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Abstract: Assessment of genetic variability in heat-tolerant tomato germplasm is a pre-requisite
to improve yield and fruit quality under heat stress. We assessed the population structure and
diversity in a panel of three Solanum pimpinellifolium (wild tomatoes) and 42 S. lycopersicum (cultivated
tomatoes) lines and accessions with varying heat tolerance levels. The DArTseq marker was used for
the sequencing and 5270 informative single nucleotide polymorphism (SNP) markers were retained
for the genomic analysis. The germplasm was evaluated under two heat stress environments for
five yield and flower related traits. The phenotypic evaluation revealed moderate broad-sense
heritabilities for fruit weight per plant and high broad-sense heritabilities for fruit weight, number
of inflorescences per plant, and number of flowers per inflorescence. The hierarchical clustering
based on identity by state dissimilarity matrix and UPGMA grouped the germplasm into three
clusters. The cluster analysis based on heat-tolerance traits separated the germplasm collection into
five clusters. The correlation between the phenotypic and genomic-based distance matrices was
low (r = 0.2, p < 0.05). The joint phenotypic and genomic-based clustering grouped the germplasm
collection into five clusters well defined for their response to heat stress ranging from highly sensitive
to highly tolerant groups. The heat-sensitive and heat-tolerant clusters of S. lycopersicum lines were
differentiated by a specific pattern of minor allele frequency distribution on chromosome 11. The
joint phenotypic and genomic analysis revealed important diversity within the germplasm collection.
This study provides the basis for efficient selection of parental lines to breed heat-tolerant varieties.

Keywords: genetic variability; heat tolerance; heritability; SNP markers; tomatoes

1. Introduction

Tomato is one of the major vegetables grown and consumed worldwide [1]. However,
tomato production faces several biotic (pests and diseases attack) and abiotic (salinity, heat
and drought) constraints [2]. Heat stress is one of the major abiotic stresses limiting tomato
production in tropical and sub-tropical regions [3]. Heat stress negatively affects vegetative
fresh shoot weight, photosynthetic apparatus, reproductive-related traits including pollen
viability, pollen tube growth, and subsequently fruit set, fruit weight, number of fruits, and
yield [4–6].

Predictions from different climatic scenarios and models agree that the earth’s tem-
peratures are rising [7], which is a major concern for crop production in general, and
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tomato production in particular [3]. In the tropical and sub-tropical areas where tomato
is almost exclusively produced outdoors, by 2100 projected increased temperatures will
exacerbate the seasonality of tomato production and decrease favorable tomato production
areas [3]. Similarly, a reduction of suitable areas for tomato production was projected to
occur worldwide by 2050 [8]. Thus, the importance of improving heat tolerance in crop va-
rieties to adapt to existing and predicted rising temperatures has been receiving increasing
attention [9–11]. There have been efforts in improving heat tolerance in tomatoes. However,
a narrow genetic base has limited breeding for heat tolerance in cultivated tomato [12].
This is partly due to the limited screening of available germplasm for heat tolerance [6].
The success of both conventional and molecular breeding methods depends on genetic
variability for the traits of interest. Diversity assessment in cultivated and wild relative
crop species provides a foundation for conservation strategies and for breeding program
establishment [13].

Tomato diversity and performance under heat stress has been extensively assessed us-
ing a variety of tools: Phenotypic traits [14–19], biochemical markers [18], high throughput
molecular markers [17,19,20]. These studies have provided insight into the existing diver-
sity in the cultivated tomatoes and wild relatives and revealed that genetic diversity within
each germplasm collection is unique. In addition, none of these studies systematically
combined phenotypic and molecular markers in assessing the diversity of their germplasm
collection. A joint phenotypic and molecular analysis combines the grouping of germplasm
based on traits of importance and the power of single nucleotide polymorphism (SNP)
markers (abundant in the genome, independent from growing conditions), which improves
the reliability of diversity assessment in a germplasm collection [21,22]. Improving the
exploitation of genetic resources for heat tolerance breeding in tomatoes requires a system-
atic assessment of germplasm collections using a combination of phenotypic and genomic
tools [6].

Here, we assembled a germplasm of heat-tolerant and sensitive lines from various
genebanks and breeding programs worldwide to initiate a breeding program to improve
heat tolerance in tomatoes along with other agronomically important and consumer-
preferred traits. This germplasm collection has already been comprehensively character-
ized using a combination of quantitative and qualitative traits under a semi-controlled
environment [23]. However, our knowledge of the genomic diversity in this germplasm
is limited. Assessment of genetic diversity in this unique germplasm is a requirement
to select parental lines for breeding hybrids adapted to heat stress. Heritability of the
heat-tolerance traits and their association under heat stress in tomatoes are not congruent
across studies [6]. Knowledge of available diversity, heritability, and association among
traits are important to make informed decisions regarding the choice of breeding strategy.
The findings of our study will guide other researchers on the choice of parental lines to
accelerate genetic gain under heat stress while maintaining a sufficient amount of diversity
for sustainable use of the tomato plant genetic resources. This present study aimed to
(i) assess the variability and relatedness in the germplasm panel based on genomic and
phenotypic traits, and (ii) assess the correlation among the phenotypic traits and their
broad-sense heritabilities.

