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Abstract. Endometrial cancer (EC) is one of the most 
common gynecological cancer types worldwide. However, 
to the best of our knowledge, its underlying mechanisms 
remain unknown. The current study downloaded three mRNA 
and microRNA (miRNA) datasets of EC and normal tissue 
samples, GSE17025, GSE63678 and GSE35794, from the 
Gene Expression Omnibus to identify differentially expressed 
genes (DEGs) and miRNAs (DEMs) in EC tumor tissues. 
The DEGs and DEMs were then validated using data from 
The Cancer Genome Atlas and subjected to gene ontology 
and Kyoto Encyclopedia of Genes and Genomes pathway 
analysis. STRING and Cytoscape were used to construct a 
protein‑protein interaction network and the prognostic effects 
of the hub genes were analyzed. Finally, miRecords was used 
to predict DEM targets and an miRNA‑gene network was 
constructed. A total of 160 DEGs were identified, of which 51 
genes were highly expressed and 100 DEGs were discovered 
from the PPI network. Three overlapping genes between the 
DEGs and the DEM targets, BIRC5, CENPF and HJURP, were 
associated with significantly worse overall survival of patients 
with EC. A number of DEGs were enriched in cell cycle, 
human T‑lymphotropic virus infection and cancer‑associated 
pathways. A total of 20 DEMs and 29 miRNA gene pairs were 
identified. In conclusion, the identified DEGs, DEMs and path-
ways in EC may provide new insights into understanding the 
underlying molecular mechanisms that facilitate EC tumori-
genesis and progression.

Introduction

Endometrial carcinoma (EC) is one of the most common 
gynecological cancer types, with increasing global incidence 
in recent years (1). A total of 60,050 cases of EC and 10,470 
EC‑associated cases of mortality were reported in the USA in 
2016 (1), which was markedly higher than the 2012 statistics 
of 47,130 cases and 8,010 mortalities (2). Although numerous 
studies have been conducted to investigate the mechanisms of 
endometrial tumorigenesis and development, to the best of our 
knowledge, the exact etiology remains unknown. Understanding 
the potential molecular mechanisms underlying EC initiation 
and progression is of great clinical significance. Previously, 
microarray technologies and bioinformatics have widely been 
used for the differential expression analysis of cancer and healthy 
cells to identify novel diagnostic and therapeutic biomarkers (3).

MicroRNAs (miRNAs) are small, noncoding RNAs that 
regulate the expression of critical genes involved in cancer 
progression and treatment (4). They bind to the 3'‑untranslated 
region (3'‑UTR) of target mRNAs (5), resulting in either degrada-
tion or inhibition of the expression and function of protein‑coding 
mRNAs. miRNAs regulate several functions in cancer cells, 
including proliferation, apoptosis, metastasis, immune evasion 
and differentiation  (6). In addition, several miRNAs serve 
critical roles in EC pathogenesis (7,8) and are associated with 
clinicopathological features and survival  (9). However, the 
specific mechanisms associated with miRNA‑mediated regula-
tion in EC require further investigation.

The current study evaluated the potential molecular mecha-
nisms and biomarkers of EC using a bioinformatics approach. 
Microarray expression data were downloaded from the Gene 
Expression Omnibus (GEO) database and The Cancer Genome 
Atlas (TCGA). Differentially expressed genes (DEGs) and 
miRNAs (DEMs) in the EC samples compared with normal 
samples were identified using the GEO2R program and R 
software. The DEGs were subjected to functional and pathway 
enrichment analysis, followed by protein‑protein interaction 
(PPI) network and survival analysis. A putative miRNA‑mRNA 
network relevant to EC pathogenesis was then constructed.

Materials and methods

Microarray expression data. The two gene expression 
datasets, GSE17025  (10) and GSE63678  (11), the miRNA 

Identification of key pathways and genes in endometrial 
cancer using bioinformatics analyses

YAN LIU,  TENG HUA,  SHUQI CHI  and  HONGBO WANG

Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 
Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China

Received March 16, 2018;  Accepted October 12, 2018

DOI:  10.3892/ol.2018.9667

Correspondence to: Professor Hongbo Wang, Department of 
Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 
Huazhong University of Science and Technology, 1277 Jiefang 
Avenue, Wuhan, Hubei 430022, P.R. China
E‑mail: surgeonliuyan@163.com

Key words: endometrial cancer, bioinformatics analyses, 
differentially expressed genes, gene ontology, Kyoto Encyclopedia 
of Genes and Genomes enrichment analysis



