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Abstract 

Neuroblastoma is a common pediatric cancer that affects thousands of infants 
worldwide, especially children under five years of age. Although recovery for patients 
with neuroblastoma is possible in 80% of cases, only 40% of those with high-risk stage 
four neuroblastoma survive. Electronic health records of patients with this disease con-
tain valuable data on patients that can be analyzed using computational intelligence 
and statistical software by biomedical informatics researchers. Unsupervised machine 
learning methods, in particular, can identify clinically significant subgroups of patients, 
which can lead to new therapies or medical treatments for future patients belong-
ing to the same subgroups. However, access to these datasets is often restricted, 
making it difficult to obtain them for independent research projects. In this study, 
we retrieved three open datasets containing data from patients diagnosed with neu-
roblastoma: the Genoa dataset and the Shanghai dataset from the Neuroblastoma 
Electronic Health Records Open Data Repository, and a dataset from the TARGET-NBL 
renowned program. We analyzed these datasets using several clustering techniques 
and measured the results with the DBCV (Density-Based Clustering Validation) index. 
Among these algorithms, DBSCAN (Density-Based Spatial Clustering of Applications 
with Noise) was the only one that produced meaningful results. We scrutinized the two 
clusters of patients’ profiles identified by DBSCAN in the three datasets and recognized 
several relevant clinical variables that clearly partitioned the patients into the two 
clusters that have clinical meaning in the neuroblastoma literature. Our results can 
have a significant impact on health informatics, because any computational analyst 
wishing to cluster small data of patients of a rare disease can choose to use DBSCAN 
and DBCV rather than utilizing more common methods such as k-Means and Silhou-
ette coefficient.
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Introduction
Neuroblastoma is a childhood cancer that affects approximately 6,000 infants and con-
tributes to 15% of cancer-related deaths in children worldwide. Neuroblastoma forms 
in the tissues of human nerves, is the most prevalent extracranial solid tumor in chil-
dren, and usually affects patients under five years old [1]. The survival rate for kids with 
high-risk neuroblastoma is only 40%, while it can reach 80% for low-risk neuroblastoma. 
Medical treatments for patients with neuroblastoma include surgery, chemotherapy, 
radiation therapy, and immunotherapy [1].

Scientific research can help medical doctors understand the development and pro-
gression of the disease and can be conducted in several ways. Bioinformatics and com-
putational biology research on genomics data, for example, can help unveil the genes 
most involved in neuroblastoma diagnosis and prognosis [2–7]. On the other hand, data 
derived from electronic health records (EHRs), collected after hospital laboratory exams 
(such as blood tests), can be an useful asset for computational analyses [8].

In the past, researchers applied computational statistics and machine learning to sev-
eral datasets of EHRs of patients with neuroblastoma.

Regarding machine learning, we performed a computational intelligence study on the 
data of Italian Registry of Peripheral Neuroblastoma (RINB) [9], where we applied a 
supervised machine learning approach to detect the most predictive clinical variables for 
the outcome of patients with neuroblastoma. In that case, however, the data could not be 
released publicly for privacy reasons.

Sometimes, fortunately, study authors are allowed to release EHRs data of patients 
with neuroblastoma openly online for free, without any restrictions. Barbara Banelli and 
colleagues [10] investigated the role of 17 genes of the Protocadherin B cluster (PCDHB) 
on a dataset of genomics and EHRs of 121 patients with stage-4 neuroblastoma. They 
applied computational statistical methods for a survival analysis on this dataset, by 
employing the SPSS proprietary software. SPSS is the programming language employed 
also by Yangyan Ma and coauthors [11] in their study, where they analyze a dataset of 
EHRs and genetics information to identify the most relevant prognostic factors for 169 
patients with stage-3 or stage-4 neuroblastoma.

Shunsuke Kimura et al. [12] analyzed a subset of data from the well-known TARGET-
NBL project [13, 14]. They used both genetics data and EHRs to perform a computa-
tional statistical analysis through the R open source programming language. The main 
outcomes of this study regard genomics and the roles of some genes (or gene clusters) 
over others.

All these three studies have a particular asset: their authors released their neuro-
blastoma dataset openly and for free, so that it could be analyzed by anyone else in the 
world, following the FAIR principles [15]. We cleaned the dataset of Barbara Banelli and 
colleagues [10] and the dataset of Yangyan Ma and coauthors [11], and we described 
them thorougly and released them in our Neuroblastoma Electronic Health Records 
Open Data Repository [16, 17], as dataBB2013 and dataYM2018 respectively.

Unsupervised machine learning methods, such as clustering, applied on data of EHRs 
can identify clinically significant groups of patients based on their medical features. 
These clusters, in turn, can be useful to identify significant subgroups of patients that 
need particular treatments or therapies.
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In the present study, we decided to apply several clustering algorithms to the Genoa data-
set of Barbara Banelli and colleagues [10], to the Shanghai open dataset of Yangyan Ma and 
coauthors [11], and to a subset of the TARGET-NBL stage-4 dataset of Shunsuke Kimura 
et al. [12]. Among the 94 patient profiles of that dataset, we removed three rows having 
unknown diagnostic category, and kept only the 93 rows with diagnostic category equal to 
neuroblastoma or nodular ganglioneuroblastoma, which is a variant of neuroblastoma sur-
rounded by ganglion cells. We describe in detail this dataset in “Datasets” section.