2. Materials and Methods
2.1. Plant Material

The germplasm collection consisted of 45 lines (improved and unimproved lines,
accessions, and wild relatives) (Table 1), from the Tomato Genetics Resource Center (TGRC)
of the University of California (Davis), the World Vegetable Center (Taiwan), University of
Florida, the Crop Research Institute (Ghana), and commercial and local varieties collected
in Ghana and Benin. Three of the 45 lines were Solanum pimpinellifolium accessions obtained
from the TGRC. The lines were selected based on their response to heat stress in previous
studies [6,23].
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Table 1. Origins of accessions/lines evaluated.

Lines/Accessions Species Heat Tolerance Status Sources of Accessions/Lines

Fla.7770 S. lycopersicum Sensitive University of Florida
Fla.7771 S. lycopersicum Sensitive University of Florida
Fla.7171 S. lycopersicum Sensitive University of Florida
Fla.8044 S. lycopersicum Sensitive University of Florida
Fla.7236 S. lycopersicum Sensitive University of Florida
Fla.8249 S. lycopersicum Sensitive University of Florida
Fla.7776 S. lycopersicum Sensitive University of Florida

LA2661 (Nagcarlang) S. lycopersicum Tolerant TGRC, UC Davis
LA3317 (Campbell 28) S. lycopersicum Tolerant TGRC, UC Davis

LA2662 (Saladette) S. lycopersicum Tolerant TGRC, UC Davis
LA3120 (Malintka 101) S. lycopersicum Tolerant TGRC, UC Davis

LA1563 S. lycopersicum Sensitive TGRC, UC Davis
LA2375 (San Marzano) S. lycopersicum Tolerant TGRC, UC Davis

LA3320 (Hotset) S. lycopersicum Sensitive TGRC, UC Davis
LA0657 (Beaverlodge) S. lycopersicum Tolerant TGRC, UC Davis

LA3847 (NCHS-1) S. lycopersicum Sensitive TGRC, UC Davis
LA1580 S. pimpinellifolium Sensitive TGRC, UC Davis
LA2854 S. pimpinellifolium Sensitive TGRC, UC Davis
LA1478 S. pimpinellifolium Sensitive TGRC, UC Davis

U006-1 S. lycopersicum Sensitive Off-type isolated from LA1563
during seed multiplication

CLN3212C S. lycopersicum Tolerant WorldVeg
CLN1621L S. lycopersicum Tolerant WorldVeg
CLN3125L S. lycopersicum Tolerant WorldVeg
CLN3241Q S. lycopersicum Tolerant WorldVeg
CLN3078C S. lycopersicum Tolerant WorldVeg
CLN3682C S. lycopersicum Tolerant WorldVeg
CLN3024A S. lycopersicum Tolerant WorldVeg

CL5915-93D4-1-0-3 S. lycopersicum Tolerant WorldVeg
CLN2366B S. lycopersicum Tolerant WorldVeg
CLN2498D S. lycopersicum Tolerant WorldVeg
CLN2026D S. lycopersicum Tolerant WorldVeg
CLN3736D S. lycopersicum Sensitive WorldVeg

TA11-2 S. lycopersicum Tolerant
Off-type isolated from

CLN2498D during seed
multiplication

BJ01 S. lycopersicum Tolerant Benin
BJ02 S. lycopersicum Tolerant Benin

ATS020 S. lycopersicum Tolerant Ghana
P082 S. lycopersicum Sensitive Ghana
P005 S. lycopersicum Sensitive Ghana
P068 S. lycopersicum Sensitive Ghana

WACI1 S. lycopersicum Tolerant Ghana
Tropimech S. lycopersicum Sensitive Commercial OPV variety
Pectomech S. lycopersicum Sensitive Commercial OPV variety

Siberia S. lycopersicum Unknown* WorldVeg
Tstar-29-4-3-12-6-11-4 S. lycopersicum Unknown* WorldVeg

CLN4220F5-186 S. lycopersicum Unknown* WorldVeg

* The reaction to heat stress of this line is unknown under the target environments.

2.2. Phenotypic Evaluation

The germplasm was evaluated under long-term mild heat stress in greenhouse (Oc-
tober 2019 to February 2020 in Legon, Ghana) and in open field (March to June 2020 in
Ze, Benin) conditions (Table 2). The experiments were set up in a randomized complete
block design with two replications at each location. The number of plants per plot was on
average five with a spacing of 60 × 60 cm. Six heat tolerance-related traits were collected
to assess the diversity of the germplasm.
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Table 2. Ranges of temperatures and relative humidities during the tomato evaluation.

Locations Range of Night
Temperatures (◦C)

Range of Daytime
Temperatures (◦C)

Range of Night
Relative Humidity (%)

Range of Day
Relative Humidity (%)

Legon (greenhouse) 24.83–27.78 27.19–33.30 92.80–100.00 65.95–89.86
Ze (open field) 25.3–32.00 27.60–33.70 53.50–95.50 42.00–82.00

Six to nine inflorescences per plot were randomly selected and tagged at the flowering
stage. The number of flowers (NFl) and number of fruits (NFr) were counted to estimate
the percentage of fruit setting (FS = NFr/NFl) × 100.