LIU et al:  IDENTIFICATION OF KEY PATHWAYS AND GENES IN ENDOMETRIAL CANCER898

expression dataset, GSE35794, and the DNA methylation 
profile, GSE40032, were downloaded from the GEO database 
(www.ncbi.nlm.nih.gov/geo). The GSE17025 dataset included 
data of 91 EC tissue samples, of which 79 were endometrioid and 
12 were papillary serous, and 12 were atrophic endometrium 
samples from postmenopausal women. The tissue samples 
were analyzed on the GPL570 Platform Affymetrix Human 
Genome U133 Plus 2.0 (Affymetrix; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA)  (10). The GSE63678 dataset 
included data from seven EC tissues and five normal endo-
metrium samples, and was analyzed on the GPL571 Platform 
Affymetrix Human Genome U133A 2.0 Array (Affymetrix; 
Thermo Fisher Scientific, Inc.) (11). The GSE35794 dataset 
included data from 18 EC samples and four normal samples, 
and was analyzed on the GPL10850 Agilent‑021827 Human 
miRNA Microarray V3 (Agilent Technologies, Palo Alto, CA, 
USA). The GSE40032 dataset included data of 64 EC tissue 
samples and 23 normal endometrium samples, which was 
detected using the Illumina HumanMethylation27 BeadChip 
(HumanMethylation27_270596_v.1.2) on GPL8490 (Illumina, 
Inc., San Diego, CA, USA).

The RNA‑seq ht seq‑count data of mRNA, miRNA‑seq and 
clinical data (project ID. TCGA‑UCEC) of patients diagnosed 
with uterine corpus endometrial carcinoma were downloaded 
from TCGA (www.cancergenome.nih.gov) using the shengxin.
ren download tool (http://www.shengxin.ren). Data of 552 EC 
samples and 23 normal endometrium samples were included.

Identification of DEGs and DEMs. DEGs, DEMs and differen-
tially methylated genes (DMGs) in the GSE17025, GSE35794 
and GSE40032 datasets were identified using the GEO2R 
program of the GEO (www.ncbi.nlm.nih.gov/geo/geo2r/). 
The screening threshold of DEGs and DEMs was adjusted to 
P<0.05 and |log2 fold‑change (FC)|>1. DMGs were identified 
with the thresholds of P<0.05 and |t|>2, where t is the ratio 
of the difference of the estimated value of a parameter from 
its hypothesized value to its standard error. For the dataset 
GSE63678, the original CEL files of the Affymetrix platform 
were background corrected, normalized and log2 transformed 
using the Robust Multi‑array Average (RMA) (12) method and 
the affy package in R software (version 3.4.0; www.r‑project.
org). The Limma package (version 3.34.9) (13) was subse-
quently used for the calculation of aberrantly expressed 
mRNAs and the Benjamini‑Hochberg (BH) method (14) was 
used to identify DEGs with the threshold criterion of P<0.05 
and absolute log2FC >1. The mRNA expression data of TCGA 
were calculated using Bioconductor package edgeR (version 
3.20.9) (15) and were analyzed using the same strategy as used 
for the Affymetrix data analysis. The miRNA expression data 
of TCGA were analyzed using a Student's t‑test in GraphPad 
Prism (version 6; GraphPad Software, Inc., La Jolla, CA, USA).

Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis. GO and 
KEGG pathway enrichment analysis were performed to deter-
mine the biological significance of DEGs, using the Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID; version 6.8; https://david.ncifcrf.gov/). The BH and 
Bonferroni methods were used for GO and pathway enrich-
ment analysis.

PPI network and modular analysis. PPI networks are mathe-
matical representations of physically interacting proteins (16). 
The STRING database (version 10.5; www.string‑db.org) was 
used to establish the PPI network of DEGs and Cytoscape 
version 3.5 (17) was used to visualize the results. A confidence 
score ≥0.7 was set as the cut‑off criterion. Molecular Complex 
Detection (MCODE) was used to filter modules of the PPI 
network with a node score cut‑off value of 0.2, degree cut‑off 
value of 2, k‑core of 2 and maximum depth of 100 (18).

Prediction of miRNA targets. The miRecords database (19) 
was used to predict the target genes of the DEMs. miRecords 
is a comprehensive database created using 11 established 
miRNA target prediction programs: MirTarget2, miTarget, 
MicroInspector, RNA22, PITA, miRanda, DIANA‑microT, 
NBmiRTar, RNAhybrid, PicTar and TargetScan. Genes that 
were predicted by at least four programs were selected as the 
candidate targets of miRNAs.

