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Abstract

Background: Septic arthritis is a common and potentially devastating disease characterized by severe intra-articular
(IA) inflammation and fibrin deposition. Research into equine joint pathologies has focused on inflammation, but
recent research in humans suggests that both haemostatic and inflammatory pathways are activated in the joint
compartment in arthritic conditions. The aim of this study was to characterize the IA haemostatic and inflammatory
responses in horses with experimental lipopolysaccharide (LPS)-induced joint inflammation. Inflammation was
induced by IA injection of LPS into one antebrachiocarpal joint of six horses. Horses were evaluated clinically with
subjective grading of lameness, and blood and synovial fluid (SF) samples were collected at post injection hours
(PIH) -120, −96, −24, 0, 2, 4, 8, 16, 24, 36, 48, 72 and 144. Total protein (TP), white blood cell counts (WBC), serum
amyloid A (SAA), haptoglobin, iron, fibrinogen, thrombin-antithrombin (TAT) and d-dimer concentrations were
assessed in blood and SF.

Results: Intra-articular injection of LPS caused local and systemic signs of inflammation including increased rectal
temperature, lameness and increased joint circumference and skin temperature. Most of the biomarkers (TP, WBC,
haptoglobin, fibrinogen and TAT) measured in SF increased quickly after LPS injection (at PIH 2–4), whereas SAA
and d-dimer levels increased more slowly (at PIH 16 and 144, respectively). SF iron concentrations did not change
statistically significantly. Blood WBC, SAA, haptoglobin and fibrinogen increased and iron decreased significantly in
response to the IA LPS injection, while TAT and d-dimer concentrations did not change. Repeated pre-injection
arthrocenteses caused significant changes in SF concentrations of TP, WBC and haptoglobin.

Conclusion: Similar to inflammatory joint disease in humans, joint inflammation in horses was accompanied by an
IA haemostatic response with changes in fibrinogen, TAT and d-dimer concentrations. Inflammatory and
haemostatic responses were induced simultaneously and may likely interact. Further studies of interactions between
the two responses are needed for a better understanding of pathogenesis of joint disease in horses. Knowledge of
effects of repeated arthrocenteses on levels of SF biomarkers may be of value when markers are used for diagnostic
purposes.
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Background
Septic arthritis is a common and potentially devastating
disease affecting horses. The chance of full athletic
recovery has been reported to range from 81 to as low
as 25% [1–4], even where aggressive treatment regimens
are used. To better understand prognostic factors and
investigate novel approaches to diagnosis and effective
management of inflammatory joint conditions in horses,
the pathogenesis of intra-articular (IA) disease needs to
be further elucidated.
Research into the pathogenesis of arthritis in horses

has focused on inflammation in IA tissues, diagnostic as-
sessment of inflammatory markers such as white blood
cell counts (WBC), total protein (TP), serum amyloid A
(SAA), pro-inflammatory cytokines, and eicosanoids in
synovial fluid (SF), and on measures to control inflam-
mation [5–9]. Less attention has been given to the
causes and effects of fibrin in the inflamed joint; and the
possible interaction between haemostasis and inflam-
mation, which is well-described in human joint disease
[10, 11], has not been investigated in horses. Increased
concentrations of thrombin-antithrombin (TAT) com-
plexes have been demonstrated in SF from humans
with rheumatoid arthritis (RA) [11], which shows that
thrombin activation and coagulation takes place in the
inflamed joint compartment. Inflamed human SF has
been shown to contain increased levels of haemostatic
proteins such as thrombin [12] and antithrombin [13],
both of which have been shown to attract leukocytes to
the joint and to enhance IA inflammation [11, 12, 14].
Also fibrinogen may play a role in the pathogenesis of
IA inflammation [15, 16]. In non-inflamed SF from
humans fibrinogen was absent or found in very low
levels [13, 17], and in inflammatory joint conditions,
such as RA, osteoarthritis (OA) and antigen-induced
arthritis, increased SF fibrinogen concentration has
been demonstrated [17–19]. Fibrinogen is a key protein
in haemostasis, interacting with platelets to form a
fibrin-platelet clot to control haemorrhage or exudation
from the circulation. Fibrin/fibrinogen has also been
shown to induce inflammatory reactions in human and
equine synoviocytes [20, 21], and fibrinogen may thus
contribute to both haemostasis and inflammation in the
joint compartment. Fibrinogen is also an acute phase
reactant, and similar to other acute phase reactants,
such as SAA, haptoglobin and iron, plasma concentra-
tions of fibrinogen will change in response to inflam-
matory and infectious conditions [22].
In human RA, which is characterised by severe IA