The number of fruits and fruit weight per plot were recorded and added up at each
fruit picking until termination of the experiment. The average number of fruits per plant
(NFP) and fruit weight per plant (FWP) were computed by dividing the total number of
fruits and the total fruit weight per plot by the number of plants per plot.

Average fruit weight (FW) was computed by dividing the total fruit weight per plot
by the total number of fruits per plot. The association among the traits was assessed using
the Pearson method in R 4.0.2 (Foundation for Statistical Computing: Vienna, Austria) [24]
and visualized using a correlogram in the corrplot package [25]. The variance components
were estimated using a linear model in lmerTest package [26].

The linear mixed model is represented as follows in Equation (1):

yijk = u + Gi + Ej + GEij + R(E)jk + εijk, (1)

where yijk is the kth observation for the ith genotype in the jth environment, u is the overall

mean, Gi is the effect of ith genotype, Ej is the effect of jth environment, R(E)jk is the effect

of the kth replication within the jth environment, GEij is the effect of the interaction of the
ith genotype and jth environment, and εijk is the residual effect.

The broad sense heritability (H) was computed on a line mean basis for each trait
using the variance components following Equation (2) [27,28]:

H2 =
σ2

g

σ2
g +

σ2
ge
e + σ2

e
re

, (2)

where σ2
g is the genotypic variance, σ2

ge is the variance of genotype by environment
interaction, σ2

e is the residual or environmental variance, and r and e are the number of
replications within the environment and the number of environments, respectively.

Prior to the clustering of the germplasm based on the six traits, we computed the
cophenetic coefficient of correlation using a combination of two distance matrices (Eu-
clidean and Mahalanobis) and two clustering algorithms (ward.D2 and UPGMA). The
combination of Euclidean distance and UPGMA yielded the highest cophenetic coefficient
of correlation (0.918) and was used for the clustering in the package dendextend [29].

2.3. Genotyping of the Germplasm Collection

Young leaves were collected into a 96-deep well sample collection plate and sent
for genotyping at the Integrated Genotyping Service and Support (IGSS) platform at
Biosciences Eastern and Central Africa (BecA-ILRI) Hub in Nairobi, Kenya. DNA was
extracted using the Nucleomag Plant Genomic DNA extraction kit. DNA quality and
quantity were checked by electrophoresis on 0.8% agarose gel. We implemented the Diver-
sity Arrays Technology protocol for genome complexity reduction, which encompasses
digestion of genomic DNA and adapters ligation according to Kilian et al. [30]. The targets
were pooled to prepare the library, which was purified using the QIAGEN PCR purification
kit. Cluster generation was carried out in cBOT (Illumina, San Diego, CA, USA). The Illu-
mina HiSeq 2500 was used for sequencing. Single-read sequencing runs for 77 bases were
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performed to sequence libraries. Polymorphism identification and calling, and generation
of quality control parameters for selection of polymorphic markers were performed in
the secondary pipeline in the KDCompute plug-in platform using DArTSoft14 (Diversity
Arrays Technology, Canberra, ACT, Australia). The genomic representation of the sample
and the generated SNP markers were aligned to the tomato reference genome SL4.0. The
analysis herein was based on the SNP markers.

2.4. SNP Filtering Summary

A total of 14,142 DArT SNP markers were generated through DArTSoft14 (Diversity
Arrays Technology, Canberra, Australia). After removing SNP which were not mapped to
any chromosome, with call rates lower than 80%, missing values higher than 20%, minor
allele frequencies lower than 1%, and duplicated physical positions, 5270 SNP markers
were retained for the analysis. The lines Fla.7776 (missing value higher than 40%) and
LA2854 (heterozygosity higher than 5%) were removed and 43 accessions were used for
the genomic analyses.

2.5. Genetic Population Structure Analysis

The variant call format (VCF) file generated from DArtSeqTM after quality control
was imputed using beagle4 version [31]. For high imputation accuracy, the number of
phasing iterations was set as 5 with the Identity by Descent (IBD) set as false and nthreads
set as default. The statistics summary including observed and expected heterozygosity,
minor allele frequency (MAF), and polymorphic information content (PIC) was estimated
using “hardy” and “freq” functions implemented in plink [32]. Mutation transversion and
transition were determined using SNiPlay3 [33]. The distribution of the SNPs and their
density on the 12 tomato chromosomes were assessed using customized perl script.

Two multivariate analyses, including admixture for population structure, and cluster
analysis with the UPGMA algorithm, were used to assess the genetic diversity. Prior to the
UPGMA clustering, the optimal number of clusters was estimated using the elbow method
in factoextra package [34]. The dendrogram was visualized in FigTree v1.4.4.

A binary file was generated from plink which was later subjected to Admixture
analysis using the adegenet package through the Bayesian information criterion (BIC) [35].
The optimal number of populations was inferred using k-means analysis after varying the
number of clusters from 2 to 40. The final admixture was plotted using the barplot function
implemented in R 4.0.2 [36]. A line was assigned to a model-based sub-population where
more than 80% of its inferred ancestry membership coefficient was derived from the given
sub-population [37].

