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*e modification by polymers and nanomaterials can significantly improve different properties of asphalt. However, during the
service life, the oxidation affects the constituents of modified asphalt and subsequently results in deviation from the desired
properties. One of the important properties affected due to oxidation is the adhesive properties of modified asphalt. In this study,
the adhesive properties of asphalt modified with the polymers (styrene-butadiene-styrene and styrene-butadiene) and carbon
nanotubes were investigated. Asphalt samples were aged in the laboratory by simulating the field conditions, and then adhesive
properties were evaluated by different tips of atomic force microscopy (AFM) following the existing functional group in asphalt.
Finally, a predictive modelling and machine learning technique called the classification and regression tree (CART) was used to
predict the adhesive properties of modified asphalt subjected to oxidation.*e parameters that affect the behaviour of asphalt have
been used to predict the results using the CART.*e results obtained fromCARTanalysis were also compared with those from the
regression model. It was observed that the CARTanalysis shows more explanatory relationships between different variables. *e
model can predict accurately the adhesive properties of modified asphalts considering the real field oxidation and chemistry of
asphalt at a nanoscale.

1. Introduction

*e researchers usually modify the asphalt using different
types of polymers to provide more durable and sustainable
pavements. *e polymers used for the modification of as-
phalt tend to have large chains (straight or cross-linked).*e
chemistry and structure of the chains affect the behaviour of
the polymer as well as polymer-modified asphalt (PMA).*e
most commonly used polymers are elastomers and plas-
tomers. *e elastomers improve the elastic properties, while
the plastomers provide a plastic matrix in the modified
asphalt. In the following sections, the PMA indicates only
styrene-butadiene-styrene (SBS) and styrene-butadiene (SB)
modified asphalt following the scope of this study.

SBS is one of the most widely used polymers in the
asphalt industry, followed by reclaimed tire rubber [1],

which improves the mechanical, physical, and rheological
properties of asphalt mixtures [2], increases the elasticity
and tensile properties of asphalt [3], and lowers the creep
stiffness [4]. *e SB product is an SBS block copolymer and
elastomeric in nature. *e use of SB can affect different
properties of asphalt, including viscoelastic properties (Jnr)
[5], and provide increased resistance to permanent de-
formation at moderate temperature (25°C) [6], low-tem-
perature ductility [7], etc. In addition to providing different
aforementioned properties, it is observed that the use of SB
and SBS significantly affects the adhesive properties of as-
phalt [7]. However, the effectiveness of the improved
properties, including the adhesive properties, changes
gradually over the service life. *ere could be different
factors that affect the desired properties of PMA, and oxi-
dation of asphalt is one of them. Oxidation can alter the
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constituents, as well as the adhesion of the asphalt that
subsequently erodes the viscoelastic properties and results in
asphalt pavement failure [8, 9]. *erefore, it is imperative to
have an explanatory insight to predict the adhesive property
of the oxidized PMA.

In addition to the use of polymer, the increased traffic,
the desired improved properties of the asphalt pavement,
and the rapid development of nanotechnology have led the
researchers to focus on introducing nanomaterials for as-
phalt modification. Nanomaterials are described as having at
least one dimension within 1–100 nm. *e properties of
nanosized particles differ from those of traditional materials
because of the increased ratio of surface to volume and
nanometer-sized plates [10]. It was also observed that
nanomaterials showed high sensitivity to temperature, high
ductility, high surface area, high tension resistance, low
electrical resistance, etc. [11–15]. Because of these favourable
properties, a large number of nanomaterials have been used
for asphalt modification, and carbon nanotube (CNT) is one
of them. *e CNT was found to improve the tracking re-
sistance and thermal cracking [16, 17]. It can significantly
improve the rheological and adhesive properties of asphalt,
and the increase in the content of CNTs results in highly
viscous and elastic coefficient values regardless of the type of
binder [18–20]. However, it is observed that the presence of
nanomaterials (or filler materials) affects the adhesive
properties of asphalt [21]. In addition to this, the oxidation
can also affect the adhesive properties of CNT-modified
asphalt (CMA) [22]. *erefore, it is also important to vi-
sualize and predict the changes in adhesive properties of
oxidized CMA.

Based on the above discussion, it is revealed that the
adhesive properties play a significant role for oxidized as-
phalt regardless of the type of modified asphalt (PMA/
CMA). However, none of the previous studies attempted to
predict the adhesive properties of oxidized asphalt to the best
of authors’ knowledge. Some of the studies that addressed
the adhesive properties of the PMA [23–25] or CMA [26, 27]
considered the effect of moisture rather than oxidization. In
this regard, this study predicted the adhesive properties of
oxidized asphalt (modified by polymers and CNTs) using a
predictive modelling and machine learning technique, i.e.,
the classification and regression tree (CART). *e model
addresses the adhesive properties of modified asphalt sim-
ulating the real field oxidation and chemistry of asphalt at a
nanoscale.