inflammation, fibrin deposition takes place inside the
joint [19, 23]. This has led to the suggestion that in arth-
ritic conditions there is a dysbalance between fibrino-
genesis and fibrinolysis [24], and that an overall state of
hypercoagulability is at play [24]. It has been suggested

that fibrinolysis is essential for complete resolution of
inflammatory joint diseases [11, 19]. For assessment of
IA fibrinolysis, d-dimer, a break-down product released
during fibrinolysis of cross-linked fibrin, may prove
useful. D-dimer is present in equine SF, and higher
concentrations were detected in SF of foals with septic
arthritis and in SF of horses with osteochondritis disse-
cans (OCD) than in SF from healthy controls [25, 26].
The aim of the study was to describe the IA haemostatic

response in an equine experimental model of inflamma-
tory arthritis. Several factors involved in haemostasis
(fibrinogen, TAT, d-dimer) and inflammatory biomarkers
(WBC, TP, SAA, haptoglobin, iron) were assessed sequen-
tially after IA injection of lipopolysaccharide (LPS). It was
hypothesized that IA haemostasis would be active
concomitantly with the acute inflammation.

Methods
Horses
Six research horses, 3 Danish Warmblood and 3 mixed
breed horses, 3 mares and 3 geldings aged 3–14 years
and weighing 425–620 kg, were included in the study.
The horses were included if they were free of clinical
signs of inflammation, and levels of inflammatory pa-
rameters (WBC and differential leukocyte count, SAA,
iron, fibrinogen) in blood were within reference ranges.
Horses were included if lameness assessment including
lunging, and palpation and flexion tests of the carpal
joints were unremarkable, and if SF levels of WBC, dif-
ferential leukocyte count, and TP concentrations in the
antebrachiocarpal joint were within normal limits. One
horse showed a positive response to distal limb flexion
indicating fetlock pathology; the horse was included, as
it had no response to carpal flexion, normal findings on
palpation of the carpus, and normal parameters in SF
from the antebrachiocarpal joint. This horse was ex-
cluded from analyses of lameness scores. The included
horses participated in a larger open experimental cross-
over study involving intravenous and IA injection of
LPS. Only data relating to the IA administration is pre-
sented, the results from the intravenous LPS injection
are presented in the paper by Vinther et al. (2016) [27].
Horses were housed in box stalls, had free access to hay
and water and were fed twice daily with a commercial
grain mixture.

Study design
Two randomly selected horses (horse E, F) received LPS
IA as their first treatment, while 4 horses (horses A, B,
C, D) had been subject to systemic experimental inflam-
mation induced by intravenous injection of LPS four
weeks prior to the IA LPS injection. The four-week
washout was selected to eliminate possible effects of LPS
tolerance [28, 29]. Before the study was initiated, all
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horses were trained with positive reinforcement to reduce
the need for sedation during experimental procedures
such as arthrocentesis, in order to minimize potential
analgesic and anti-inflammatory effects of sedatives. On
three to five occasions horses (B, D, E) needed sedation
with xylazine (0.2 mg/kg, Narcoxyl® vet, MSD Animal
Health, Denmark) to obtain an SF sample of sufficient
volume.

Induction of joint inflammation
Joint inflammation was induced in one antebrachiocar-
pal joint by injection of 3 μg LPS derived from Escheri-
chia coli strain 055:B5 (# L2880, Sigma-Aldrich
Denmark ApS) as described previously [30, 31].
Aliquots of LPS, stored in siliconized glass tubes at

−20 °C, were thawed and vortexed approximately
30 min to break down micelle formation, diluted to a
final concentration of 3 μg LPS/ml in Ringers Acetate®
(Baxter A/S, Allerød, Denmark). The final LPS solution
was vortexed again for 30 min and 1 ml was transferred
to a syringe and immediately injected using aseptic tech-
nique. The injection time was defined as post injection
hour (PIH) 0.

