
Gene Regulatory Identification Based
on the Novel Hybrid Time-Delayed
Method
Wenzheng Bao1, Xiao Lin2*, Bin Yang3 and Baitong Chen4

1School of Information Engineering, Xuzhou University of Technology, Xuzhou, China, 2Department of Pharmaceutics, Zaozhuang
Municipal Hospital, Zaozhuang, China, 3School of Information Science and Engineering, Zaozhuang University, Zaozhuang, China
277160, 4Xuzhou Municipal First People’s Hospital, Xuzhou, China

Gene regulatory network (GRN) inference with biology data is a difficult and serious issue in
the field of systembiology. In order to detect the direct associations of GRNmore accurately,
a novel two-step GRN inference technique based on the time-delayed correlation coefficient
(TDCC) and time-delayed complex-valued S-system model (TDCVSS) is proposed. First, a
TDCC algorithm is utilized to construct an initial network. Second, a TDCVSS model is
utilized to prune the network topology in order to delete false-positive regulatory relationships
for each target gene. The complex-valued restricted additive tree and complex-valued
differential evolution are proposed to approximate the optimal TDCVSS model. Finally, the
overall network could be inferred by integrating the regulations of all target genes. Two real
gene expression datasets from E. coli and S. cerevisiae gene networks are utilized to
evaluate the performances of our proposed two-step GRN inference algorithm. The results
demonstrated that the proposed algorithm could infer GRN more correct than classical
methods and time-delayed methods.
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INTRODUCTION

With the accomplishment of the human genome project and the emergence of high-throughput gene
analysis techniques, it has been recognized that great heterogeneity in gene mutation profiles of
cancer tissues has been reported (Thomas et al., 2007; Tesniere et al., 2010; Rupaimoole et al., 2016;
Zhang et al., 2018). Mutant genes are not only numerous and complex but could also construct a
dynamic network system. At the cell level, interrelated genes/proteins constitute complex cellular
networks, including signaling pathways, gene regulatory networks (GRN), and metabolic networks
(Quach et al., 2007; Ma’ayan, 2009). When it comes to the GRN issue, any gene could not execute the
independent function. They must coordinate with other genes to complete certain biological
processes and participate in determining the behaviors and phenotypes of cells (Hernández-
Prieto et al., 2014). Thus, the research on GRN has become a hotspot in the field of system
biology during the past several decades (Bracken et al., 2016; Liu et al., 2018).

The gene regulatory network contains two parts, including nodes and edges. The main work is to
identify the direct regulations of all pairs of nodes. In real organisms, genetic and non-genetic factors
could cause an objective phenomenon that time delays occur in the gene expression process.
Recently, several machine learning methods have been utilized to identify time-delayed regulations
among genes (Parmar et al., 2015; Wang et al., 2020). Lo proposed a causal network model by
identifying causal-directed regulations with time delays (Lo et al., 2015). Kordmahalleh et al.
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presented a hierarchical recurrent neural network (HRNN) and
genetic algorithm (GA) to infer the time-delayed gene regulatory
network (Kordmahalleh et al., 2017). Li et al. utilized the

Max–Min high-order dynamic Bayesian network (MMHO-
DBN) to identify the synthetic and real time–delayed gene
regulatory network (TDGRN) (Hu et al., 2020). Yu and Li also

FIGURE 1 | Example of the chromosome of CVRAT.

FIGURE 2 | Crossover operator.
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utilized the dynamic Bayesian network (DBN) to infer the
TDGEN (Li et al., 2014; Yu et al., 2017). Some time-delayed
information theory methods have been proposed to infer the
TDGEN, such as TimeDelay-ARACNE (Zoppoli et al., 2010) and
the time-lagged correlation method (Sefidmazgi et al., 2016;
Abduallah and Wang, 2017). Zhao et al. proposed a kind of
delay differential equation model to infer the gene regulatory
networks (Zhao et al., 2016).

