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1.  Introduction
The rapid increase in population and industrial activities is a matter of great concern. As a result, the environment of 
our planet deteriorates, especially the water resources. Now, water pollution has become a serious problem for human 
health and aquatic ecology. During the production of commercial products by industries such as textile, pharmaceutical, 
petroleum, paper, and pulp, a large amount of contaminated water containing both organic and inorganic materials is 
released [1]. The organic components of the contaminated water contain dyes and solvents which are widely used by several 
industries. Untreated wastewater discharge to the environment has caused many health issues and has also disturbed the 
aquatic ecosystem. Generally, the aqueous discharge released by many industries is hard to clean due to high toxicity, 
persistent and recalcitrant nature of compounds, high chemical oxygen demand, and low biodegradability [2]. 

The textile industry is the major source of dyes and about 50% of natural-fiber-based textiles are dyed. Approximately 
10,000 different dyes and pigments are used for this purpose nowadays. More than 15% of these dyes are wasted during 
the dying process and discharged through industrial effluent [3]. The nonbiodegradable, mutagenic, teratogenetic, and 
carcinogenic nature of these dyes creates serious health hazards to human and aquatic organisms [4]. Therefore, it is 
necessary to pretreat the dye-containing effluent before discharging into the water resources.

Methylene blue (MB) is one of the most common dyes used in the textile, wood, printing, and leather industries. It is 
also used as a dye for histological tissue sections and photosensitizers on semiconductors etc. [5]. MB is toxic and may 
cause irritation, allergic problems, vomiting, diarrhea, and nausea and disturb the breathing system if inhaled or ingested 
[6–8]. A variety of biological and physicochemical methods have been used for the removal of dyes from wastewater. These 
include biosorption [9,10], biodegradation [11], adsorption [12], ultrafiltration [13], nanofiltration [14], coagulation and 
sedimentation [15,16], Fenton process [17], sonolysis [18], ozonation [19] etc. Recent reports showed that some of these 
conventional methods are not suitable for dye removal due to high cost, time-consuming processing, and stability issues 
[20]. Although some of these methods are versatile and useful, they all produce secondary waste products that need to 
be processed further due to the stable and complex aromatic structure of dyes [21]. Thus, there is a scope to develop an 
efficient method that is relatively cost-effective, versatile, and with no secondary waste product, i.e. sludge.  
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In recent years, multistep processes have been developed for the degradation of dyes. Reductive degradation of dyes 
by metallic catalysts has received much attention due to high efficiency and greener root of degradation, i.e. end products 
are biodegradable [22]. Suvith and Philip used gold and silver nanoparticles for the degradation of MB [23]. Dobrucka 
reported the catalytic reduction of MB and crystal violet with platinum nanoparticles [24]. Li et al. used Pd/Fe3O4-PEI-RGO 
nanohybrids for catalytic degradation of MB [25]. Ai and Jiang reported the alginate hydrogel-capped silver nanoparticle-
assisted catalytic reduction of 4-nitrophenol by NaBH4 [26]. Most of the reported work related to the catalytic reductive 
degradation of dyes was carried out with precious and noble metals (e.g., gold, silver, platinum, and palladium). The high 
cost and less availability of these metals make them less feasible for these applications [27]. Moreover, these nanoparticles 
are unstable, prone to agglomerate, and cannot be easily separated from the reaction medium [28]. To overcome these 
problems, a variety of solid supports such as graphene, titanium oxide, eggshell, and iron oxide have been used for the 
development of catalysts [29]. 

Thus, there is a scope to develop an efficient material that is relatively cost-effective, versatile, and with no secondary 
waste product. Radiation grafting is established as a useful technique to fabricate functional materials without affecting 
the mechanical and chemical properties of the base material. The grafting process can be initiated by high energy radiation 
such as gamma rays and electron beams via mutual or preirradiation method [30,31]. A variety of functional materials 
fabricated by radiation grafting of different monomers onto different base materials such as mesoporous silica [32], clay 
[33], and polypropylene [34] are reported in the literature.

The present study was focused to develop a stable, cost-effective, and efficient catalyst for the reduction of dyes, which 
can easily be separated from the reaction medium by simple filtration. Amidoxime-functionalized silica (AFS) was used 
as support to develop the copper-loaded catalyst in this study. MB was chosen as a model dye and its heterogeneous 
degradation was carried out with NaBH4 in the presence of the developed catalyst. The effect of different operational 
parameters as pH, catalyst dose, and time was also investigated. 