Experimental procedures
Blood and SF samples from the injected antebrachiocar-
pal joint were obtained before IA injection of LPS at
PIH -120; −96; −24, and 0 to allow assessment of poten-
tial effects of repeated arthrocenteses on concentrations
of SF biomarkers [32]. After LPS injection, blood and SF
from the injected joint was sampled at PIH 2, 4, 8, 16,
24, 36, 48, 72, and 144.
At each sampling point the horses underwent a clinical

examination with assessment of general appearance, re-
spiratory frequency, rectal temperature, and heart rate.
Pain assessment and lameness scoring using the AAEP
lameness scale (the scale ranges from 0 to 5, with 0 be-
ing no perceptible lameness, and 5 being most extreme
with little or no weight bearing) [33] was performed by
two observers (SMA, AMLV) blinded to each other’s
grading. Pain was assessed by the previously described
composite measure pain scale [34], which is based on six
behavioural categories: gross pain behaviour, weight
bearing, head position relative to the withers, location in
stall, response to open door, and response to approach
from the observer, as well as on an ‘overall’ subjective
pain score. Point scores for all behavioural categories
were totalled to yield a final pain score ranging from 0
to 23. The injected antebrachiocarpal joint was subject-
ively evaluated by palpation for heat, pain and swelling.
Moreover, the skin temperature of the dorsal clipped
carpus was assessed by infrared thermometry at a
distance of 20 cm according to the manufacturer’s
recommendation (Raytek Raynger MX4, Raytek, Santa

Cruz, California) and reported as the mean of 5 mea-
surements. Joint circumference was measured with a
tape measure at the level of the accessory carpal bone.

Samples and analyses
Blood was collected through an indwelling jugular ven-
ous catheter and immediately transferred to tubes in the
following order: serum, citrate and ethylenediaminetetra-
acetic acid (EDTA) in accordance with instructions from
the manufacturer (BD Vacutainer®, BD A/S, Albertslund,
Denmark). The first five mL of blood were discarded.
The catheter was flushed with saline; no heparin was
used in the study. Three to 10 mL of SF was aspirated
aseptically from the injected antebrachiocarpal joint with
a 21 gauge 40 mm long needle and immediately trans-
ferred to 2.7 ml tubes (BD vacutainer®) containing 3.2%
buffered sodium citrate (1.5 mL of SF was added to each
tube to obtain a citrate:SF ratio equal to the theoretic
citrate:plasma ratio estimated at 45%1) and to a 4 mL-,
spray-coated EDTA tube (BD vacutainer®, approximately
2 .2 ml of SF added to each tube2). All tubes were
inverted carefully 5–10 times directly after sampling. At
each sampling point, SF was assessed macroscopically
(colour, viscosity, and transparency). Inflammatory
(WBC, TP, SAA, haptoglobin, iron) and haemostatic (fi-
brinogen, TAT, d-dimer) biomarkers were measured in
fresh and stored blood/plasma/serum and SF as detailed
in Table 1.
Fibrinogen was measured in SF using the QuickVet®

Equine Fibrinogen™ Test (Scandinavian Micro Biode-
vices, Farum, Denmark). This assay has not previously
been used with SF, and its suitability for measuring fi-
brinogen in SF was therefore validated. Imprecision was
assessed by repeated measurements over two days on 10
machines with one cartridge (from the same batch) per
measurement to obtain the maximum possible varia-
tions. Pooled samples with high (2.06 ± 0.1 g/L), inter-
mediate (0.4 ± 0.13 g/L) and low (0.27 ± 0.13 g/L)
fibrinogen concentrations were made from SF samples
from 6, 5 and 2 horses, respectively, and used for the
analyses. The overall imprecision (coefficient of vari-
ation) was 4.68% for the high pool (18 repeats), 22.5%
for the intermediate pool (19 repeats), and 32.0% for the
low pool (10 repeats). For the intermediate and low
pools, results (one measurement in each pool) with a re-
corded fibrinogen concentration of 0 g/L were omitted
from the calculations, as they were interpreted as deficient
aspiration of viscous sample into the cartridge. Inclusion
of these measurements increased the coefficients of vari-
ation to 32.6% and 47.4% for intermediate and low pools,
respectively. Inaccuracy was assessed by linearity under
dilution. Triplicate determinations of fibrinogen concen-
trations were made using a synovial pool with high
concentrations of fibrinogen diluted 0, 10, 20, 30, 40, 50,
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60, 70, 80, 90 and 100% using a synovial pool with low fi-
brinogen content. Linear regression showed that the slope
did not deviate from 1 (slope = 0.996, 95% confidence
interval = 0.86–1) and the intercept did not deviate from
0. Runs test, however, revealed that data deviated from a
linear model (P = 0.024). Our validation of the fibrinogen
assay thus showed slight inaccuracy and large imprecision
in the low concentration range. Whether this imprecision
was related to the high viscosity of SF was not clear. Cur-
rently, the assay is thus mainly relevant for monitoring of
fibrinogen concentrations in the high concentrations
range, for detection of substantial changes in SF fibrinogen
concentrations or for sequential assessment of SF fibrino-
gen in the same individual.