The S-system model is a nonlinear ordinary differential equation
(ODE) composed of power-law functions, which is very suitable for
simulating nonlinear biological systems with a large number of
components, such as GRNs and metabolic pathways (Miyawaki-
Kuwakado et al., 2020). Liu et al. proposed a multiobjective
optimization method to evolve the S-system in order to infer the
biochemical network (Liu and Wang, 2008). Orland et al. utilized
simulated annealing (SA) to search the optimal parameters of
S-system in order to simulate real biochemical networks

(Gonzalez et al., 2007). Wang et al. proposed a simplified
S-system and a multi-dimensional optimization method for GRN
inference (Wang et al., 2010). Iwata et al. utilized the S-system to
simulate metabolic reaction systems (Iwata et al., 2014). Chowdhury
et al. proposed the time-delayed S-system and stochastic S-system to
model time-delayed and stochastic regulations in GRN, respectively,
and gained a good performance (Chowdhury et al., 2013a;
Chowdhury et al., 2013b; Ji et al., 2017).

With several decades of efforts, complex-valued methods have
been proposed to solve the real prediction and classification
issues. Compared with real-valued methods, complex-valued
methods have stronger modeling and noise tolerance abilities
(Yang and Bao, 2019; Yuan et al., 2021). Fink et al. proposed a
complex-valued multilayer feedforward neural network to
forecast the degradation of railway track turnouts (Fink et al.,
2014). Chen et al. utilized a complex-valued radial basis function
network to solve a nonlinear signal processing problem (Chen

FIGURE 3 | Mutation operators.
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et al., 1994). Goh et al. utilized complex-valued recurrent neural
networks (RNNs) to predict Santa Fe and chaotic Mackey–Glass
time series data (Goh et al., 2006). Savitha et al. proposed a
complex-valued version of the extreme learning machine to solve
real-valued classification problems (Savitha et al., 2012). Rashid
utilized the complex-valued neural network to solve classification
problems in the bioinformatics field (Rashid et al., 2016). Bakbak
et al. presented the complex wavelet neural network to classify the
sonar signal (Bakbak and Peker, 2020).

In order to enhance the accuracy of GRN inference, this study
presents a time-delayed complex-valued S-system model

(TDCVSS) to identify time-delayed and nonlinear relationships
among genes. Compared with the S-system, TDCVSS contains
time-delayed and complex-valued parameters, and the variables
are complex-valued. The time-delayed correlation coefficient
(TDCC) algorithm is first utilized to construct a TDCC matrix
and the optimal time delay vector between genes. According to the
TDCC matrix, the initial network is constructed. A complex-
valued hybrid swarm intelligent algorithm based on the
restricted additive tree and differential evolution is utilized to
search for the optimal TDCVSS model in order to prune the
network topology further.

FIGURE 4 | Flowchart of gene regulatory network inference.
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METHODS

Time-Delayed Correlation Coefficient
The time-delayed correlation coefficient (TDCC) is utilized to
evaluate the linear relationship between two genes under the
conditions of a constant system time delay, which is described as
follows.

RX,Y(τ) �
∑T
t�1
(X(t) − �X)(Y(t + τ) − �Y)���������������������������∑T

t�1
(X(t) − �X)2∑T

t�1
(Y(t + τ) − �Y)2√ , (1)

where X(t) and Y(t + τ) are gene expression profiles of gene
X and gene Y at the time points t and t + τ, respectively. T is the
number of sample points, and �X and �Y are the means of gene
expression levels of gene X and gene Y, respectively.

Time-Delayed Complex-Valued
Time-Delayed S-System
The time-delayed complex-valued S-system (TDCVSS) is the
time-delayed and complex-valued version of the S-system.
Compared with a real-valued S-system, TDCVSS contains two
improvements. Input variables (X1, X2, . . .XN) and rate
constants (αi and βi) are complex-valued. Also, in a TDCVSS
model, a time-delayed factor (τ) is included. The i − th time-
delayed and complex-valued differential equation is given in
Eq. 2.

X′i(t) � αi∏N
j�1

X
gij
j (t + τij) − βi∏N

j�1
X

hij
j (t + τij), (2)

where hij and gij are real-valued kinetic orders. τij is the time
delay between variable Xi and variable Xj.