An identity by state (IBS) dissimilarity matrix was generated in TASSEL 5.0 [38].
Prior to the clustering analysis, the best combination of the distance matrix and clustering
method was assessed by computing the cophenetic coefficients of correlation in R 4.0.2. The
combination of IBS and UPGMA yielded the highest cophenetic coefficient of correlation
(CCC = 0.992), compared to IBS and neighbor joining (CCC = 0.987), Euclidean distance
and UPGMA (CCC = 0.987), or Euclidean distance and NJ (CCC = 0.947). As a result, the
clustering was done using UPGMA. The optimal number of clusters was inferred using the
elbow technique in NbClust package [39].

2.6. Combined Phenotypic and Genomic Datasets

All the dendrograms were generated using 38 lines for which both phenotypic and ge-
nomic data were available. The correlation between phenotypic and genomic dissimilarity
matrices was assessed using the Mantel statistic based on the Spearman rank correlation
rho method and its significance was computed in the vegan package [40] with 10,000 Monte
Carlo permutations. A visual comparison between the phenotypic and genomic-based
dendrograms was done using the function tanglegram in package dendextend [29].

The dissimilarity matrices were combined the using analogue package [41]. Hier-
archical clustering was done on the combined dissimilarity matrix based on UPGMA
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using hclust function in R 4.0.2 [36]. The joint dendrogram was generated in the package
dendextend [29]. The pairwise fixation index [42] was generated to estimate the genetic
differentiation among the clusters inferred from the joint phenotypic and genomic-based
matrices using the genet.dist function in the hierfstat package [43]. Except when otherwise
specified, all the analyses were done in R 4.0.2 [36]. The clustering analyses (pheno-
typic, genomic, and combined phenotypic and genomic) were performed without cluster
size constraints.

The statistics summary including observed and expected heterozygosity, minor allele
frequency (MAF), and polymorphic information content (PIC) for each cluster were esti-
mated using “hardy” and “freq” functions implemented in plink [32]. The estimates of
MAF within each cluster were plotted across the genome (physical distances) to visualize
genetic variations between the different clusters (highly tolerant, moderately tolerant,
moderately susceptible, and highly susceptible) [44].

3. Results
3.1. Variance Components of the Heat Tolerance Traits and Heritability Estimate

The linear mixed model revealed that the residual and genotype by environment
interaction variances were much higher than the genotypic variance for fruit weight per
plant contrary to that of the other traits (Table 3). Fruit weight per plant recorded the lowest
broad sense heritability (H2 = 0.41), whereas the number of flowers per inflorescences had
the highest broad sense heritability value (H2 = 0.90). The fruit set percentage and number
of fruits per plant had moderate broad sense heritability.

Table 3. Estimated variance components for the traits across locations.

Table NIP NFI NFP FW FWP FS

σ2
g 41,176 3.39 684.48 716.10 50,747 118.23

σ2
ge 12,890 0.37 616.71 147.30 113,896 101.73
σ2

e 6,607 0.81 216.67 207.10 61,459 64.20
Broad sense heritability 0.84 0.90 0.65 0.85 0.41 0.64

NFP: Number of fruits per plant, FS: Fruit setting percentage, FWP: Fruit weight per plant, NFI: Number of
flowers per inflorescence, NIP: Number of inflorescences per plant, FW: Fruit weight. σ2

g: Genotypic variance;
σ2

ge: Genotype by environment interaction variance; σ2
e : Environmental variance.

3.2. Correlation Analysis Among the Quantitative Traits

Fruit weight per plant (FWP) was strongly and positively associated with number
of fruits per plant (NFP, r = 0.66) and fruit setting percentage (FS, r = 0.69) (Figure 1).
NFP was positively correlated with FS. Flower parameters (number of inflorescences per
plant and number of flowers per inflorescence) were positively correlated but both showed
non-significant associations with fruit yield components including average fruit weight
(FW), NFP, and FWP. FW was negatively associated with NFP.

3.3. Phenotypic Based-Clustering Analysis of the Tomato Lines

The phenotypic based-clustering analysis grouped the germplasm collection into
five clusters of unequal size (Figure 2). Cluster 1 is composed exclusively of the two
S. pimpinellifolium accessions with high sensitivity to heat stress. Cluster 2 is composed
of three S. lycopersicum lines that showed high levels of tolerance to heat stress (Table S1).
Cluster 3 grouped three of the large fruited (average fruit weight = 114.71 ± 10.36 g) im-
proved lines from the University of Florida with moderate sensitivity to heat stress. Cluster
4 had the highest membership (23 lines), with lines from diverse origins (WorldVeg, Uni-
versity of Florida, Ghana, TGRC). Accessions in this cluster showed low tolerance to heat
stress with an average fruit set percentage and fruit weight per plant of 13.82 ± 7.79%
and 347.09 ± 225.52 g/plant, respectively. Cluster 5 grouped moderately tolerant lines
with an average fruit set percentage and fruit weight per plant of 32.88 ± 9.89% and
564.58 ± 220.69 g/plant, respectively (Table S1).
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Figure 1. Correlations among the traits in a tomato germplasm collection assessed under heat stress.
NFP: Number of fruits per plant, FS: Fruit setting percentage, FWP: Fruit weight per plant, NFI:
Number of flowers per inflorescence, NIP: Number of inflorescences per plant, FW: Fruit weight. The
figure shows the Pearson correlation coefficients between selected traits. The color of the number
reflects the strength of the correlation. The non-significant correlations, with a p-value above 0.05, are
indicated with a cross in the individual cells.