2. Research Approach

*e flow chart describing the analysis steps involved in this
study can be seen in Figure 1. It can be seen from the figure
that the PMA will be modified using two different types of
CNTs (each one comprises three different percentages).
Once the PMA is modified by a CNT (named PCA), the
samples are divided into two groups, such as fresh and
oxidized. *e adhesive properties of each sample are ana-
lysed using five different tips of AFM. *e parameters
(percentage and type of CNT, functional group, polymer
type, etc.) that affect the behaviour of asphalt have been used

to predict adhesive properties using the CART and were
compared with the regression model. Further details can be
observed in the following sections.

3. Materials and Procedure

*e base asphalt collected from a local distributor was
evaluated in the laboratory, and its properties are given in
Table 1. *e base asphalt was modified using 4% and 5% of
SB and SBS following the usual practice in the industry [28].
Each polymer-modified asphalt was further modified using
two different types of CNTs. *e CNT is a one-atom thick
graphite plate made into a seamless, one-nanometer di-
ameter hollow cylinder. *e synthesis and characterization
of the helical microtubules of the fibre are performed on a
molecular scale of the structures. *e CNTexists in the form
of coaxial tubes (multiwalled CNTs) and single tubes (single-
walled CNTs). Young’s modulus of a CNT, depending on the
radius of the tube, can be up to 1,000GPa, and the tensile
strength can be up to 150GPa [29].

3.1. AFM Testing Description. Atomic force microscopy
(AFM) can be a very important and suitable tool to assess the
nanomechanical properties of asphalt such as contact force,
friction, and van der Waals force. Several studies attempted
to study different properties of asphalt using the AFM
[30–33]. *e AFM has also been used to evaluate different
nanomechanical properties including adhesion and co-
hesion of asphalt binders [34]. Some of the studies observed
the changes in adhesion of asphalt due to the presence of SBS
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Figure 1: Flow chart of the analysis steps.
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[35], antistripping agents [36], CNTs [37], etc. In any AFM
testing setup, the outer surface of the asphalt binder is simply
probed with a sharp and tiny tip. *e tip is positioned at the
end of the cantilever. *e existing attractive/repulsive force
between the tip and sample makes the cantilever to deflect or
bend. A photosensitive position detector (PSPD) with a
built-in laser beam reflection system measures the bending
of the cantilever. *e deflection of the cantilever is then
multiplied with its spring constant to find the acting at-
tractive/repulsive force between the tip and sample surface
according to the following equation:

F � − cd, (1)

where F, c, and d are the force, spring constant, and vertical
displacement, respectively. A simplified schematic diagram
of AFM is shown in Figures 2(a), and 2(b) presents the
diagram of the AFM machine used in this study. All the
experiments are conducted in a clean room to be safe from
different pollutants in the air (like chemical vapours, aerosol,
dust, and airborne microbes).

3.1.1. Tip Functionalization. In this study, the original AFM
tips were made of a silicon nitrite (-Si3N4) material which
was later on modified with ammine (-NH3), hydroxy (-OH),
methyl (-CH3), and carboxyl (-COOH) functional groups. It
was carried out by probing an asphalt film surface modified
with polymers with a functionalized AFM tip that facilitates
the measurement of the intermolecular forces between two
asphalt molecules.

*e tip functionalization procedure follows a precise
deposition of a thin, monolayer film on the tip. *e im-
mersion of the AFM tip was carried out using chlorosilane
solution or organic thiol [38].

3.2. Sample Preparation. *e fresh asphalt sample was
heated inside a laboratory container at a temperature of
around 164°C. After 30–45minutes of duration, the asphalt
binder was mixed with the polymer fraction chosen, as well
as the CNT. *e mixed samples modified with the CNTand
polymer are called dry conditioned samples. *e samples
were placed on a glass substrate having a dimension of
approximately 10mm× 10mm× 1mm. *e dry samples
were placed inside a draft oven with an elevated temperature
of 60°C for seven days that simulates the anticipated aging in
the field condition.