Construction of the miRNA‑target gene regulatory network. 
Overlaps between DEGs and DEM targets were selected and 
the association between overlapping genes and DEMs was 
validated using Pearson's correlation analysis in starBase 
(version 2.0; http://starbase.sysu.edu.cn/). The miRNA‑gene 
regulatory network was constructed based on the overlapping 
genes and their upstream miRNAs, which were then visual-
ized by Cytoscape software.

DEG survival analysis. OncoLnc (www.oncolnc.org) is a tool 
used for studying survival correlations by comparing clinical 
data with expression profiles of mRNAs, miRNAs and long 
non‑coding RNAs (lncRNAs)  (20). The overall survival 
(OS) rate of patients with EC relative to different DEGs was 
calculated using Kaplan‑Meier analysis in OncoLnc. The asso-
ciations between gene expression and clinical characteristics 
were analyzed using one‑way ANOVA and a Bonferroni's 
multiple comparisons test in GraphPad Prism software.

Results

Identifying DEGs and DEMs. Gene expression profiles of 
EC and normal endometrium tissue datasets GSE17025 and 
GSE63678 were downloaded from GEO and normalized using 
the RMA method. The Limma package was used to analyze 
and compare the transcriptional data between EC samples and 
normal samples. Using P<0.05 and absolute log2FC >1 as the 
cut‑off criteria, 214 aberrantly expressed mRNAs were identi-
fied in EC (Fig. 1). A total of 205 identical DEGs were filtered 
from the two datasets, consisting of 131 upregulated and 74 
downregulated genes that were similarly aberrantly expressed 
in the two datasets.

The TCGA RNA‑seq data from 552 EC samples and 23 
normal samples were normalized and corrected using the 
quantile normalization method and volcano plot analysis 
was performed using R software. A total of 7,562 aberrantly 
expressed mRNAs were obtained, of which 2,871 and 4,681 
were upregulated and downregulated, respectively (Fig. 2). 
Finally, 160 aberrantly expressed genes, including 111 upregu-
lated and 49 downregulated genes, were identified in EC 
samples from both the GEO and TCGA databases. The top 
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ten DEGs identified between EC and normal tissue data from 
TCGA are presented in Table I.

For the dataset GSE40032, a total of 2,151 hypermethyl-
ated genes and 1,173 hypomethylated genes were identified 
using the cut‑off criteria P<0.05 and |t|>2. Subsequently, hypo-
methylation‑high expression genes were obtained by 
overlapping hypomethylated and upregulated DEGs, and 
hypermethylation‑low expression genes were obtained by over-
lapping hypermethylated and downregulated DEGs. A total 

of 12 hypomethylation‑high expression genes (ESPL1, KIF14, 
KRT8, TYMS, SFN, TRIP13, S100A11, TK1, ASPM, CDCA3, 
CDCP1 and FUT2) and 15 hypermethylation‑low expression 
genes (NAALAD2, RUNX1T1, TRPC4, TSPYL5, GPM6A, 
TCEAL2, ENPEP, ZFP2, PEG3, EFS, ST8SIA1, MAGEH1, 
CDO1, GSPT2 and FGF2) were obtained.

GO and KEGG pathway enrichment analysis of DEGs in 
EC. GO and KEGG enrichment analysis of the DEGs were 
conducted using DAVID. The DEGs were most highly enriched 
in biological processes associated with cell division, mitotic 
nuclear division and cell proliferation (Table II). According to 
KEGG pathway enrichment analysis, the DEGs were predomi-
nantly associated with cell cycle, human T‑lymphotropic virus 
(HTLV‑I) infection and pathways in cancer (Table III).

PPI network construction and modular analysis reveal critical 
candidate genes and pathways. STRING and Cytoscape soft-
ware were used to screen 100 of the 160 DEGs into a PPI network 
complex, which contained 3,140 edges and 100 nodes (Fig. 3A). 
The remaining 60 DEGs did not fit into the PPI network. Of the 

Table I. Top 10 differentially expressed genes in endometrial 
cancer compared with normal tissue according to data from 
The Cancer Genome Atlas.