Figure 2. Clustering of the tomato collection based on Euclidean distance and UPGMA using phenotypic traits. C1, C2, C3,
C4, and C4 denotes clusters 1, 2, 3, 4, and 5, respectively. Each color represents a cluster.
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3.4. Characteristics of the 5270 SNPs in the Germplasm Collection

The 5270 SNPs were distributed across the 12 tomato chromosomes (Figure 3). The
number of SNPs per chromosome varied from 318 (chromosomes 10 and 12) to 640 (chro-
mosome 1) with an average of 439 SNPs per chromosome. The SNP types analysis revealed
that transition mutations (CT and AG) were higher (3112; 59%) than transversion mutations
(2158; 41%) (Figure 3). AG transition was slightly higher than CT transition. Regarding
the transversion mutations, AT and AC occurred almost at the same rate but higher than
the occurrence rate of CG and GT. The MAF ranged from 0.01 to 0.49 with an average
of 0.073 (Table S2), while 0.107 was obtained for PIC (Table S2). The average observed
heterozygosity of the SNPs was 0.011, which was far lower than the average expected
heterozygosity of 0.125 (Table S2).

Figure 3. (a) Genome-wide single-nucleotide polymorphism (SNP) distributions and density of 5270 SNPs detected
by DArTseq on the 12 chromosomes; (b) types of 5270 SNPs mutations detected by DArTseq of 43 S. lycopersicum and
S. pimpinellifolium inbred lines and accessions on the 12 chromosomes.

3.5. Population Structure

The cross-validation (CV) error outputs from Admixture showed an elbow from k = 2
to k = 4, suggesting that there were four sub-populations in the germplasm collection
(Figure 4). Based on the cutoff point (0.80) of the ancestry membership coefficient, 39 lines
were assigned to one of the four sub-populations (Figure 5). Sub-population 2 had the
highest membership (36%) followed by sub-population 3 (33%), sub-population 1 (26%)
and sub-population 4 (5%) (Figure 5). All the improved lines (Fla.) from the University of
Florida were clustered in sub-population 1, with four lines from the TGRC. Sub-population
2 was composed of lines collected from Benin and Ghana, including the commercial
variety Tropimech. Some improved lines from the World Vegetable Center were also
found in this sub-population. Sub-population 3 consisted exclusively of improved lines
from the World Vegetable Center. Sub-population 4 was composed exclusively of the two
S. pimpinellifolium accessions LA1580 and LA1478 and showed no admixture with the
S. lycopersicum lines. Four admixed lines were detected between the S. lycopersicum
sub-populations. CLN024A and Pectomech were admixtures between sub-populations 1,
2, and 3, and LA3320, and LA2662 were admixtures between sub-populations 1 and 2.
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Figure 4. Variation of cross-validation (CV) error as a function of number of clusters.

Figure 5. Population structure in a tomato germplasm collection. Each entry’s genome is divided into colored segments
following the proportion of the estimated ancestry membership coefficient in the four subpopulations. Sub-populations SP1,
SP2, SP3, and SP4 are represented by red, yellow, magenta, and green, respectively.

3.6. Genetic Distances Among the Tomato Lines Based on the 5270 SNPs and Hierarchical
Clustering

The genetic distance was computed as 1 - IBS, with IBS defined as the probability that
alleles drawn at random from two individuals at the same locus are the same. To identify
duplicates in the germplasm, we intentionally included duplicated samples (Fla7171 and
Fla7171.D). We assumed that duplicate accessions in the germplasm collection would have
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distances equal to or lower than the genetic distance between Fla7171 and Fla7171.D, i.e.,
0.008. The pairwise distance between the accessions revealed that all the accessions in
the germplasm collection were unique since there was no pair with distance equal to or
lower than 0.008 (Table S3). The highest genetic distance values were observed between the
S. pimpinellifolium accessions and the S. lycopersicum accessions. LA1478 (S. pimpinellifolium)
and CLN3078C had the highest genetic distance (0.556). The distance between the two
S. pimpinellifolium accessions (LA1580 and LA1478) was 0.232. Among the cultivated
tomato, LA1563 and CLN3682C had the highest genetic distance (0.189) while LA3847
(NCHS-1) and U006-1, an off-type isolated from LA1563 (obtained from TGRC), had the
lowest genetic distance (0.01) (Table S3).