Data analyses
Each of the outcome parameters, except lameness score,
was compared to the first pre-injection value (at
PIH = −120) using a random intercept, random slope
model in R [35]. The outcome parameters were trans-
formed to achieve residuals (ε), which were deemed in-
dependent identically distributed Normal (0, σ2) except
for fibrinogen in SF, rectal temperature and carpus cir-
cumference, which did not need to be transformed. The
general model used was thus:

transformation outcome parameterð Þ
¼ αþ timeþ time x horse þ ε

where: transformation(outcome parameter), was the
transformed outcome parameter for a specific outcome
parameter; time, was the fixed and random effect of a
specific time-point within a horse. Time was included as
a categorical parameter. The results were presented as
pairwise comparisons between first pre-injection time
(PIH = −120) and subsequent time points.
Imprecision (coefficients of variance) and inaccuracy

(linear regression analysis and runs test) calculations for
fibrinogen measurements in SF were done in Microsoft
Excel (Microsoft Office Professional Plus 2010 Microsoft
Corporation) and GraphPad Prism 5.0 (GraphPad Soft-
ware, Inc., CA, USA). Statistical significance was defined
as P < 0.05 for all analyses.

Results
Two different comparisons were made to describe
changes in clinical parameters and biomarker concentra-
tions: post-injection parameters (PIH 2–144) were com-
pared to PIH −120 to assess LPS-induced changes in
biomarker concentrations; and pre-injection parameters
(PIH -96; −24; 0) were compared to PIH −120 to assess
effects of repeated arthrocenteses on biomarker concen-
trations. In the following, results are summarized in Ta-
bles 2 (clinical parameters), 3 (biomarkers in blood), and

4 (biomarkers in SF) and shown in Fig. 1 (clinical pa-
rameters), 2 (inflammatory biomarkers in blood), 3
(haemostatic biomarkers in blood), 4 (inflammatory bio-
markers in SF), and 5 (haemostatic biomarkers in SF).

Pre-injection period: effects of repeated arthrocenteses
There were no significant changes in clinical parameters
or blood biomarkers in the pre-injection period (Figs.
1a-g, 2a-e and 3a-c; Tables 2 and 3). SF WBC (Fig. 4a),
TP (Fig. 4b) and haptoglobin (Fig. 4d) increased on one
or two occasions in response to previous arthrocentesis
in the pre-injection period. These increases were statisti-
cally significant for WBC at PIH 0 (P < 0.05), TP at PIH
−96 and 0 (P < 0.05 and P < 0.001, respectively); and
haptoglobin at PIH -96 (P < 0.05) (Table 4).

Post-injection period: clinical parameters
The IA injection of LPS induced lameness starting at
PIH 2, which resolved around PIH 48. Peak lameness
scores were observed at PIH 2 and 4 (raw data are
shown in Fig. 1a) with three horses being 5 out of 5 de-
grees lame at PIH 2 and/or 4. Pain scores peaked at PIH
4 (Fig. 1b; Table 2). Local inflammation was present with
palpable heat and swelling from PIH 2 until the end of
the study (data not shown). Pain reaction to palpation of
the injected carpus was recorded between PIH 2 and 24
(data not shown). All horses showed increased heart
rates, respiratory rates, and rectal temperatures (Figs.
1c-e; Table 2). Circumference and skin temperature of
the injected carpus increased in all horses (Fig. 1f-g;
Table 2).

