and some 
parameters are modified to produce a Hopf bifurcation. 

𝑑𝑉

𝑑𝑡
= (𝐼𝑠 + 𝑔𝐿(𝐸𝐿 − 𝑉) + 𝑔𝐶𝑎  𝑚∞(𝑉)(𝐸𝐶𝑎 − 𝑉) + 𝑤 𝑔𝐾(𝐸𝐾 − 𝑉))/𝐶 

𝑑𝑤

𝑑𝑡
= 𝜆𝑤(𝑤∞ − 𝑤)  

𝜆𝑤 = 𝜙 ∗ cosh (
𝑉 − 𝑉𝑤

2𝑘𝑤

) 

𝑚∞ =
1

2
(1 + tanh (

𝑉 − 𝑉𝑚

𝑘𝑚

 ) ) 

𝑤∞ =
1

2
(1 + tanh (

𝑉 − 𝑉𝑤

𝑘𝑤

)) 



 

 

13 

 

The parameters are defined as: 𝑔𝐿 = 2, 𝑔𝐶𝑎 = 4, 𝑔𝐾 = 8, 𝐸𝐿 = −60, 𝐸𝐶𝑎 = 120, 𝐸𝐾 = −84, 𝐶 = 20, 

𝑉𝑚 = −1.2, 𝑉𝑤 = 2, 𝑘𝑚 = 18, 𝑘𝑤 = 30,  𝜙 = 0.04. 

Calculating the firing rate. Hodgkin-Huxley type models describe the evolution of membrane 
voltage with an inter-spike time on the order of milliseconds, from which we calculate the evolution 
of the firing rate over hundreds of milliseconds or seconds. To obtain a continuous value firing rate 
from the voltage-time trace generated by the model, we first run a peak-finding algorithm that 
binarizes all points along the time trace. The peak-finding algorithm determines a peak based on 
voltage spikes exceeding a membrane potential of 0 𝑉. Then, a convolutional Gaussian smoothing 
filter with unity time-integral area is applied to the binary data to obtain a time-averaged firing rate. 
The standard deviation of the filter is given by 𝜏𝑟 ∗ 𝑑𝑡, where 𝜏𝑟 is the firing rate filter timescale and 

𝑑𝑡 is the simulation step size. Therefore, the filter is defined as 

𝑔(𝑡) =
1

(𝜏𝑟  𝑑𝑡)√2𝜋 
𝑒

−
1
2

(
𝑡

𝜏𝑟 𝑑𝑡
)

2

. 

Mutual information. The mutual information between the stimulus and the firing rate is defined as 
the entropy of the rate minus the entropy of the rate given the corresponding value of the stimulus: 

𝑀𝐼(𝑟𝑎𝑡𝑒, 𝑠𝑡𝑖𝑚) = 𝐻(𝑟𝑎𝑡𝑒) − 𝐻(𝑟𝑎𝑡𝑒|𝑠𝑡𝑖𝑚), 

where the entropy is defined by 

𝐻(𝑟𝑎𝑡𝑒) =  − ∑ 𝑃(𝑟𝑎𝑡𝑒) log2(𝑃(𝑟𝑎𝑡𝑒)) 

and the conditional entropy is defined by 

𝐻(𝑟𝑎𝑡𝑒|𝑠𝑡𝑖𝑚) = ∑ 𝑃(𝑠𝑡𝑖𝑚 = 𝑠) ∑ 𝐻(𝑟𝑎𝑡𝑒|𝑠𝑡𝑖𝑚 = 𝑠). 

Numerically, mutual information can be calculated using the distributions of the stimulus and the 
(conditional) distributions of the firing rate. We generated a probability density function of firing rate 
𝑃(𝑟𝑎𝑡𝑒) using a histogram with 100 equal-sized bins spanning from 0 to 200 𝐻𝑧. The entropy is 

computed as 𝐻(𝑟𝑎𝑡𝑒) = −∑𝑃(𝑟𝑎𝑡𝑒) ∗ log2 𝑃(𝑟𝑎𝑡𝑒) 𝑑𝑟 where 𝑑𝑟 would be the bin size (= 2) when 
computed discretely. We confirmed that the number of data points is large enough such that the 
numerical MI values are robust to the error introduced by the binning process (see SI Appendix, 
Fig. S1). To calculate the conditional entropy, we also generated a probability density function for 
the odor signal by creating a histogram with 100 bins, with an adaptive bin size chosen such that 
the histogram spans ±3𝜎 of the input mean 𝜇. When calculating mutual information about temporal 

odor cues, 3𝜎 from the sample mean has been used. For each discretized stimulus bin 𝑠, we 