UPGMA clustered the lines/accessions into three groups (Figure 6). The two
S. pimpinellifolium accessions formed a cluster (Cluster 1), separated from the S. lycop-
ersicum lines. The S. lycopersicum lines were grouped into two clusters, of which one
(Cluster 2) was exclusively composed of improved lines from the World Vegetable Center
(Figure 6). Cluster 3 had the largest number of lines from various origins including the
TGRC, University of Florida, Ghana, Benin, and the World Vegetable Center. Within this
cluster, there were sub-groups, which were consistent with the pedigree information. For
instance, the “Fla.” lines from the University of Florida were clustered together similar
to the commercial varieties (Pectomech and Tropimech), and the lines (P005, P068, P082)
from the Crops Research Institute, Ghana were clustered together. Lines from the World
Vegetable Center had a relatively broad genetic base as they were distributed across two of
the three clusters, conversely to lines from the University of Florida and Crop Research
Institute, Ghana, which were only found in one cluster.

Figure 6. Clustering of the germplasm based on identity by state (IBS) dissimilarity matrix and
UPGMA of a tomato germplasm collection. Cluster 1, Cluster 2, and Cluster 3 are highlighted in
yellow, purple, and green, respectively.
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3.7. Combined Phenotypic and Genomic Clustering

The Mantel test revealed a low and significant correlation (r = 0.2, p < 0.05) between the
genomic- and phenotypic-based distance matrices (Table S4). However, there were three
common sub-trees, namely LA1478 and LA1580, LA3847 and U006-1, and Fla.7770, Fla.8044,
and Fla.7771, between the phenotypic and genomic-based dendrograms (Figure S1). Due
to the low correlation between the two dendrograms, the phenotypic- and genomic-based
distance matrices were combined for a joint clustering analysis. The clusters formed based
on the phenotypic and those from the genomic data were positively correlated with the
clusters formed based on the combination of phenotypic and genotypic data. However, the
correlation between the phenotypic-based distance matrix and the combined phenotypic
and genotypic distance matrix (r = 0.91, p < 0.001) was higher than that of the genomic-
based distance matrix and the combined phenotypic and genomic distance matrix (r = 0.54,
p < 0.001) (Table S4).

The joint clustering analysis grouped the germplasm collection into five clusters,
ranging from highly sensitive to highly tolerant groups (Figure 7). Cluster 1 was composed
of three highly heat-tolerant lines with the highest fruit set percentage (47.52 ± 5.21%),
fruit weight per plant, and number of fruits per plant (Table 3). Among the S. lycopersicum,
lines in Cluster 1 had the highest and the lowest number of inflorescences per plant and
individual fruit weight, respectively. Cluster 2 (moderately tolerant) grouped nine lines
from the World Vegetable Center, Ghana and TGRC and was characterized by a moderate
fruit set percentage (27.60 ± 13.37%), fruit weight per plant and number of fruits per plant.
Cluster 2 also had the highest number of flowers per inflorescence (Table 3). The highly
sensitive group (cluster 4, 16 lines) was composed of the Fla. lines from the University of
Florida, the three lines from Crop Research Institute, Ghana, the two commercial varieties,
and some accessions from the TGRC (Figure 7). This group had the highest fruit weight
(61.00 ± 30.56 g) but showed low performance for all the other traits (Table 4).

Figure 7. Clustering based on combined phenotypic and genomic distance matrices of a tomato germplasm collection. C
denotes Cluster.
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Table 4. Characteristics of the clusters formed based on combined genomic and phenotypic datasets.

Traits Cluster 1 (Highly
Tolerant)

Cluster 2
(Moderately

Tolerant)

Cluster 3
(Moderately

Sensitive)

Cluster 4
(Highly

Sensitive)

Cluster 5
(S. pimpinelli-
folium, Highly

Sensitive)

Number of
flowers per

inflorescence
6.00 ± 0.00 7.00 ± 1.00 5.00 ± 1.00 4.00 ± 1.00 11.00 ± 0.00

Fruit set
percentage (%) 47.52 ± 5.21 27.60 ± 13.37 20.17 ± 5.32 11.15 ± 6.39 1.78 ± 0.70

Phenotypic
parameters

Individual fruit
weight (g) 11.60 ± 1.82 27.13 ± 7.50 36.08 ± 12.84 61.00 ± 30.56 0.69 ± 0.36

Fruit weight
per plant (g) 1347.05 ± 275.92 537.11 ± 204.58 432.99 ± 224.39 300.13 ± 206.13 9.21 ± 0.14

Number of
inflorescences

per plant
121.00 ± 47.00 39.00 ± 19.00 36.00 ± 7.00 32.00 ± 8.00 921 ± 62

Number of
fruits per plant 114.00 ± 15.00 23.00 ± 15.00 14.00 ± 4.00 6.00 ± 4.00 15.00 ± 7.00

O.HET 0.01 0.01 0.01 0.01 0.04
Genotypic
parameters E.HET 0.04 0.06 0.08 0.06 0.14

MAF 0.03 0.04 0.06 0.04 0.13
PIC 0.03 0.05 0.07 0.05 0.11

O.HET: Observed heterozygosity, E.HET: Expected heterozygosity, MAF: Minor allele frequency, PIC: Polymorphism information.

Except for observed heterozygosity, Cluster 5 had the highest values for the genomic
parameters (MAF, PIC, and expected heterozygosity) followed by Clusters 3, 2, 4, and 1, in
this order (Table 4).