A, Upregulated genes

DEG	 logFC	 P‑value

SFN	 5.967256	 1.35x10‑25

UBE2C	 5.549047	 7.32x10‑51

CDC20	 5.063798	 1.02x10‑51

HJURP	 5.004414	 1.18x10‑60

CENPA	 4.997543	 7.26x10‑51

BIRC5	 4.996426	 2.41x10‑45

MELK	 4.883253	 6.08x10‑56

RRM2	 4.797486	 6.62x10‑43

CDC45	 4.797066	 7.65x10‑57

TPX2	 4.748579	 1.44x10‑49

B, Downregulated genes

DEG	 logFC	 P‑value

BCHE	‑ 5.68360	 4.65x10‑93

PEG3	‑ 5.53075	 7.97x10‑115

BNC2	‑ 4.43921	 4.84x10‑105

KIAA1644	‑ 4.23679	 1.44x10‑74

HAND2‑AS1	‑ 3.59737	 1.32x10‑41

FGF2	‑ 3.52440	 1.21x10‑67

TRPC4	‑ 3.47055	 1.19x10‑60

TGFBR3	‑ 3.40246	 4.98x10‑72

AKT3	‑ 3.35874	 4.21x10‑95

SNCA	‑ 3.25712	 1.35x10‑56

DEG, differentially expressed gene; FC, fold‑change. 

Figure 1. Identification of DEGs from the two datasets. The overlap-
ping area corresponds to the commonly identified DEGs. P<0.05 and 
|log(fold‑change)|>1 indicated a statistically significant DEG. DEG, differ-
entially expressed gene.

Figure 2. Volcano plot of detectable genome‑wide mRNA profiles in 552 
endometrial cancer tissue samples and 23 normal tissue samples. Red 
and green plots represent aberrantly expressed mRNAs with P<0.05 and 
|log(FC)|>1. Red plots indicate upregulated genes, green plots indicate down-
regulated genes and black plots indicate normally expressed mRNAs. The 
x‑axis is the fold‑change value between the expression of circulating mRNAs 
in normal tissues and endometrial cancer tumors. The y‑axis is the ‑log10 of 
the FDR value for each mRNA, representing the strength of the association. 
FDR, false discovery rate; FC, fold change.



LIU et al:  IDENTIFICATION OF KEY PATHWAYS AND GENES IN ENDOMETRIAL CANCER900

100 nodes, 57 hub genes were identified with a cut‑off degree 
value of >30 and the top 10 genes with the most significant 
nodes were CDK1, CCNB1, CCNB2, TOP2A, CCNA2, CDC20, 
MAD2L1, BUB1B, NCAPG and CDCA8. According to the 
degree of importance, a significant module was selected from 
the PPI network complex for further analysis using MCODE. A 
total of 51 DEGs, including 51 nodes and 2,392 edges, were then 
selected as hub genes from the module (Fig. 3B).

Integrated network analysis of miRNA‑mRNA interaction. A 
total of 35 DEMs were filtered from the GSE35794 dataset, 
of which 20, consisting of 14 upregulated and 6 downregu-
lated miRNAs, were validated in TCGA data. As presented 
in Table IV, the most significantly upregulated miRNA was 
hsa‑miR‑200b, while the most significantly downregulated 
miRNA was hsa‑miR‑503. Subsequently, the predicted 
targets of DEMs were obtained on the basis of the miRecords 

Table II. GO enrichment analysis of differentially expressed genes in endometrial cancer.

Term	 Description	 Count	 P‑value	 FDR

GO:0051301	 Cell division	 33	 9.46131x10‑24	 1.53x10‑20

GO:0007067	 Mitotic nuclear division	 23	 3.07185x10‑16	 5.32907x10‑13

GO:0005829	 Cytosol	 69	 1.14723x10‑13	 1.46927x10‑10

GO:0030496	 Midbody	 16	 2.8856x10‑13	 3.69671x10‑10

GO:0007062	 Sister chromatid cohesion	 15	 2.92563x10‑13	 4.71811x10‑10

GO:0005634	 Nucleus	 87	 1.79532x10‑11	 2.30007x10‑8

GO:0000070	 Mitotic sister	 9	 2.71519x10‑11	 4.379x10‑8

	 chromatid segregation			 
GO:0000775	 Chromosome, centromeric	 11	 4.53211x10‑11	 5.80631x10‑8