Post-injection period: biomarkers in synovial fluid
Visual inspection showed red or orange discolouration
in 10 out of the 78 SF samples, thus suggesting that
haemorrhage or haemolysis had occurred in the joint.
Seven discoloured samples were from the pre-injection
period, and 3 were from the post-injection period. Intra-
articular injection of LPS caused statistically significant
changes in all but one biomarker measured in SF. Five
biomarkers showed rapid concentration changes with an
early peak (WBC, TP, haptoglobin, fibrinogen and TAT
[Figs. 4a-b,d and 5a-b; Table 4]). Concentrations of SAA
increased more slowly (starting at PIH 16) (Fig. 4c; Table
4), as did d-dimer, concentrations of which were signifi-
cantly increased only at PIH 144 (Fig. 5c; Table 4). While
concentrations of most of the measured biomarkers
returned to pre-injection levels before the end of the
study, TP was increased for the entire duration of the
study (Fig. 4B; Table 4). SF iron concentrations did not
show a statistically significant concentration change after
LPS injection (Fig. 4e; Table 4).
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)
Fig. 1 Clinical parameters recorded in 6 horses before and after intra-articular injection of 3 μg E. coli O55:B5 lipopolysaccharide (LPS) in one antebra-
chiocarpal joint (a) Association of American Equine Practitioners [AAEP] lameness scale; b composite measure pain score; c heart rate; d respiratory rate;
e rectal temperature; f circumference of injected carpus in centimetres [cm]; g skin temperature over injected carpus). Individual horse responses and
estimated means ± standard error of the mean (black line) are depicted. Results of the statistical analyses are shown in Table 2

Fig. 2 Concentrations/levels of inflammatory biomarkers measured in blood from 6 horses before and after intra-articular injection of 3 μg E. coli O55:B5
lipopolysaccharide (LPS) in one antebrachiocarpal joint (a white blood cell count [WBC]; b total protein [TP]; c serum amyloid A [SAA]; d haptoglobin; e
iron). Individual horse responses and estimated means ± standard error of the mean (black line) are depicted. Results of the statistical analyses are shown
in Table 3

Andreassen et al. BMC Veterinary Research  (2017) 13:182 Page 8 of 17



Post-injection period: biomarkers in blood
Intra-articular injection of LPS caused significant
changes concentrations of five out of eight parameters
measured in blood. Four parameters increased signifi-
cantly with peak values before PIH 48 (WBC, SAA,
haptoglobin and fibrinogen [Figs. 2a,c-d, 3a; Table 3]);
Iron concentration decreased significantly before PIH 24
(Fig. 2e; Table 3). Concentrations of TP and TAT

appeared to increase with peak values within PIH 48,
but changes were not statistically significant (Figs. 2b,
3b; Table 3). D-dimer concentration in blood did not
change during the entire study period (Fig. 3c; Table 3).

Discussion
The aim of the study was to characterize the IA haemo-
static responses in experimentally-induced acute arthritis
in horses and to relate it to IA inflammatory responses.
Haemostatic and inflammatory responses in SF were ac-
tivated quickly and simultaneously after IA LPS injec-
tion, which supports our hypothesis and their
importance in equine inflammatory arthritis. The clinical
signs and haematological and biochemical changes in
blood and SF observed after IA injection of LPS were
similar to those previously reported [30, 31]. While the
horses developed pronounced systemic inflammation,
concentrations of the haemostatic markers TAT and d-
dimer did not change in blood after the IA injection of
LPS, suggesting that spillage of inflammatory molecules
such as cytokines occurs from the joint to the systemic
circulation, whereas haemostatic responses remain con-
fined to the joint compartment.
In equine joint research, focus has mainly been on in-

flammation and its adverse effects on joint tissues [6, 7].
In contrast, arthritis research in humans has for several
years emphasized the importance of haemostasis in joint
pathologies [10–13]. Haemostatic proteins such as TAT
and fibrinogen have been detected in human SF, where
they have been reported to induce or modulate inflam-
matory responses [14, 17]. Due to the low number of
horses, no such assessment of interaction or of causal
relationships between inflammatory and haemostatic
biomarkers was made in this study.