Complex-Valued Restricted Additive Tree
The TDCVSS model contains complex-valued variables and
coefficients. In the GRN, each target gene corresponds to a
small number of regulatory factors. Thus, for each dependent
variable in TDCVSS, the proper independent variables need
to be selected. A complex-valued restricted additive tree
algorithm (CVRAT) is utilized to evolve the structure of
the model. An example of the chromosome of TDCVSS
can be demonstrated in Figure 1. The node in the first
layer is fixed to subtraction (-). Two operator sets
(F � {X2, X3, . . . , Xn} and V � {z1, z2, . . . , zn}) were utilized
to create the nodes randomly in other layers.Xi is the product
of i complex-valued input variables. In order to represent the
parameters of the TDCVSS model, a real-valued parameter
(hij or gij) is given to each variable node and a complex-
valued parameter (αi or βi) is given to each branch of the root
node. The time delay vector between variable i and other
variables is given as [τi1, τi2, . . . , τiN]. The corresponding
TDCVSS model is dzi

dt � αiz
gi1
1 (t + τi1)zgi2

2 (t + τi2)zgi3
3 (t + τi3)−

βiz
hi1
1 (t + τi1)zhi22 (t + τi2)zhi33 (t + τi3)zhi44 (t + τi4).

In the CVRAT algorithm, three genetic operators (selection,
crossover, and mutation) are used to evolve the chromosome
populations, which are the same as some structure-based
evolutionary algorithms, such as genetic programming (GP).
The detail crossover and mutation operators are shown in
Figures 2, 3, respectively (Yang et al., 2020).

Complex-Valued Differential Evolution
Differential evolution (DE) is an efficient and global evolutionary
algorithm, which is based on the continuous variable
optimization (Das and Suganthan, 2011). Its idea comes from
the genetic algorithm (GA), which also contains the crossover,
mutation, and reproduction. However, the mutation vector of
differential evolution is generated by the difference vector of the
parent generation, and the new individual could be generated by
the crossover of the parent individuals. Considering its simple
structure, easy implementation, and strong robustness, DE is
widely utilized in many fields, such as bioinformatics, image
processing, document extraction, artificial neural network, and
electromagnetics. Complex-valued differential evolution
(CVDE) is the complex-valued version of DE. In CVDE, a
complex-valued individual includes the real part and the
imaginary part, which need to be evolved simultaneously.
CVDE could improve the diversity of population and
premature convergence of DE. The optimization process of
parameters of TDCVSS with CVDE is introduced in
Algorithm 1.

Algorithm 1. Parameter optimization of TDCVSS with complex-
valued differential evolution.
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Gene Regulatory Network Inference
Algorithm
The proposed network inference algorithm contains two steps,
whose flowchart is demonstrated in Figure 4.

Step 1. Construction of the Initial Gene Regulatory
Network

1) According to the given gene expression data, the TDCC
method is utilized to obtain the TDCC matrix and the
optimal time delay vector between regulatory factors and
target genes. The maximum time delay Tmax is set, and the
CC values are calculated among genes with the different time
delays. The maximum CC value and time delay are selected as
TDCC and the optimal time-delayed value between the
regulatory factor and target gene separately.

2) According to the TDCC matrix, a directed weighted graph is
obtained. The initial network is constructed with the selected
threshold. If the weight of an edge is less than the threshold,
the edge is deleted. If the weight of an edge is higher than the
threshold, the edge is retained.

Step 2. Pruning of the Gene Regulatory Network
In order to improve the false-positive rate, the TDCVSS model is

utilized to select the regulatory factors of each target gene. According
to the initial network, the optimal time factor vector, and gene
expression data, the optimal TDCVSS model of each target gene is
found byCVRAT andCVDE. If a regulatory factor is not included in
the TDCVSS, this regulatory factor could not regulate the target
gene. With such an approach, some false-positive regulatory
relationships could be deleted in order to prune the network.

EXPERIMENTS

In this part, two real gene regulatory networks from E. coli and
Saccharomyces cerevisiae are utilized. The true-positive rate

FIGURE 5 | SOS DNA repair network of E. coli.