	 region
GO:0000777	 Condensed chromosome	 12	 1.89383x10‑10	 2.42628x10‑7

	 kinetochore			 
GO:0000776	 Kinetochore	 11	 1.65624x10‑9	 2.12189x10‑6

GO:0000086	 G2/M transition of	 13	 2.80607x10‑9	 4.52556x10‑6

	 mitotic cell cycle			 
GO:0005654	 Nucleoplasm	 54	 3.75741x10‑9	 4.81381x10‑6

GO:0005515	 Protein binding	 113	 9.52955x10‑9	 1.2931x10‑5

GO:0008283	 Cell proliferation	 18	 2.22925x10‑8	 3.59528x10‑5

GO:0000922	 Spindle pole	 11	 3.06811x10‑8	 3.9307x10‑5

GO:0000083	 Regulation of transcription	 7	 3.62732x10‑8	 5.85005x10‑5

	 involved in G1/S transition			 
	 of mitotic cell cycle			 
GO:0005737	 Cytoplasm	 77	 6.06599x10‑8	 7.77145x10‑5

GO:0005876	 Spindle microtubule	 8	 8.27121x10‑8	 0.000105967
GO:0005819	 Spindle	 11	 8.34624x10‑8	 0.000106928
GO:0007059	 Chromosome segregation	 9	 1.35128x10‑7	 0.00021793
GO:0015630	 Microtubule cytoskeleton	 11	 2.69353x10‑7	 0.000345081
GO:0000082	 G1/S transition of	 10	 2.70795x10‑7	 0.00043673
	 mitotic cell cycle
GO:0008017	 Microtubule binding	 13	 3.46922x10‑7	 0.000470751
GO:0031145	 Anaphase‑promoting	 9	 4.39782x10‑7	 0.000709267
	 complex‑dependent			 
	 catabolic process			 
GO:0007080	 Mitotic metaphase	 7	 7.55172x10‑7	 0.001217916
	 plate congression			 
GO:0005524	 ATP binding	 34	 7.5564x10‑7	 0.001025353
GO:0005874	 Microtubule	 14	 2.64534x10‑6	 0.003389028
GO:0005813	 Centrosome	 16	 3.66421x10‑6	 0.004694296
GO:0000281	 Mitotic cytokinesis	 6	 4.8143x10‑6	 0.007764095
GO:0005871	 Kinesin complex	 7	 5.67045x10‑6	 0.007264447

GO, gene ontology; FDR, false discovery rate; ATP, adenosine 5'‑triphosphate. 
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database. Since an inverse association was observed between 
miRNA expression and that of its target mRNA, DEMs with 
target genes identified as DEGs were selected for network 
analysis. A total of 29 pairs of DEMs and DEGs with an 
inverse association of expression met this criterion, including 
14 DEMs and 14 overlapping genes (Fig.  4, Table  V). 
Hsa‑miR‑203, hsa‑miR‑429, hsa‑miR‑200a, hsa‑miR‑200c 
and hsa‑miR‑141 exhibited the highest degrees (degree ≥3) in 
the network (Table VI).

Survival analysis. The prognostic effects of the 51 hub genes 
in the PPI network were evaluated in OncoLnc. The OS of 
patients with EC was analyzed depending on low and high 
expression of each hub gene. TOP2A, CDCA8, AURKA, TTK, 
ASPM, CENPA, DLGAP5, RRM2, TPX2, KIF2C, UBE2C, 
CDC45, HMMR, FOXM1, KIF4A, TRIP13, SPAG5, MCM4, 
MKI67 and ESPL1 were significantly associated with worse 
OS (data not shown). The high mRNA expression levels of 
BIRC5, CENPF and HJURP were associated with worse OS 
of patients with EC (Fig. 5). In addition, BIRC5, CENPF and 

HJURP were identified as target genes of the DEMs (Table V). 
Furthermore, the BIRC5 expression level was significantly 
associated with tumor grade (P<0.01), while CENPF and 
HJURP expression levels were significantly associated with 
high tumor grade and recurrence (P<0.05; Fig. 6).

Discussion

The incidence of EC and EC‑associated mortality rate have 
been increasing in recent years despite improvements in 
surgical and chemo‑therapies (1). Therefore, it is important 
to elucidate the potential mechanisms of EC tumorigenesis 
and development, and identify the key pathogenic factors to 
improve prognosis and clinical outcome.

The current study integrated two microarray expression 
profiles from GEO with TCGA data and identified 160 DEGs 
between the normal and tumor samples, including 111 upregu-
lated and 49 downregulated genes. As per the GO and KEGG 
enrichment analysis, most of the DEGs were predicted to be 
associated with cell cycle, HTLV‑I infection and pathways 

Table III. Signaling pathway enrichment analysis of differentially expressed genes in endometrial cancer.
 