2. Materials and methods
2.1. Materials 
For the present study, all the chemicals and reagents were of analytical grade and used as received. Isopropanol, 
vinyltriethoxysilane (VTES), copper sulfate, acrylonitrile, MB, sodium carbonate, sodium borohydride (NaBH4), and 
hydroxylamine hydrochloride were purchased from Sigma Aldrich (supplied by Chem Tech Pakistan, Karachi, Pakistan). 
Silica was purchased from Amicon Corporation (Massachusetts, USA), having a particle size of 35–70 µm, a specific 
surface area of 250 m2/g, and a pore diameter of 25 nm.
2.2. Method of preparation of the catalyst
Amidoxime-functionalized silica was prepared following the procedure reported in our previous study [32]. Briefly, the 
silica was first modified with VTES, and then the modified silica was grafted with acrylonitrile by radiation-induced 
grafting in an inert atmosphere by Co-60 irradiator, at Nuclear Institute for Food and Agriculture, Peshawar at a dose rate 
of 4.7 kGy/h. The nitrile groups of the grafted acrylonitrile were converted into amidoxime by treating with hydroxylamine 
solution. Amidoxime-functionalized silica (AFS) was loaded with copper by shaking an appropriate amount of oven-dried 
AFS in 100 mL of copper sulfate solution having pH of 5 and 500 ppm concentration. The continuous shaking was carried 
at a rate of 200 rpm for 2 h. After the shaking was complete, the copper-loaded AFS particles were separated from the 
reaction medium by filtration, washed with distilled water several times to remove the loosely bonded copper, and dried 
in oven at 60 °C. The oven-dried sample was notated as AFS-Cu and used in catalytic reduction of MB. Quantitatively, the 
amount of Cu in AFS-Cu was estimated to be ~200 mg of Cu per gram of AFS, which was calculated gravimetrically by 
measuring the weight of the composite before and after the copper loading.
2.3. Catalyst characterization
The morphology of the samples was investigated by scanning electron microscopy (SEM) using a Tescan, MIRA-3 field 
emission scanning electron microscope. Samples used in the SEM tests were deposited directly onto stubs and examined 
without further treatment. Energy dispersive X-ray spectroscopy (EDX) analysis was carried out to show the presence 
of elements Si, N, O, and Cu, etc. The crystalline structure of AFS-Cu was examined using a Panalytical Xpert Pro X-ray 
Diffractometer equipped with Cu Kα (1.5418 Å) radiation source, a Ni filter at a setting of 40 kV/30 mA, and a scintillation 
counter detector. The data was recorded over 20°–80°, 2 θ range. Fourier transform infrared (FTIR) spectroscopy was 
carried out using a Nicolet 6700 FTIR spectrophotometer from Thermo Electron Corporation, (Waltham, USA), using the 
attenuated reflectance mode. FTIR spectra were recorded in the range from 4000 to 400 cm−1. 
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2.4. Catalytic reductive degradation of dye by AFS-Cu
To investigate the catalytic activity of the synthesized AFS-Cu catalyst, catalytic reductive degradation of MB with NaBH4 
was carried in the presence of AFS-Cu. In a typical reduction experiment, MB aqueous solution (5 mL) was mixed with 
AFS-Cu (20 mg). After that, a freshly prepared solution of NaBH4 (1 mL, 0.1 M) was added to the above mixture. The 
progress in dye reduction was monitored using a UV-visible spectrometer. A blank experiment without AFS-Cu was also 
carried out. The effects of different reaction parameters, such as pH, catalyst dose, and time were also studied. Furthermore, 
by employing atomic absorption spectroscopy, it was confirmed that copper does not leach out into the solution. 

3. Results and discussions
3.1. Catalyst characterization 
SEM micrographs of AFS and AFS-Cu were displayed in Figures 1A and 1B, respectively. SEM image of AFS shows that the 
particles are of irregular shape and rough surface which might be due to grafting. The copper-loaded particles show some 
agglomerations and changed morphology as shown in Figure 1B. However, no major change in the overall morphology of 
the particles was observed during copper loading. 

EDX analysis of AFS shows the presence of N, O, and Si as shown in Figure 1a. This correlates with the amidoxime 
functional groups present on silica. AFS-Cu shows a high weight (%) of copper besides these elements as shown in Figure 
1b, which confirms the copper loading. The proposed mechanism of interaction of Cu2+ ions with amidoxime group is 
reported in our previous study [32].