collected the distribution of firing rates observed at all corresponding times where 𝑠𝑡𝑖𝑚 = 𝑠, which 
approximates 𝑃(𝑟𝑎𝑡𝑒|𝑠𝑡𝑖𝑚 = 𝑠).  By definition, 𝐻(𝑟𝑎𝑡𝑒|𝑠𝑡𝑖𝑚 = 𝑠) = − ∑ 𝑃(𝑟𝑎𝑡𝑒|𝑠𝑡𝑖𝑚 = 𝑠) ∗
log2 𝑃(𝑟𝑎𝑡𝑒|𝑠𝑡𝑖𝑚 = 𝑠) ∗ 𝑑𝑟  for each stimulus bin 𝑠 , and the conditional entropy 𝐻(𝑟𝑎𝑡𝑒|𝑠𝑡𝑖𝑚) is 
equal to the discrete sum of all stimulus bins times the stimulus probability. 

Biophysical Drosophila ORN model with adaptation. As shown in the main text, we incorporate 
calcium-mediated adaptation by expanding upon the previously defined conductance-based 
neuron model (Equations [2] and [3]). The parameters in Equations [2] and [3] are as follows: 

𝑔𝑠 = 0.76875, 𝑔𝑐 = 0.0625, 𝜏𝑐 = 250, 𝑔𝐼 = 500, 𝐾𝑠 = 0.1, 𝐾𝑐 = 1. A timestep of 0.1 𝑚𝑠 is used for 
numerical integration. 

Data, Materials, and Software Availability. All original data and codes are deposited and publicly 
available at https://github.com/emonetlab/bifurcation-temporal-information. All other information is 
included in the manuscript or SI Appendix. 
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Supporting Information 

 
MI is not sensitive to binning in the context of our analysis. Numerical calculation of MI is 
prone to the binning process. Either too small or too large bin sizes can introduce errors to the 
estimated MI, especially when the number of data points is finite and contains missing values (e.g., 
not all values in one variable have a corresponding pair in another variable). Fortunately, we can 
generate signals for an arbitrarily long time and simulate the respective firing rate perfectly. We find 
that our system operates in a regime where the histograms of the variables are smooth, such that 
the histogram-based numerical MI calculation is robust enough. 

According to Steuer et al. (79), the systematic error introduced in MI by the binning process can be 
estimated by 

𝑒𝑟𝑟 =
𝑚𝑥𝑦 − 𝑚𝑥 − 𝑚𝑦 + 1

2𝑁
. 

Here, 𝑚 denotes the number of discrete states for two variables (𝑥 and 𝑦), while 𝑁 denotes the 

number of data points. In our study, with 𝑚𝑠𝑡𝑖𝑚 = 𝑚𝑟𝑎𝑡𝑒 = 100, 𝑚𝑠𝑡𝑖𝑚,𝑟𝑎𝑡𝑒 = 104, and 𝑁 ≥  106, our 

estimated error in MI is around 0.0049, which is significantly smaller than the scale of MI. 

Additionally, we scanned through combinations of bin numbers 𝑚𝑠𝑡𝑖𝑚 and 𝑚𝑟𝑎𝑡𝑒 to ensure that our 
system is operating in a smooth regime. We find that for all combinations of bin numbers, MI stays 
consistent: MI goes over 1 bit and responds similarly to the increase in signal variance (Fig. S1). 
The combinations of bin numbers tested include those suggested by various well-established 
systematic criteria (80). 
 
The revised linear-nonlinear model exhibits elevated coding capacity and variance 
adaptation. Linear-nonlinear models are widely used to describe the phenomenological properties 
of neural dynamics and were previously used to emulate signal variance adaptation (47). A 
traditional LN model includes two parts: a convolution with a smoothing filter (e.g., Gaussian), 
followed by a nonlinear compression (e.g., a rectified linear unit, ReLU), which simulates the effect 
of saturation (Fig. S4A, red). Under this framework, the model does not exhibit variance adaptation 
(Fig. S4B, red). However, when we substitute the rectified linear unit for the SNIC bifurcating 𝐼-𝑟 

curve (Fig. 1B), the imperfect gain control is recovered (Fig. S4B, orange). Once the input 𝐼 crosses 
the spiking threshold, 𝑑𝑟/𝑑𝐼 decreases as 𝐼 increases, pushing the system farther away from the 

bifurcation point, such that greater fluctuations in 𝐼 are required to drive the same change in firing 
rate. 