ID	 Term	 Count	 P‑value	 FDR

hsa04110	 Cell cycle	 17	 7.65415x10‑14	 9.04832x10‑11

hsa04115	 p53 signaling pathway	 7	 6.26158x10‑5	 0.074039093
hsa04914	 Progesterone‑mediated oocyte	 7	 0.000268953	 0.317664885
	 maturation			 
hsa05166	 HTLV‑I infection	 9	 0.004891749	 5.635320021
hsa04114	 Oocyte meiosis	 6	 0.005389396	 6.192004384
hsa01200	 Carbon metabolism	 6	 0.006271196	 7.171038253
hsa05161	 Hepatitis B	 6	 0.017244392	 18.59650509
hsa03460	 Fanconi anemia pathway	 4	 0.017517104	 18.86329792
hsa05200	 Pathways in cancer	 10	 0.020108452	 21.35875474
hsa01130	 Biosynthesis of antibiotics	 7	 0.022606828	 23.69795919
hsa00010	 Glycolysis/Gluconeogenesis	 4	 0.032322528	 32.20200981
hsa01230	 Biosynthesis of amino acids	 4	 0.041557594	 39.47199877

HTLV‑1, human T‑lymphotropic virus; FDR, false discovery rate. 

Figure 3. DEG PPI network and modular analysis. (A) Using the STRING online database, a total of 100 DEGs were filtered into the PPI network. The highlighted 
circle area is the most significant module. (B) The module consists of 51 nodes and 2,393 edges. DEG, differentially expressed gene; PPI, protein‑protein interaction.
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in cancer. Following construction of the PPI network, 51 hub 
genes were identified. Similarly, 20 DEMs were identified from 
the GEO and TCGA databases. After integrating the target 
genes of these DEMs with the DEGs, 14 overlapping genes 
were identified, of which three hub genes (BIRC5, CENPF, 
HJURP) were associated with poor prognosis and aggressive 
grade of patients with EC.

The results of KEGG pathway analysis are noteworthy as 
several studies have previously demonstrated the involvement 
of the cell cycle in the development of EC (21,22). HTLV‑1 
has been identified to cause specific T cell leukemias and 
lymphoma  (23). HTLV‑1 infection is also associated with 
other diseases, including neuroinflammatory disease  (24), 
dermatitis  (25) and uveitis  (26). In some populations, the 
development of aggressive cervical carcinomas is associated 
with high HTLV‑1 seroprevalence (27). In addition, certain 
cancer types have been associated with HTLV‑1‑hematologic 
malignancies (28), including adenocarcinoma of the thyroid 
or stomach and squamous cell carcinoma of the larynx, lip 
or lung. Notably, one previous study revealed the occurrence 
of endometrial adenocarcinoma in a rabbit inoculated with 
HTLV‑1 (29). These findings are consistent with the current 
study, indicating an important role of the HTLV‑1 infection 
pathway in EC.

miRNAs are a group of endogenous non‑coding RNA 
molecules that can repress gene expression by targeting the 
3'‑UTR of mRNAs. Recent studies have reported that miRNA 
dysregulation may serve important roles in cancer develop-
ment (30,31). In the current study, 20 DEMs were identified 
in EC compared with normal tissues, including hsa‑miR‑203, 
hsa‑miR‑429, has‑miR‑200a, hsa‑miR‑200c and hsa‑miR‑141. 
Several studies have suggested that hsa‑miR‑203 not only 

functions as an oncogene, but also as a tumor suppressor. It is 
downregulated in several tumors, including non‑small‑cell lung 
cancer, gastric mucosa‑associated lymphoid tissue lymphoma 
and myeloma, and can inhibit G protein signaling 17, as well 
as the oncogene, B‑cell‑specific Moloney murine leukemia 
virus insertion site‑1 (32‑34). As an oncogene, hsa‑miR‑203 
is overexpressed in ovarian cancer tissues where it promotes 
glycolysis (35). One study has reported frequent hypermeth-
ylation of miR‑203 in EC (36), however the expression of 
miR‑203 was upregulated in the current study, consistent with 
the findings of Benati et al (37). miRNAs are regulated by 
multiple mechanisms including epigenetic, transcriptional, 
post‑transcriptional and degradation regulation (38). Although 
it is reported that miR‑203 hypermethylation is associated 
with EC, to the best of our knowledge, no studies have investi-
gated the association between miR‑203 hypermethylation and 
its expression level. The pathways of miR‑203 upregulation in 
EC may be due to other mechanisms, which requires further 
investigation.