The XRD studies were used to explore the crystal structure of AFS and AFS-Cu, and the results are depicted in Figure 
2. XRD of AFS shows a single broad band centered at 2θ = 22°. This broad band was due to the amorphous nature of silica-
bearing amidoxime groups in AFS. XRD diffractogram of AFS-Cu showed intense peaks at 2θ values of 38.86°, 44.97°, 
52.28°, and 77.03°. The peak at 38.86° indicates that a small but detectable amount of copper was also present in the form 
of oxide. The peaks at 44.97°, 52.28°, and 77.03° correspond to the miller indices (111), (200), and (220) of face centered 
cubic structure of Cu crystals, respectively. Similar results have been reported in the literature [35–41].

Figure 3 shows the FTIR spectra of AFS, AFS-Cu, and AFS-Cu (regenerated). AFS shows a broad band at 1000–1150 
cm–1 assigned to Si–O–Si– stretch, and a small peak at 1256 cm–1 which was the –Si–CH2 stretch. In addition, the peaks at 
3000–3400 cm–1 can be assigned to –OH, at 2800–3000 cm–1 to –CH, at 1640 cm–1 to -C=N and at 920 cm–1 to the >N–O 
stretch, which are the characteristic functionalities present in amidoxime functional groups [42]. The AFS-Cu spectrum 

Figure 1. SEM images of AFS (A), AFS-Cu catalyst (B), and EDX of AFS (a), AFS-Cu catalyst (b).
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shows all these peaks with reduced intensity, indicating that these functionalities are involved in binding with copper. The 
FTIR spectrum of the regenerated catalyst after the third cycle shows an almost similar spectrum as that of fresh AFS-Cu 
and no appreciable change was observed indicating that the catalyst retains its structural stability during use. 
3.2. Catalytic reductive degradation of dye by AFS-Cu
The catalytic activity of the AFS-Cu catalyst was monitored using MB as a model dye. The progress in catalytic reduction 
was examined by a decrease in absorbance at 664 nm using UV-Visible spectroscopy. The spectra of the reduction of MB 
with NaBH4 in the presence and absence of catalyst are depicted in Figure 4. Figure 4A shows the spectra of reduction of 
MB in the absence of AFS-Cu catalyst up to 180 min. As expected, the reduction process in the absence of catalyst was very 
slow with little degradation up to 180 min. 

Figure 4B depicts the spectra of reduction of MB in the presence of AFS-Cu catalyst. These results demonstrate that 
the AFS-Cu catalyst is necessary for the fast reduction of MB in this reaction. The catalyst serves as an electron mediator 
between BH4

¯ and MB, electron transfer takes place via Cu present on the catalyst [29]. The reduction process typically 
proceeded in two stages: (i) BH4¯ diffusion and adsorption of dye on the catalyst surface and (ii) transfer of electron from 
BH4¯ to the dye mediated by the catalyst. The dye will then be reduced on the catalyst surface and desorbed from the 
surface to continue the reaction as shown in Figure 5.
3.3. Effect of catalyst loading on the reduction of MB
It has been reported that the amount of catalyst also influences the rate of reaction [41]. To investigate this effect, a varying 
amount of catalyst ranging from 5 to 50 mg was used and the obtained results are shown in Figure 6. This figure depicts 
the UV-visible spectra of MB degradation at different catalyst doses.

Figure 2. XRD patterns of AFS and AFS-Cu catalyst.

Figure 3. FTIR spectra of AFS, AFS-Cu catalyst, and AFS-Cu (regenerated) 
catalyst.
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These results showed that a rapid increase in degradation was observed when the catalyst amount was increased from 5 
mg to 20 mg. This rapid increase showed that the effective concentration of the catalyst is 20 mg above this concentration, 
a very little change in degradation was observed. This behavior might be since once the catalyst amount reached a certain 
point (20 mg in this study), the adsorption of dye on the catalyst surface reached an optimum value and 20 mg of catalyst 
was used in further studies. 
3.4. Effect of pH on catalytic reduction of MB
The pH of the solution is an important factor that significantly affects the degradation process. The effect of pH on MB 
degradation was studied at different pH values of the solution in the range of 2–7 and the results are shown in Figure 7. 

Figure 4. Reductive degradation of MB by NaBH4 at room temperature (A) in the absence of AFS-Cu catalyst, (B) in 
the presence of AFS-Cu catalyst.