In Hodgkin-Huxley type neurons, the time to spike reflects the weighted average of stimulus 
intensity over the relatively small inter-spike intervals. However, to construct a continuous firing 
rate from discrete firing events, the spiking events must be smoothed by a filter whose width is 
significantly greater than the inter-spike period. In terms of LN models, this means applying linear 
filtering after the nonlinear compression to make our analyses analogous to that of the Hodgkin-
Huxley type model. This new architecture, which we call the nonlinear-linear (NL) model (Fig. S4A, 
green and blue), retains variance adaptation (Fig. S4B, green and blue) and demonstrates a 
significant improvement (~15%) in coding capacity with respect to their LN model counterparts (Fig. 
S4C). Replacing the architecture from LN to NL smoothens the transition from activity to 
quiescence, allowing information about the time since the excursion into the quiescent regime to 
be extracted. With a correlated input like an O-U signal, the system can encode information about 
the stimulus even when the neuron is close to the quiescent regime, providing distinct advantages 
over traditional LN models. 
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Fig. S1. MI encodes more than 1 bit of information regardless of the bin size. Discretized MI calculation 
can be influenced by the number of bins, but for our system, MI seems to stay relatively consistent. 𝐼b =
4.54 𝑝𝐴 is used. 

 
 

 

Fig. S2. The variance adaptation is due to the proximity to a bifurcation and not the signal process. 
MI- as a function of the mean 𝜇 and standard deviation 𝜎 using a Gaussian white noise as the input current. 

The blue box corresponds to 𝜇 ~ 𝐼b = 4.54 𝑝𝐴. When 𝜇 is close to 𝐼b = 4.54 𝑝𝐴, MI- stays elevated over the 

wide range of 𝜎. 
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Fig. S3. MI- is maximized around 𝝉𝒓~𝟏/𝟏𝟎 𝝉𝒔. A vertical cross-section of Fig. 3C at 𝜎 ~ 0.1. This relationship 

is consistent across different 𝜎. 

 
 

 

Fig. S4. Using a SNIC bifurcation in a nonlinear-linear architecture model allows variance adaptation 
and high information throughput. (A) Four different models can be generated using a combination of ReLU 
or SNIC nonlinearities in LN or NL architecture. Red: LN-ReLU, orange: LN-SNIC, green: NL-ReLU, blue: NL-
SNIC. (B) Gain, defined as the ratio of the standard deviation of the model response to the standard deviation 

of the stimulus, plotted for LN models and NL models for an O-U stimulus with 𝜎 ranging from 0.1 to 1 𝑝𝐴. 
Although the order of operations of the model architecture does not affect the gain, gain control is only 
observed in models that use the SNIC filter (orange and blue). (C) The mutual information between the 
stimulus and the response for the four models. The same color code is used. NL model with the SNIC filter 
encodes the highest amount of information. 
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Fig. S5. The coding capacity for the signal timing is affected by fluctuations and is independent of the 
signal process. (A) A schematic illustrating traces of different signal types, including the Ornstein–Uhlenbeck 
process (O-U), a binarized Ornstein–Uhlenbeck process (O-UB), a partially flattened Ornstein–Uhlenbeck 
process (O-UFp), and a Gaussian random (G). (B) MI between the distributions of encounter times Δ𝑡ON (first 

column), blank times Δ𝑡OFF (second column), encounter duration 𝑡dur
enc (third column), and blank duration 𝑡dur

bnk 

(fourth column) and the firing rate 𝑟 as a function of signal mean 𝜇 and standard deviation 𝜎 using a fully-
binarized O-UB input. (C) Same as (B) for a partially reduced O-UFp as the input signal, where only the 
fluctuations above 𝐼b are removed. (D) Same as (B) for Gaussian white noise as the input signal. 
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Fig. S6. The coding capacity for the signal timing using experimentally measured odor traces 
encountered by freely navigating flies. (A) The odor signal fruit flies experience in turbulent plumes differs 
from the O-U signal. The time trace of real plume concentrations encountered by an animal shows a long-
tailed distribution, and the distributions of odor encounter and blank durations exhibit near power-law behavior. 

(B) MI between the distributions of encounter times Δ𝑡ON, blank times Δ𝑡OFF, encounter duration 𝑡dur
enc, and 

blank duration 𝑡dur
bnk and the firing rate 𝑟 as a function of signal mean 𝜇 and standard deviation 𝜎 using a real 

plume signal in the non-adapting Na+K model. The real plume time traces are shifted and rescaled to fit the 
denoted 𝜇 and 𝜎. (C) Same as (B) but using the adapting Na+K+Ca model with the firing rate threshold of 

~30 𝐻𝑧. 
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Fig. S7. The biophysical model exhibits gain scaling consistent with the Weber-Fechner law. The color 

bar corresponds to the 𝜎 from 0.01 to 0.5. 

 

 

 
 