4. Classification and Regression Tree
(CART) Analysis

*e multiple regression model and the classification and
regression tree (CART) approaches were used to understand

the effect of different variables on the adhesion force of
asphalt. *e use of regression models requires an assump-
tion regarding the underlying distribution of the data, and it
is a parametric method. On the contrary, the nonparametric
technique like artificial neural networks (ANNs) has also
been used that lacks the explanatory capability. *e CART is
a nonparametric technique that can be used to include
variable(s) at more than one stage of the tree. *erefore,
complex interdependencies can also be uncovered among
the variables. *e CART has successfully handled the
complex nonlinearity between the predictors and response
with its adaptive interpretation skills [39]. It can handle the
multicollinearity problems of the data more appropriately
compared to the regression models. In addition to this, the
CART analysis provides a model that can be interpreted
through logical statements to understand the effect of dif-
ferent variables on the target variable that is often not found
in other data mining tools [40].*e application of the CART
was successfully used not only to understand and predict
consumers’ behaviour but also in the road safety research
(i.e., car seat belt use). It was also used in different sectors of
pavement engineering, such as evaluation of the field ser-
viceability of pothole patches [41], factors influencing per-
meability of the rigid pavement [42], and roughness of the
asphalt pavement [43], field prediction of maintenance
probability, and selection of certain maintenance ap-
proaches following the existing condition [44, 45]. However,
the studies in which predictive models are used for pre-
dicting adhesion force of asphalt were found to be very few,
and the use of the CART technique has not been found in
these studies. *erefore, this technique has been applied for
predictive modelling of oxidized asphalt for the first time.
*e details of the variables used in the model are presented
in Table 2.

5. Results and Discussion

*e CART analysis incorporated 240 samples where one
hundred sixty samples were used for training and eighty
samples were used for testing. Table 3 presents the accuracies
for training and test samples in CART analysis.

*e accuracy was calculated via the coefficient of cor-
relation, root mean square error (RMSE), and mean absolute
percentage error (MAPE) for samples used for the training
and testing of the model. *ese values were calculated by
using the actual/target values from the lab test and model
predictions. It can be observed from the table that the co-
efficient of correlation (CC) was reasonable for training as
well as test samples.*e error was approximately 27% (mean
absolute percentage error (MAPE)) for the test samples
which amounts to 53 kN (root mean square error (RMSE))
in terms of adhesion force. *e accuracy measures of the
CARTwere found to be acceptable for training as well as test
samples. However, there was no drastic change in the error
values which indicates that the model did not overfit the
training samples. Different artificial intelligence (AI) tech-
niques, such as multilayer perceptions (MLPs), support
vector machines (SVMs), and adaptive network fuzzy in-
ference systems (ANFISs), have been used for predicting

Table 1: Asphalt properties.

Properties Values
Specific gravity 1.02
Viscosity (centipoise) 500
Performance grade 66-22
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adhesion force for asphalt [46]. However, for pavement
design, these techniques cannot explain the relationship
between the variables considered in the study, which makes
the use of the proposed model in decision-making difficult.
*is gap can be fulfilled by the CART which explains the
relationships between variables.

*e CART presented in Figure 3 highlights the fol-
lowing points.*e most important parameter was found to
be the tip type, i.e., NH3, which is at the top of the tree. *e
use of NH3 in the tip increases the adhesion force of as-
phalt. Hence, AFM tests need to be designed properly
before using their results for mix design. *e highest
adhesion force was found when the NH3 tip was used and
SBS5 was used as the binder as this node has the highest
mean adhesion force. *e SBS5 binder was also found to
increase the adhesion force when used with other tip types
except CH3. *erefore, it could be said that having dual
styrene bonds increases the adhesion force of asphalt
which can be attributed to a higher degree of internal
bonding for the additive. Nodes for fresh samples were

found to have a higher adhesion force as expected. *e
lowest mean adhesion force was observed for aged samples
when the tip was made of OH.*e CNTtype was not found
to have any effect on the adhesion force. However, it may
have impact on other properties of asphalt such as elas-
ticity, viscosity, and density. Hence, further research is
required with regard to this modification in asphalt. *e
CART model provides the mean adhesion force for each
combination of variables, and hence, it can be directly used
to develop guidelines for mix design of asphalt and design
of AFM experiments for asphalt. Equation (2) represents
the regression model developed for this study. It was
developed by using the method of ordinary least squares.
*e coefficients were checked for their statistical signifi-
cance, and the variables with statistically insignificant
coefficients were omitted. *e accuracy of this model is
given in Table 4.

AF � 188.52 − 48.28 Si3N4(  + 68.96 NH3( 

− 81.6(OH) − 63.16 CH3( .
(2)

*e following point was observed while comparing the
regression model with the CART: the accuracy of the CART
model (Table 3) is higher for training and test samples than
that of the regression model (Table 4).

*e tip type NH3 was found to have the highest
positive impact, and OH had the highest negative impact
on the regression model (see equation (2)). Similar

Table 2: Variables used in the model.