The plots of the MAF for the different clusters showed a different pattern of distri-
bution of MAF over the whole genome (Supplementary File S1). We observed specific
patterns on chromosomes 6, 9, and 11. Subsequently, the MAF distribution patterns of each
cluster on chromosomes 6, 9, and 11 were plotted (File S1). Cluster 3 showed a unique
pattern on chromosome 6 relative to the other clusters. Cluster 2 showed unique pattern on
chromosome 9. MAF distribution pattern on chromosome 11 distinguished heat-tolerant
lines (Clusters 1 and 2) from the heat-sensitive lines (Clusters 3 and 4).

3.8. Differentiation Among Populations

We computed the pairwise fixation index among the four sub-populations. The fixa-
tion index measured the decrease in heterozygosity due to subdivision within a population.
The high differentiation index between Cluster 5 was composed of the S. pimpinellifolium
lines and the four clusters formed by the S. lycopersicum lines. Clusters 4 and 5 and Clusters
1 and 2 had the highest (0.83) and the lowest (0.10) differentiation indices, respectively
(Table 5). Among the S. lycopersicum lines, Cluster 3, composed of eight of the WorldVeg
lines, had the highest differentiation indices with the other clusters.

Table 5. Pairwise Fst between populations suggested by Admixture.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 2 0.10
Cluster 3 0.41 0.26
Cluster 4 0.20 0.14 0.41
Cluster 5 0.74 0.79 0.75 0.83
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4. Discussion
4.1. SNP Quality

In this study, we assessed the diversity in a germplasm collection assembled to
improve heat tolerance in tomato using a combination of SNP markers and heat tolerance-
related traits.

The DArTseq genotyping revealed 5270 informative SNPs, which were unequally
distributed among and within chromosomes. Telomeric regions had higher SNP density
compared to peri-centromeric regions. Distal euchromatin regions (telomeric regions)
were more densely covered with genes and had higher recombination rates compared to
peri-centromeric heterochromatin regions [45] results that were similar to findings in pearl
millet [46].

4.2. Genetic Diversity in the Germplasm Collection

We assessed the level of genetic diversity in the germplasm collection through poly-
morphic information content (PIC), minor allele frequency (MAF), and the expected (He)
and observed heterozygosity (Ho). The average PIC (0.107) and expected heterozygosity
values (0.125) were in the range of those reported by Sim et al. [44] in different classes of
tomatoes using SNP markers.

The expected heterozygosity for the SNPs was higher than the observed heterozygos-
ity, confirming the high autogamous nature of cultivated tomato and including the two
S. pimpinellifolium accessions [47]. This high homozygosity implies that no further selfing
of the lines in the germplasm collection is needed before using them in genetic studies, for
hybrid or population development.

The genetic distance between the S. pimpinellifolium accessions and the S. lycopersicum
lines was higher than that of the intra-specific genetic distances, reinforcing the notion of
genetic divergence between the two species. This is consistent with the high differentiation
indices observed between the sub-population composed of the S. pimpinellifolium lines
and those of the S. lycopersicum lines. The genetic differentiation between the different
clusters could be due to the founder effect or human selection for diverse growing environ-
ments, production systems, and market preferences [44]. Clear differentiation based on
morphological markers and microsatellite markers between S. lycopersicum and S. pimpinel-
lifolium was previously reported [48]. Interestingly, S. pimpinellifolium is the closest wild
relative of the cultivated tomato and interspecific crossing is easy and resulting in fertile
offspring [48,49]. This offers an opportunity to transfer favorable alleles for heat-tolerance
traits like high pollen viability [16,23], or a high number of fruits per plant from S. pimpinel-
lifolium to S. lycopersicum. However, harnessing traits of interest from wild relative species
may be limited by linkage drag [50]. In this regard, development and evaluation of inbred
backcross lines can help identify and transfer valuable quantitative trait loci (QTL) from
non-adapted to elite lines, and increase the power to detect QTL with minor effects [50–52].

No duplicate lines were found in this collection and all were distinct. Considering the
diversity of heat-tolerant lines in the germplasm collection and their origins, assembling
representative lines from each of the clusters could form a mini-core collection for heat
tolerance breeding and research.

The grouping of the germplasm collection based on population structure analysis was
not consistent with their heat tolerance status. Sub-population 2 grouped both heat-tolerant
(e.g., LA2661, BJ01, ATS020) and heat-sensitive accessions (e.g., P005, P068, Tropimech) [23].
This finding was supported by the inconsistency between genomic-based and phenotypic-
based clustering. This is not surprising since SNP markers are neutral, suggesting that the
lines were not discriminated based on their response to given stress or specific agronomic
traits. Similar inconsistencies were reported in many other crops such as water yam [21],
chickpea [22], and sweet sorghum [53]. This highlights the importance of combining pheno-
typic and molecular information while selecting parental lines in breeding programs to take
into account their phenotypic performance and their genetic background. Phenotypic traits
have the advantage of revealing the performance of lines but have limited polymorphism
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and they are subjected to changes in environmental conditions. The phenotypic markers
are adaptive traits and subjected to natural and artificial selection conversely to molecular
markers [54]. On the other hand, SNP markers are highly diverse and polymorphic but
neutral. Harnessing the advantages of phenotypic and molecular markers improves the
grouping of lines in a germplasm collection [53], which provides valuable information for
the selection of parental lines to realize and sustain genetic gain. Furthermore, clustering
inbred lines is a first step in developing heterotic groups in a large germplasm collection
where testers are not readily available. Three to four representative lines could be selected
from each cluster formed by the S. lycopersicum lines and intercrossed. Subsequently, the
hybrids should be evaluated in several environments along with their parents to identify
promising crosses and group the lines to form heterotic groups based on specific and
general combining abilities [55].