Hsa‑miR‑429 has been revealed to act as a tumor suppressor 
in renal cell carcinoma, gastric cancer and glioblastoma, by 
inhibiting cell proliferation, invasion and metastasis (39‑41). 
However, hsa‑miR‑429 was upregulated in the current 
study, implying that it may function as an oncogene in EC. 
Hsa‑miR‑141 downregulates transmembrane‑4‑L‑six‑family‑1 
to inhibit pancreatic cancer cell invasion and migration 
and is widely considered as a potential candidate for the 
post‑transcriptional regulation of phospholipase A2 receptor 
1 expression in mammary cancer cells (42,43). One study has 
demonstrated that hsa‑miR‑141 upregulation is important for 
EC growth (44). Based on the aforementioned findings, the 
current study hypothesizes that hsa‑miR‑203, hsa‑miR‑141 
and hsa‑miR‑429 serve important roles in EC via different 
pathways.

Survival analysis of the overlapping DEGs and the target 
genes of the DEMs revealed that BIRC5, CENPF and HJURP 
were associated with poor prognosis of patients with EC. 
BIRC5 encodes survivin, which can regulate p21 expres-
sion in HeLa cells  (45) and may be regulated by certain 
miRNAs  (45,46). Chuwa  et  al  (47) reported that a high 

Table IV. Top five differentially expressed miRNAs in endo-
metrial cancer compared with normal tissue.

A, Upregulated

miRNA	 P‑value	 logFC

hsa‑miR‑200b	 0.000101	 7.633409
hsa‑miR‑205	 0.001261	 7.413916
hsa‑miR‑200a	 0.000101	 7.382017
hsa‑miR‑141	 0.000143	 7.254374
hsa‑miR‑200c	 0.000143	 7.108838

B, Downregulated

miRNA	 P‑value	 logFC

hsa‑miR‑503	 0.027533	‑ 3.923641
hsa‑miR‑876‑3p	 0.047710	‑ 3.048536
hsa‑miR‑144	 0.043335	‑ 2.710278
has‑miR‑133a	 0.000100	‑ 2.596223
has‑miR‑154	 0.000100	‑ 2.588022

miRNA or miR, microRNA; FC, fold‑change. 

Figure 4. The miRNA‑gene regulatory network in endometrial cancer. An 
ellipse represents a gene and a rhombus represents an miRNA. Red nodes 
represent upregulated genes and miRNAs, and green nodes represent down-
regulated genes and miRNAs in endometrial cancer. miRNA, micro‑RNA. 
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expression level of BIRC5 is associated with poor prognosis 
of EC, while Li et al (48) demonstrated that low expression 
levels of CENPF are associated with better overall survival of 
patients with bladder cancer. HJURP encodes holiday junction 
recognition protein, a centromeric histone chaperone involved 
in de novo histone H3 variant CenH3 recruitment and may 
regulate proliferation and apoptosis in bladder cancer cells 
by dysregulating the cell cycle and reactive oxygen species 
metabolism via the peroxisome proliferator‑activated receptor 
γ‑sirtuin 1 feedback loop (49). Hu et al (50) identified that the 
overexpression of HJURP predicts a poor prognosis of hepa-
tocellular carcinoma.

In conclusion, the current study identified 160 DEGs 
and 20 DEMs in EC, and 14 DEGs were identified as target 
genes of the DEMs. Network analysis indicated a co‑regu-
latory association between hsa‑miR‑203, hsa‑miR‑429 and 
hsa‑miR‑141, as well as the corresponding target mRNAs. 
These findings may improve understanding of the patho-
genesis and the potential molecular mechanisms involved 
in EC, and assist with the identification of novel diagnostic 
and therapeutic biomarkers. However, the current study has 

Table V. Correlation between differentially expressed miRNAs and target genes. 