Figure 5. Proposed mechanism for MB degradation by AFS-Cu catalyst.
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The results show that the change in pH from acidic to neutral results in an increase in the degradation process. This 
phenomenon at low pH might be due to the protonation of catalyst and dye which led to a strong repulsion between them. 
As a result, less degradation was observed at this pH. On the other hand, the increase in pH led to the deprotonation of 
dyes caused an increase in degradation. Similar results were reported by Mosleh et al. using CuO/Cu2O/Cu nanoparticles 
for the photocatalytic degradation of dyes [35]. Therefore, the optimum value of pH was adjusted at 7.
3.5. Kinetic study of catalytic reduction of MB
The kinetics of the catalytic reductive reaction of MB by NaBH4 in the presence of AFS-Cu was monitored at different time 
intervals. The plot of At/Ao versus reaction time shows a profile of exponential nature, which also indicated the reduction 
reaction follows the pseudo-first-order kinetics as shown in Figure 8A. The rate constant (k) of the reaction was calculated 
by using the following equation:

Ln(
𝐶𝐶%
𝐶𝐶&
)	=	ln(

𝐴𝐴%
𝐴𝐴&
)	=	–	kt 

where Co is the initial concentration and Ct is the concentration of MB at time t, and At and Ao are the corresponding 
absorbance values, respectively. 

Figure 6. Effect of catalyst dose on MB degradation (MB: 
5 mL, 5 ppm and NaBH4: 1 mL, 0.1 M, time: 4 min) at room 
temperature.

Figure 7. Effect of pH on MB degradation (AFS-Cu: 20 mg; MB: 
5 mL, 5 ppm and NaBH4: 1 mL, 0.1 M, time: 4 min) at room 
temperature.



KHAN et al. / Turk J Chem

416

Figure 8B depicted the plot of ln (At/Ao) vs. reaction time (t) and slope determines the rate constant for the reaction. 
The plot presented a good linear relationship with a correlation coefficient (R2) of 0.9949 and the calculated rate constant 
was 0.6224 min–1.
3.6. Recovery and reusability of the catalyst
The easy recovery of the catalyst (AFS-Cu) from the reaction mixture by simple filtration is an important feature that 
makes it suitable for industrial applications. The micrometer-size particles can be easily recovered by filtration and reused 
after simple washing with deionized water and dried in oven at 50 °C. Figure 9 depicts the comparative results of catalytic 
reduction of methylene blue by AFS-Cu. It can be seen from the figure that the recovered catalyst can be used three times 

Figure 8. (A) Time-dependent change in MB solution (At/Ao) in the presence of NaBH4 and AFS-Cu catalyst, (B) is a 
linear relationship of ln (At/Ao) as a function of time for MB solution.

Figure 9. Comparative results of MB degradation from the 1st to 3rd cycle without 
regeneration and regenerated AFS-Cu catalyst after that up to the 5th cycle.
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with a slight decrease in the activity of the catalyst. After the 3rd cycle, the recovered catalyst was washed each time up to 
the 5th cycle with alcoholic water (10%) and then with an excess of deionized water.

This regenerated catalyst was reused. The results demonstrate that the regenerated catalyst regains its activity almost 
equal to the fresh catalyst, and only a slight loss in activity was observed up to the 5th cycle. The catalytic activity of AFS-
Cu is compared with other reported catalysts and the results are shown in Table. These results indicate that AFS-Cu can 
serve as a promising catalyst for the degradation of dyes (MB). 

4. Conclusion
Amidoxime-functionalized silica decorated with copper was successfully synthesized and characterized. The synthesized 
material was used as a catalyst in the heterogeneous catalytic reductive degradation of MB in the presence of NaBH4. The 
effect of different operational parameters was optimized and the best results were obtained at neutral pH and 20 mg of 
catalyst dose. The catalytic reductive degradation reaction followed pseudo-first-order kinetics with a rate constant of 
0.6224 min–1. The results demonstrated that AFS-Cu is an efficient and economic catalyst for the degradation of dyes as 
copper is a less expensive metal as compared to the other metals (Ag, Au, and Pd) used in most earlier studies. The catalyst 
has excellent stability and is used for 5 cycles with a slight loss in activity. Moreover, this catalyst can be easily recovered 
by simple filtration and regenerated by washing with alcoholic water. The obtained results show that AFS-Cu catalyst has 
advantages over other catalysts in terms of cost, stability, recovery, and reusability, etc.
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Table. Comparison of results for catalytic degradation of MB with a variety 
of catalysts.

Catalyst Time (min) Reference

AFS-Cu
Ag NPs on silica spheres
Porous Cu microspheres
Biosynthesized Ag nanoparticles
SiNWAs-Cu
CrO(OH) nanoparticles
CuNFs

4
7.5
8
8
10
30
85

Present study
[42]
[43]
[44]
[45]
[46]
[47]
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