Variable Explanation
Fresh Binary variable: 1 for fresh samples or otherwise 0

Si3N4, NH3, OH, CH3
Binary variables for tip type: 1 for a specific tip type or

otherwise 0. Tip type is 0 for COOH

SB4, SB5, SBS4, SBS5 Binary variables for binder type: 1 for a specific binder
type or otherwise 0

CNT% % of carbon nanotubes

SWNT (or CNT) Binary variable for CNT type: 1 for SWNT type and 0
for MWNT type

Table 3: Accuracy measures of the CART.

Accuracy measure Training sample Test sample
CC 0.77 0.64
RMSE 46.10 53.02
MAPE 23.42% 26.82%

Photosensitive position
detector (PSPD)

Very tiny AFM tip

Test sample

X, Y, Z
piezo stage

Source of laser ray

Cantilever (AFM)

(a) (b)

Figure 2: (a) Schematic of AFM. (b) AFM machine used in this study.
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observations can also be observed from the CART. *e
correlation of the tip type, binder type, and freshness of
the samples and their combined impact on adhesion force
are not captured by the regression model but were clearly
shown in the CART.

6. Conclusions and Recommendations

*is study investigated the aging behaviour of asphalts
modified with SB, SBS, and CNTs. *e aging behaviour is
measured by evaluating the changes in adhesive properties
of modified asphalt (SB, SBS, and CNTs) at the nanoscale.
*e test results were predicted by using classification and
regression tree (CART) analysis including different

parameters that affect the aging behaviour of modified as-
phalts. CART results were compared with the regression
model results. *e main findings from this study can be
summarized as follows:

(1) *e CART analysis shows more explanatory re-
lationships, at different levels of the tree, between
different variables that affect the behaviour of oxi-
dized asphalt.

(2) *e CART results were found to be more accurate
(with higher CC and lower MAPE and RMSE values)
than those of the regression model. It could be due to
consideration of the interaction effect in the CART
model that differs significantly from the usual re-
gression techniques [47].

(3) *e functional group -NH3 was the most important
parameter for the tip type. *e use of -NH3 in the tip
increases the adhesion force of asphalt. Hence, this
effect should be considered when designing the AFM
experiments for asphalt adhesion to avoid any bi-
asness of the results due to the type of tip.

Overall data
N = 160

mean = 167.17
St. deviation =

84.50

Others
N = 122

mean = 139.04
St. deviation =

59.57

NH3 = 1
N = 38

mean = 257.48
St. deviation =

89.31

SBS5 = 1
N = 11

mean = 338.45
St. deviation =

29.93

Others
N = 27

mean = 224.49
St. deviation =

84.28

Others
N = 14

mean = 257.02
St. deviation =

63.03

Fresh = 1
N = 13
mean =
189.46

St. deviation
= 90.03

Fresh = 1
N = 17

mean = 117.43
St. deviation =

18.54

OH = 1
N = 33

mean = 106.92
St. deviation =

25.81

Others
N = 89

mean = 150.95
St. deviation =

63.97

Others
N = 30
mean =
125.36

St. deviation
= 24.01

Others
N = 16

mean = 95.74
St. deviation =

27.69

CH3 = 0
N = 59

mean = 163.97
St. deviation =

73.34

Others
N = 29

mean = 188.52
St. deviation =

82.78 Fresh = 1
N = 16
mean =
161.05

St. deviation
= 62.33
Others
N = 14
mean =
116.44

St. deviation =
22.66

CNT > 0.75
N = 15

mean = 214.14
St. deviation =

95.21

CNT% ≤ 0.75
N = 14

mean = 161.06
St. deviation = 55.00

Others
N = 23
mean =
118.90

St. deviation
= 23.26

SBS5 = 1
N = 7

mean =
146.56

St. deviation
= 10.31

Si3N4 = 1
N = 30

mean = 140.23
St. deviation =

52.98

Figure 3: CART for predicting asphalt adhesion force.

Table 4: Accuracy measures of the linear regression model.

Accuracy measure Training sample Test sample
CC 0.67 0.64
RMSE 44.81 62.52
MAPE 24.29% 32.95%
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(4) *e highest adhesion force was found when the
-NH3 tip was used with the SBS5 binder as this node
has the highest mean adhesion force, whereas the
lowest mean adhesion force was observed for aged
samples when the tip was made of -OH.

(5) *eCNTtype was not found to have any effect on the
adhesion force.

(6) In addition to this, scrutinizing the relation between
the nanoscale adhesion and different macrostruc-
tural changes can provide a rigorous conclusion for
hot mix asphalt (HMA).
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