Consistent with our previous evaluation [23], five clusters were formed based on
the phenotypic traits. The lines showed variable responses to heat stress ranging from
highly sensitive to highly tolerant. The genetic parameters assessed were higher in the
S. pimpinellifolium cluster. This is consistent with the previous finding by Sim et al. [44] who
reported higher expected heterozygosity and PIC in the S. pimpinellifolium sub-population
in comparison with cultivated tomato. Higher genetic diversity in S. pimpinellifolium com-
pared to S. lycopersicum was expected because the former can exhibit facultative outcrossing,
with wide geographical distribution in their native region [56]. The specific distribution
patterns observed for MAF on chromosomes 6, 9, and 11 suggest that these chromosomes
could be under diversifying selection relative to other regions of the genome [44]. The MAF
distribution on chromosome 11 distinguishes heat-tolerant clusters from heat-sensitive
ones. Interestingly, meta-quantitative traits’ loci were detected on chromosome 11 for style
length, style protrusion, and pollen viability, which are key heat-tolerance traits [6,57].

The joint genomic and phenotypic diversity assessment revealed relatively high ge-
netic variability in the germplasm collection, challenging the assumption of a narrow
genetic base of heat tolerance in tomato. The clustering based on the combination of
phenotypic and genomic dataset grouped the germplasm into well-defined clusters re-
garding their origins and their reaction to heat stress. LA2661 (Nagcarlang), a well-known
heat-tolerant was grouped with two accessions from Benin, BJ01 and BJ02, which were
previously reported as heat-tolerant [23]. These three lines are large indeterminates produc-
ing lots of inflorescences and setting many small fruits (less than 15 g). LA2662, LA3317,
CLN1621L, CL5915-93D-1-0-3, LA2662, and ATS020 in the group of moderate heat-tolerant
are known for their heat tolerance status [6,12,15]. The Fla. lines were previously reported
as heat-tolerant [58,59]; however, under both greenhouse [21] and field evaluation they
were sensitive to heat stress. This suggests that reaction to heat is sometimes environment-
specific, especially in regard to the intensity and duration of the heat [60] and other climatic
factors such as relative humidity [61]. The Fla. lines which have large fruit size under the
heat stress conditions could be more heat tolerant than other large-fruited lines. In fact,
a recent finding revealed that tomato traits associated with heat tolerance depend on the
fruit size [62].

The grouping of the germplasm collection into different clusters is a basis for the
development of multi-parental populations. Actually, development of multi-parental
populations by crossing lines from the different heat-tolerant groups will help decipher the
genetic basis of heat tolerance in tomato and provide better understanding of the molecular
basis of fruit weight under heat stress.

4.3. Broad Sense Heritability and Trait Associations

Moderate to high broad-sense heritabilities found for number of inflorescences per
plant, number of flowers per inflorescence, number of fruits per plant, fruit weight, and
fruit setting percentage implied that the lines had a consistent response to heat stress across
the environments (greenhouse and outdoor). Broad-sense heritability for the number of
flowers per inflorescence was consistent with previously reported values (0.712–0.86) [63].
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Similarly, the high broad-sense heritability recorded for fruit weight was consistent with
the reported value under permissive temperature conditions (0.97) [64]. The fruit setting
percentage, number of fruits per plant, and fruit weight per plant had low to moderate
broad-sense heritability, which was due to higher residual and genotype by environment
interaction variances compared to the genotypic variance. As a result, reliable selection can
be done for fruit weight and flowers related traits (number of inflorescences per plant and
number of flowers per inflorescence) under few testing environments.

The strong and positive associations between fruit weight per plant, fruit setting
percentage, and the number of fruits per plant, and the negative association between fruit
weight and the number of fruits per plant were consistent with previous findings [6]. This
suggests that the positive correlation among weight per plant, fruit setting percentage, and
the number of fruits per plant and the negative association between fruit weight and the
number of fruits per plant is underlined by genetic factors including the effects of linkage
disequilibrium between loci or pleiotropy.

5. Conclusions

This study reported significant genetic variability for heat tolerance traits in the tomato
germplasm collection. We observed moderate to high broad-sense heritabilities for the heat-
tolerance traits that will guide decision-making upon the number of locations required for
efficient and effective phenotyping and selection. Strong and significant associations exist
between heat-tolerance traits that could be exploited for indirect selection. We identified
varying levels of heat-tolerant lines from each of the clusters that are potential parental
lines for genetic analysis and line development. The clustering of the germplasm collection
offers an opportunity to develop heterotic groups for hybrid breeding to improve heat
tolerance in tomato.
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