Haemostatic biomarkers
The increased concentration of fibrinogen in plasma
observed after IA LPS injection corresponds to results
from previous studies involving experimentally induced
inflammation (arthritis, endometritis) in horses [36, 37],
and it is a result of the acute phase response with in-
creased hepatic synthesis of fibrinogen. The concentra-
tion of fibrinogen in SF started to increase after PIH 2
and reached an average maximum concentration of
2.1 g/L at PIH 8. Synovial fluid fibrinogen concentra-
tions detected in the present study are in the same range
as concentrations reported from human arthritis, where
low levels of fibrinogen were found in healthy SF and
concentrations up to 2 g/L were found in SF from pa-
tients with inflammatory joint diseases such as RA, gout
and septic arthritis [19]. Accumulation of fibrinogen and
fibrin in the joint compartment takes place in equine
septic arthritis [38, 39] and may have deleterious effects
on the tissues. Fibrin deposits are involved in the

Fig. 3 Concentrations/levels of haemostatic biomarkers measured in
blood from 6 horses before and after intra-articular injection of 3 μg
E. coli O55:B5 lipopolysaccharide (LPS) in one antebrachiocarpal joint
(a fibrinogen; b thrombin-antithrombin [TAT]; c d-dimer). Individual
horse responses and estimated means ± standard error of the mean
(black line) are depicted. Results of the statistical analyses are shown
in Table 3
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formation of pannus [40], a granulation tissue that traps
bacteria and stimulates the release of cytokines, growth
factors and other inflammatory biomolecules, thus caus-
ing cartilage destruction and bone erosion [41, 42]. Pan-
nus formation in equine infected synovial structures has
been related to reduced prognosis and poor athletic out-
come after septic arthritis [38, 39]. The haemostatic
functions of fibrinogen are well-known [43], but fibrino-
gen has also been shown to possess proinflammatory

functions [16], as increased expression of inflammatory
biomolecules were detected in cultured synoviocytes
after fibrinogen stimulation [20, 21]. The balance
between fibrin formation and dissolution is thought to
be important for resolution of IA inflammatory disease
[23, 24]. In the present study SF fibrinogen concentra-
tions started to decrease after PIH 8. This decrease
could be the result of fibrinolysis [25], and it could also
be related to formation of fibrin that adhere to the

Fig. 4 Concentrations/levels of inflammatory biomarkers measured in synovial fluid (SF) from 6 horses before and after intra-articular injection of
3 μg E. coli O55:B5 lipopolysaccharide (LPS) in one antebrachiocarpal joint (a white blood cell count [WBC]; b total protein [TP]; c serum amyloid
A [SAA]; d haptoglobin; e iron). Individual horse responses and estimated means ± standard error of the mean (black line) are depicted. Results of
the statistical analyses are shown in Table 4
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synovial membrane and thus disappear from SF. Ad-
herence of fibrin to the synovial membrane has been
reported in mice 36 h after experimental induction of
antigen-induced arthritis [18]. Adherence of fibrin
was also observed arthroscopically 2 days after inocu-
lation in an experimental Staphylococcus aureus-
induced joint infection in horses [44]. Arthroscopic
assessment or synovial membrane histology of horses

with LPS-induced arthritis could provide more infor-
mation on formation of IA fibrin deposits.
Our results showed that soluble fibrinogen can be mea-

sured in equine SF with the QuickVet® Equine Fibrinogen™
Test, but further studies are needed to fully explore the
potential of fibrinogen as a biomarker of IA haemostatic
pathways in equine inflammatory joint disease.
Intra-articular LPS injection induced a very fast and

significant increase in SF TAT concentrations, but did
not result in changes in plasma TAT concentrations.
These results correspond to TAT concentrations demon-
strated in plasma of healthy horses (2.6 ± 2 μg/L) [45]
and in SF from humans with RA (1913.4 ± 1024 μg/L)
[46]. A proteomic analysis of SF from horses with OA
revealed a 2.2 fold increase in antithrombin level com-
pared to SF from healthy animals [47]. In human inflam-
matory joint conditions, SF levels of TAT are correlated
with SF tissue factor (TF) activity [11], which can induce
thrombin generation [13]. Thrombin is rapidly inacti-
vated in SF by antithrombin [13], and TAT can be con-
sidered an indicator of thrombin generation [48, 49]. In
humans, TAT concentrations seemed to be related to de-
gree of IA inflammation, as SF TAT concentrations were
higher in RA than in OA (4430 ± 3580 μg/L versus
210 ± 260 μg/L) [14]. The results of the current study
show that IA haemostasis was activated within 2 h after
the inflammatory insult. The corresponding, rapid in-
crease in SF fibrinogen, TP and WBC indicate that
haemostasis was activated in synchronicity with inflam-
mation in the joint compartment after IA LPS injection.
This is the first study to evaluate d-dimer concentra-