FIGURE 6 | Network by CVTDSS (A) and the network by TDCC + CVTDSS (B).
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(TPR), false-positive rate (FPR), positive predictive value (PPV),
accuracy (ACC), and F-score are utilized to evaluate the
performance of our method. In order to test our method
well, the TDCVSS model is utilized to infer two real GRNs
without the TDCC algorithm. Some classical GRN inference
methods such as DBN (Perrin et al., 2003) [MMHO-DBN (Hu
et al., 2020), DBN-ZC (Zou and Conzen, 2005) and DBmcmc
(Husmeier, 2003)], RNN (Xu et al., 2007; Kordmahalleh et al.,
2017), ODE (Chen et al., 2011), time-delayed methods
[TDARACNE (Zoppoli et al., 2010), and TDLASSO (Mundra
et al., 2013)] are also utilized.

SOS Repair Network
The first real biological gene expression data were derived from
the SOS (Save Our Souls) DNA repair system. SOS DNA repair is
a kind of DNA repair method induced by the serious damage of
DNA and the cell in a crisis state under the action of a variety of
enzymes, in order to maintain the integrity of the genome. The
SOS reaction in DNA of E. coli is controlled by recA → lexA, and
the network structure is depicted in Figure 5, which contains
eight genes: uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA, and polB
(Ronen et al., 2002).

According to the gene expression levels, the time-delayed
correlation coefficient is utilized to construct the network
topology, which contains 29 regulatory relationships.
Through our proposed evolutionary algorithm, the

corresponding optimal CVTDSS models of eight target
genes have been obtained in order to reduce the false-
positive regulations and prune the network structures,
which are described in Eq. 3. The final SOS repair network
is obtained in Figure 6B, according to our proposed method.
Figure 6A is the network obtained by CVTDSS without
TDCC. The solid lines represent true-positive regulations,
while dotted lines show the false-positive relationships.
Comparing Figures 6A,B, it could be seen clearly that our
proposed method infer less false-positive regulations.

duvrD

dt
� (−0.7775 + 1.909 i)lexA2.7239

t−1 recA1.2357
t − (−1.539 + 1.846 i)lexA−1.586

t−1 recA−1.056
t ,

dlexA

dt
� (10.3037 − 46.2997 i))uvrA1.4621

t − (−7.1335 − 45.6055 i)recA0.1352
t uvrA3.0535

t ,

dumuD

dt
� (1.3215 − 0.6353 i)uvrA−3.0207

t − (0.3693 − 1.1433 i)lexA−1.3984
t uvrA0.7126

t ,

drecA

dt
� (19.3402 + 49.7278 i)polB5.6735

t − (3.7607 + 52.0372 i)lexA2.7847
t ,

duvrA

dt
� (28.6246 + 20.8885 i)lexA2.3048

t − (−7.9147 + 17.355 i)lexA3.2171
t ,

duvrY

dt
� (−1.0228 + 0.5707 i)lexA−1.8106

t−2 recA−1.169
t − (−0.5252 + 0.9496 i)lexA1.9715

t−2 ,

druvA

dt
� (0.4443 + 0.8445 i)lexA0.8982

t − (1.8336 + 0.9561 i)lexA0.5566
t uvrA−0.6937

t ,

dpolB

dt
� (0.4988 + 0.9654 i)lexA0.1971

t recA−1.0292
t − (0.2515 + 1.0799 i)recA0.9558

t .

(3)

TABLE 1 | Performance comparison of six methods for the SOS network.

TPR FPR PPV ACC F-Score

S-system 0.5556 0.20833 0.3333 0.6667 0.41667
DBN 0.4444 0.10417 0.44444 0.75439 0.44444
RNN 0.55556 0.041667 0.71429 0.80702 0.625
ODEs 0.6667 0.3125 0.28571 0.57895 0.4
TDCVSS 0.88889 0.3818 0.27586 0.65625 0.42105
Our method 0.88889 0.12723 0.5333 0.875 0.6667

FIGURE 7 | IRMA network. FIGURE 8 | IRMA network by CVTDSS (A) and the IRMA network by
TDCC + CVTDSS (B) with the on dataset.
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DBN, RNN, S-system, and ODE are also utilized to infer the SOS
repair network, and the results are listed in Table 1. From Table, we
can figure out that in terms of TPR, our method and CVSS have the
same performance, which is 59.99% higher than the S-system and
RNN, 100% higher than DBN, and 33.27% higher than ODEs, which
reveal that our method could infer more real regulations. In terms of
FPR, RNN has the best performance. Our method only performs
better than S-system, ODE, and CVSS, which show that the network
obtained by our method does not have the least false-positive edges,
but it has fewer wrong regulations. In terms of PPV, RNN has the

highest performance, while our method has the second best
performance. In terms of ACC, our method is 31.2% higher than
the S-system, 16% higher than DBN, 8.4% higher than ODE, and
33.3% higher than CVSS. The results of F-score show that our
method performs best as a whole.