miRNA	 Expression	 Target gene	 Expression	 r	 P‑value

hsa‑miR‑96	 Up	 MITF	 Down	‑ 0.66790	 3.77x10‑22

hsa‑miR‑449a	 Up	 SNCA	 Down	‑ 0.26599	 0.00064878
hsa‑miR‑429	 Up	 PDS5B	 Down	‑ 0.48758	 5.39x10‑11

hsa‑miR‑429	 Up	 MITF	 Down	‑ 0.55316	 2.76x10‑14

hsa‑miR‑203	 Up	 SPARC	 Down	‑ 0.39811	 1.70x10‑7

hsa‑miR‑203	 Up	 PDS5B	 Down	‑ 0.43891	 5.75x10‑9

hsa‑miR‑203	 Up	 FGF2	 Down	‑ 0.42727	 1.58x10‑8

hsa‑miR‑200c	 Up	 PDS5B	 Down	‑ 0.52345	 1.05x10‑12

hsa‑miR‑200c	 Up	 MITF	 Down	‑ 0.61052	 8.09x10‑18

hsa‑miR‑200c	 Up	 GPM6A	 Down	‑ 0.61152	 6.92x10‑18

hsa‑miR‑200b	 Up	 PDS5B	 Down	‑ 0.46714	 4.19x10‑10

hsa‑miR‑200b	 Up	 GPM6A	 Down	‑ 0.64805	 1.51x10‑20

hsa‑miR‑200a	 Up	 STAT5B	 Down	‑ 0.61687	 2.96x10‑18

hsa‑miR‑200a	 Up	 SPAG9	 Down	‑ 0.45047	 2.02x10‑9

hsa‑miR‑200a	 Up	 PDS5B	 Down	‑ 0.46840	 3.71x10‑10

hsa‑miR‑200a	 Up	 C1orf21	 Down	‑ 0.43953	 5.44x10‑9

hsa‑miR‑182	 Up	 MITF	 Down	‑ 0.69192	 2.90x10‑24

hsa‑miR‑182	 Up	 FOXN3	 Down	‑ 0.60518	 1.85x10‑17

hsa‑miR‑141	 Up	 STAT5B	 Down	‑ 0.66087	 1.44x10‑21

hsa‑miR‑141	 Up	 SPAG9	 Down	‑ 0.47761	 1.49x10‑10

hsa‑miR‑141	 Up	 PDS5B	 Down	‑ 0.51944	 1.66x10‑12

hsa‑miR‑141	 Up	 FOXN3	 Down	‑ 0.58257	 5.20x10‑16

hsa‑miR‑141	 Up	 C1orf21	 Down	‑ 0.42973	 1.28x10‑8

hsa‑miR‑135b	 Up	 FOXN3	 Down	‑ 0.64504	 2.59x10‑20

hsa‑miR‑429	 Up	 GPM6A	 Down	‑ 0.66256	 1.05x10‑21

hsa‑miR‑136	 Down	 BIRC5	 Up	‑ 0.16483	 3.67x10‑2

hsa‑miR‑133a	 Down	 CENPF	 Up	‑ 0.39548	 2.08x10‑7

hsa‑miR‑144	 Down	 BNC2	 Up	‑ 0.19293	 0.0142069
has‑miR‑154	 Down	 HJURP	 Up	‑ 0.16526	 0.0361743

miRNA or miR, microRNA.

Table VI. Node‑degree analysis of miRNA‑mRNA interac-
tions.

Node	 Degree

hsa‑miR‑141	 5
hsa‑miR‑200a	 4
hsa‑miR‑200c	 3
hsa‑miR‑203	 3
hsa‑miR‑429	 3
hsa‑miR‑200b	 2
hsa‑miR‑182	 2
hsa‑miR‑96	 1
hsa‑miR‑449a	 1
hsa‑miR‑144	 1
hsa‑miR‑135b	 1
hsa‑miR‑136	 1
hsa‑miR‑133a	 1

miRNA or miR, microRNA.
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limitations. The regulation of DEGs is complicated and the 
current study has only investigated the regulators of DEGs 
at the post‑transcriptional level (miRNA) and the epigen-
etic level (DNA methylation). Additional studies should 

be performed to identify the putative regulators of DEGs. 
For example, future studies may construct a transcription 
factor‑mRNA network to identify regulators at the transcrip-
tional level.

Figure 5. Kaplan‑Meier curves for patients with endometrial cancer. The prognostic values of (A) BIRC5, (B) TOP2A, (C) CENPF and (D) HJURP were 
obtained by Kaplan‑Meier analysis. These data were all from The Cancer Genome Atlas.

Figure 6. Associations between the expression levels of BIRC5, CENPF and HJURP, and clinical characteristics, including tumor grade and recurrence. 
(A and B) The association of BIRC5 expression level with tumor grade and recurrence. (C and D) The association of CENPF expression level with tumor grade 
and recurrence. (E and F) The association of HJURP expression level with tumor grade and recurrence. Data are presented as mean ± the standard error of the 
mean. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ns, not significant. 
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