tion changes over time in acute equine joint inflamma-
tion. Plasma d-dimer concentration did not change in
response to IA LPS injection, but in SF significantly in-
creased d-dimer concentrations were demonstrated at
PIH 144. Previous studies in horses have demonstrated
increased d-dimer concentrations in SF from clinical
cases of chronic joint disease with mild inflammation
such as OA and OCD [26], as well as very high d-dimer
concentrations in SF from foals with septic arthritis [25].
The increase in d-dimer concentration in inflammatory
arthritis supports the hypothesis that inflammatory reac-
tions in joint induce IA fibrinolysis [25]. D-dimer is
thought to be produced locally in the joint [25], as also
shown by SF d-dimer concentrations being much higher
than those found in plasma in the present study. Factors
involved in d-dimer generation (plasminogen, urokinase
plasminogen activator and plasminogen activator inhibi-
tor) have been demonstrated in SF [50, 51]. Since the
joint inflammation induced in our model was of short
duration and self-limiting, the present study cannot shed
light on how fibrinolysis is activated in more complex
joint diseases, but it seems that fibrinolysis occurs quite
late in the course of joint inflammation. Conversely, the

Fig. 5 Concentrations/levels of haemostatic biomarkers measured in
synovial fluid (SF) from 6 horses before and after intra-articular injection
of 3 μg E. coli O55:B5 lipopolysaccharide (LPS) in one antebrachiocarpal
joint (a fibrinogen; b thrombin-antithrombin [TAT]; c d-dimer). Individual
horse responses and estimated means ± standard error of the mean
black line) are depicted. Results of the statistical analyses are shown in
Table 4
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uniformly low level of d-dimer detected in all horses in
the first 24 PIH could be indicative of an early decrease
in fibrinolytic activity in the pathogenesis of joint dis-
eases. This potentially very important balance between
fibrinogenesis and fibrinolysis warrants further research.

Inflammatory biomarkers
Measuring TP and WBC in SF is routine for assessment
of joint inflammation [9]. Levels of WBC and TP in SF
reached those reported to indicate presence of septic
arthritis [5, 9], which confirms that the equine IA LPS
model mimics this condition. The TP concentration in
SF increased rapidly after IA LPS injection and reached
concentrations close to those found in plasma. The
majority of the SF protein content thus appeared to be
derived from the systemic circulation (albumin).
Serum as well as SF SAA concentrations increased in

response to IA injection of LPS. Increased SAA concen-
trations in SF as a result of IA inflammation have been
demonstrated repeatedly in horses and other species [30,
31, 52–54]. A recent study suggested that septic arthritis
results in particularly high SF SAA concentrations (>
100 mg/L) in horses [55], corresponding to levels found
in our model of severe inflammatory arthritis. It has been
shown that SAA is synthesized by IA tissues [56–58], and
that SAA synthesis is elicited when cultured chondrocytes
and fibroblast-like synoviocytes from horses are exposed
to inflammatory molecules (e.g. LPS or proinflammatory
cytokines) [59] or to molecules involved in haemostasis
(thrombin, fibrinogen) [21].
Haptoglobin, a moderate acute phase protein in the

horse [36], showed significantly increased serum concen-
trations from PIH 24 to the end of study. Previous stud-
ies have shown a serum haptoglobin response in horses
with experimental arthritis [36], acute abdominal pain
[60] and transportation stress [61]. Very little is known
about the haptoglobin response in inflammatory joint
disease in horses and other species [47, 51, 62], but a
recent study demonstrated increased concentrations of
haptoglobin in SF obtained from horses 15 days after
experimental induction of arthritis by IA injection of
amphotericin B [63]. In response to IA LPS injection,
haptoglobin concentrations in SF peaked earlier than
serum concentrations did (PIH 2–16). This very early
peak makes it unlikely that IA de novo synthesis of
haptoglobin had time to occur, and its presence in SF
may be a result of blood contamination of SF. Hapto-
globin may have protective effects in the joint, as it
binds iron, thereby protecting against tissue degrad-
ation from oxidative damage [64, 65]. Haptoglobin
has also been found to protect SF hyaluronic acid
from free radical degradation [66]. There are no stud-
ies reporting the use of haptoglobin for diagnostic
purposes in joint disease yet.