IRMA Network
The second real gene expression data are from the IRMA network,
which is extracted from the switch process of galactose and glucose
in Saccharomyces cerevisiae. According to the on and off of galactose
creation, two kinds of gene expression datasets (on dataset and off
dataset) are collected (Cantone et al., 2009). The real IRMA network
is depicted in Figure 7.

With the on dataset, the TDCC could select 13 potential
regulations for the initial IRMA network. According to the
initial network and on dataset, five optimal CVTDSS models
are found for five target genes (Eq. 4), which are utilized to
determine the regulations of target genes and construct the final
network (Figure 8B). The network inferred only by CVTDSS
with the on dataset is depicted in Figure 8A. The solid lines
represent true-positive regulations, while dotted lines show the
false-positive relationships. Comparing two networks, it could be
seen that our method could infer six real regulations, while CVSS
can gain seven real relationships. But our method could infer less
false-positive regulators and obtain a more accurate network.

dCBF1
dt

� (14.3404 − 4.3662 i)SWI5−0.4442t − (18.5262 + 0.3632 i)ASH12.3205t ,

dGAL4
dt

� (20.1982 + 23.7081 i)GAL80−1.5041t − (27.7833 + 24.3643 i)CBF10.02835t−2

GAL803.6337t ,

dSWI5
dt

� (17.9446 + 14.6087 i)GAL4−0.7849t−1 − (17.152 + 16.076 i)GAL42.4668t−1 ,

dGAL80
dt

� (22.8761 − 19.8769 i)GAL42.6458t − (18.7878 − 18.4917 i)GAL4−1.3359t ,

dASH1
dt

� (17.8996 + 6.0684 i)GAL4−0.0102t−1 (5.355175 + 3.733905 i)GAL4−3.7122t−1 .

(4)

HRNN, MMHO-DBN, TDARACNE, TDLASSO, DBmcmc, and
DBN-ZC are also utilized to infer the IRMA network with the on
dataset. Also, the results are described inTable 2. In terms of TPR, the
CVSS model obtains the best performance, which proves that CVSS
could infer more true-positive edges. Ourmethod infers one edge less
than CVSS, which may be because the TDCC method deletes this

TABLE 2 | Performance comparison of eight methods for IRMA network inference
with the on dataset.

Method TPR FPR PPV ACC F-Score

Our method 0.75 0.05882 0.857,143 0.88 0.8
TDCVSS 0.875 0.411,765 0.5 0.68 0.636,364
HRNN 0.75 0.176,471 0.667 0.8 0.706,069
MMHO-DBN 0.5 0 1 0.84 0.666,667
TDARACNE 0.625 0.117,647 0.7142 0.8 0.666,629
TDLASSO 0.25 0.176,471 0.4 0.64 0.307,692
DBmcmc 0.25 0.117,647 0.5 0.68 0.333,333
DBN-ZC 0.375 0.117,647 0.6 0.72 0.461,538

FIGURE 9 | IRMA network by CVTDSS (A) and the IRMA network by
TDCC + CVTDSS (B) with the off dataset.

TABLE 3 | Performance comparison of six methods for IRMA network inference
with the off dataset.

Method TPR FPR PPV ACC F-Score

Our method 0.75 0.176,471 0.6667 0.8 0.705,901
TDCVSS 0.75 0.588,235 0.375 0.52 0.5
MMHO-DBN 0.25 0.058824 0.6667 0.72 0.363,641
TDARACNE 0.125 0.058824 0.5 0.68 0.2
TDLASSO 0.125 0.176,471 0.25 0.6 0.166,667
DBmcmc 0.12 0.294,118 0.17 0.52 0.14069
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edge in the previous step. In terms of FPR, MMHO-DBN could gain
zero, which reveals that the network inferred has no false-positive
relationships. Our method could infer one false-positive edge and
gain the second best FPR performance, which is 0.05882. In terms of
ACC, our method could gain the highest accuracy, which shows that
our method could infer more true-false edges and less false-positive
edges. As a whole, our method has the highest F-score values. From
the table, we could see that our method performs better than classical
methods (HRNN, MMHO-DBN, DBmcmc, and DBN-ZC) and
time-delayed methods (TDCVSS, TDARACNE, and TDLASSO).