A decrease in iron concentration in serum was ob-
served at PIH 16 and 24. This finding was expected, as it
has been shown that LPS induce hepatic up-regulation
of hepcidin, an iron metabolism regulator, which reduces
iron availability in the blood stream [67] with proposed
anti-microbial effects [68]. Effects of joint inflammation
on SF iron concentration are not clear. Intra-articular
LPS injection did not result in significant changes in SF
iron concentrations in our horses, and previous studies
in humans have shown opposing results, with one study
showing higher SF iron concentrations in severe inflam-
mation (RA) than in milder inflammation (OA) [69],
while another study showed higher iron concentrations
in SF from OA patients than in SF from RA patients and
healthy individuals [70]. Intra-articular iron has been
thought to be related to joint degradation processes
through formation of free radicals [70, 71].

Repeated arthrocenteses
The study design allowed us to assess the effect of re-
peated arthrocenteses on concentrations of SF bio-
markers. Previous studies in calves and horses have
shown that the trauma caused by insertion of a needle
into the joint induces an IA inflammatory reaction with
resultant significant changes in biomarker concentra-
tions [32, 72, 73]. White blood cells counts, and TP and
haptoglobin concentrations were increased in SF 24 h
after the previous arthrocentesis, but 3 days after the
previous arthrocentesis concentrations were back to pre-
arthrocentesis levels. These findings are similar to those
of Brama et al. [72], where the activity of matrix metallo-
proteinases in equine SF was increased 12 h after the
first arthrocentesis and normalized after 72 h. Our group
and others has previously shown that TP, but not con-
centrations of SAA or cartilage-derived retinoic acid-
sensitive protein, are affected by previous arthrocentesis
[30, 74, 75]. Synovial fluid WBC is increased 24–48 h
after arthrocentesis [75, 76]. The IA response to arthro-
centeses are thought to be caused by local inflammatory
reactions in the synovial membrane [72], or by a minor
haemorrhage with influx of cells and proteins that accu-
mulates in SF [73, 77]. The latter seemed to occur in the
present study as indicated by red or orange discolouration
of 7 of the SF samples obtained in the pre-injection
period. It is not clear if and how arthrocentesis-induced
IA inflammation, haemorrhage or haemolysis may have
affected measurements of the biomarkers in the present
study. For some of the assays employed (e.g. TAT and d-
dimer) the manufacturer specifically states that haemolysis
does not affect measurement results. Bleeding, however,
could potentially affect measured concentrations of bio-
markers, either by proteins being delivered to SF by the
haemorrhage (resulting in increased concentrations of the
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protein) or by blood plasma exerting a dilution effect
(resulting in decreased protein concentrations).
Increased knowledge about effects of repeated arthro-

centeses on concentration of SF biomarkers may be
valuable for clinical diagnostic purposes.

Conclusion
This study documented the concomitant induction of
haemostatic and inflammatory responses in the joint
compartment during experimental inflammatory arth-
ritis in horses. The IA haemostatic responses occurred
independently of the systemic haemostatic response and
coincided with peak joint inflammation. The IA haemo-
static response is elicited immediately after the inflam-
matory insult as evidenced by early increases in SF
fibrinogen and TAT concentrations, while fibrinolysis of
cross-linked fibrin with formation of d-dimer seemed to
be activated late. These findings provide new insights
into the pathogenesis of equine inflammatory arthritis.
Future studies of the interaction between joint inflam-
mation and haemostasis may prove important for devel-
opment of new treatment modalities to improve the
prognosis of severe joint inflammation.

Endnotes
1SF volume to 0.3 ml citrate = 2.7 ml blood x [100% -

equine haematocrit of 45%].
2SF volume to 4 ml spray-coated EDTA tube = 4 ml

blood x [100% - equine haematocrit of 45%].
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