With the off dataset, the TDCC could select 15 potential
regulations for the initial IRMA network. According to the initial
network and off dataset, five optimal CVTDSS models are found for
five target genes (Eq. 5), which are utilized to determine the
regulations of target genes and construct the final network
(Figure 9B). The network inferred only by TDCVSS with the off
dataset is depicted in Figure 9A. The solid lines represent true-
positive regulations, while dotted lines show the false-positive
relationships. Compared with two networks, our method and
TDCVSS could infer the same number of true-positive edges,
which is six. But ourmethod could infer less false-positive regulators.

dCBF1
dt

� (10.5168 + 14.8629 i)SWI5−2.172t−1 − (4.345 + 5.378 i)SWI57.2487t−1 ASH1−5.6179t−1 ,

dGAL4
dt

� (18.1621 + 3.7553 i)ASH1−0.2432t − (17.870989 − 0.358178 i)GAL800.9609t ASH1−0.0552t ,

dSWI5
dt

� (24.728 + 5.6469 i)GAL4−4.489t−1 − (27.7649 + 8.0166 i)GAL45.759t−1 ,

dGAL80
dt

� (4.1949 − 0.9859 i)GAL40.4187t ASH11.782t − (5.268426 − 0.6605 i)GAL42.1168t ASH1−1.3287t ,

dASH1
dt

� (2.8048 − 9.2581 i)GAL802.3158t − (9.133108 − 7.3237 i)SWI5−2.1711t GAL804.2043t .

(5)

With the off dataset MMHO-DBN, TDARACNE, TDLASSO,
and DBmcmc are also utilized to infer the IRMA network. The
results are listed in Table 3. In terms of TPR, our method and the
TDCVSS model can obtain the best performance, which is 0.75.
Compared with other methods, these two methods could infer more
true-positive edges. In terms of FPR, MMHO-DBN and
TDARACNE have better performance, which reveals that the
networks inferred by the two methods have fewer false-positive
relationships than othermethods. Ourmethod andTDLASSO could
gain the second best FPR performance, which is 0.176,471. TDCVSS
has the worst FPR value. In terms of PPV, ourmethod andMMHO-
DBN obtain the best performance, which is 77.79% higher than
TDCVSS, 33.34% higher than TDARACNE, 166.7% higher than
TDLASSO, and 292.2% higher than DBmcmc. In terms of ACC and
F-score, our method could gain the best performance, which shows
that our method could infer more true-false edges and fewer false-
positive edges than other methods as a whole.

CONCLUSION

In order to improve the accuracy of time-delayed GRN
inference, a novel GRN inference method is proposed. In

our method, the time-delayed correlation coefficient
algorithm is first utilized to construct the TDCC matrix and
the optimal time delay vector between genes. According to the
TDCC matrix, the initial gene regulatory network topology is
inferred. In order to improve the false-positive rate of GRN
obtained, the time-delayed complex-valued S-system model is
proposed to identify the regulations of each target gene, which
could delete many false-positive relationships. When tested on
two real gene expression datasets from E. coli and S. cerevisiae
gene networks, in terms of F1, our method could make the
13.3–406.5% improvements, which show that our method as a
whole has better performances than DBN (MMHO-DBN,
DBN-ZC, and DBmcmc), RNN, ODE, and time-delayed
methods (TDARACNE and TDLASSO).

From the results, it could be seen that our method could infer
more true-positive regulations and fewer false-positive
relationships than other classical GRN inference methods.
However, each gene needs to identify the optimal CVTDSS
model through an evolutionary algorithm, so the runtime of
the proposed algorithm may be high. In future research, the
parallel computing framework is planned to improve the time
efficiency of the algorithm.
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