Other resources for EHRs data of patients diagnosed with pediatric neuroblastoma exist. 
The International Neuroblastoma Risk Group (INRG) has released and currently maintains 
the INRG Data Commons [18, 19], launched within the Pediatric Cancer Data Commons 
[20, 21], a global data collection initiative coordinated by University of Chicago (Chicago, 
Illinois, USA). The INRG Data Commons is a database of thousands of EHRs of patients 
with this oncological disease, but its access is restricted: researchers who want to analyze 
these data need to submit a proposal, that needs to be evaluated by an INRG committee 
who might approve it or not.

On the contrary, the Genoa, Shanghai, and TARGER-NBL datasets analyzed in this study 
are completely open, unrestricted, public, and can be be analyzed by anyone worldwide.

When high-quality health datasets are available, they can be analyzed using either super-
vised or unsupervised methods. Supervised approaches are employed when a gold standard 
piece of information is available, while unsupervised learning methods are used when there 
is no clear ground truth. Unsupervised problems are more complex but often more use-
ful for investigation in medical sciences. In fact, patients frequently arrive at the hospital 
without clear information regarding their prognosis, diagnosis, or condition. This context 
is more appropriately framed within an unsupervised framework rather than a supervised 
one. Cutting-edge biomedical research is unsupervised.

Clustering algorithms are unsupervised computational methods which can split data into 
significant groups, called clusters, that otherwise would probably be unnoticeable to human 
beings. The research question we investigate in this study concerns the efficacy of mod-
ern computational clustering methods: is there a clustering method capable of grouping 
patients from these three datasets into two clinically meaningful clusters? We tried eight 
different methods, and DBSCAN was the only technique that succeeded in this task.

We organize the rest of the article as follows. After this Introduction, we describe the 
TARGER-NBL dataset and we outline the Genoa and Shanghai datasets in “Datasets” 
section. We then briefly describe the clustering computational algorithms employed in 
“Methods” section and the study results in “Results” section. Finally, we outline a discus-
sion and the main conclusions of this work, including limitations and future develop-
ments, in “Discussion” and “Conclusions” sections. We represent all the steps of our study, 
both the manual ones and the computational ones, in Fig. 1.

Datasets
In this clustering study, we analyze three independent, open, deidentified datasets of 
electronic health records: the Genoa dataset [10], the Shanghai dataset [11], and the 
TARGET-NBL stage 4 dataset [12–14].

We initially conducted a dataset search, by looking for scientific articles on neu-
roblastoma electronic medical records which included a public dataset in their 
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supplementary information (Fig. 1). We found five public datasets which we cleaned 
and released in our repository [16, 17] online for free. Among these five datasets, 
three were too small for any computational analysis, and thus we discarded them: 
dataCK2018 with 20 patients [22], dataEV2013 with 19 patients [23], and data-
YBC2019 with 7 patients [24].

The only two datasets with a sufficient number of patients were dataBB2013 con-
taining data from 121 patients, which we have renamed here the Genoa dataset, and 
dataYM2018 consisting of data from 169 patients, which we have renamed here the 
Shanghai dataset.

The Genoa dataset was collected at Gaslini hospital in Genoa (Italy, EU) between 1990 
and 2004 [10], and contains data from 121 single patients, each having 11 clinical vari-
ables The Shanghai dataset was collected at Children’s Hospital of Fudan University in 
Yangpu (Shanghai, China) between 2010 and 2015 [11], and consists of data of 169 single 
patients. Each patient profile includes 13 clinical features. We described the Genoa data-
set and the Shanghai dataset precisely in the [16] article.

Fig. 1  Schematic representation of our study process. The data collection phase was conducted by the 
original datasets curators in their hospitals [10, 11, 13]. We conducted the dataset retrieval via scientific 
literature search engines. The steps from dataset loading to statistical results and clusters refer to the 
computational analysis presented in this study. All the illustration images were released online publicly under 
a Creative Commons license: the hospital icon from IconS​cout.​com, the book icon from IconS​cout.​com, the 
table icon from Wikim​edia Commo​ns, the barchart icon from IconS​cout.​com, the clusters image from Wikim​
edia Commo​ns

https://iconscout.com/free-icon/hospital-doctor-medicine-emergency-service-healthcare-emoj-symbol
https://iconscout.com/free-icon/science-book-2130790
https://commons.wikimedia.org/wiki/File:Antu_edit-table-insert-row-above.svg
https://iconscout.com/free-icon/demographic-tracking-1495416
https://commons.wikimedia.org/wiki/File:DBSCAN-Gaussian-data.svg
https://commons.wikimedia.org/wiki/File:DBSCAN-Gaussian-data.svg
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The TARGET-NBL stage 4 dataset contains data from 91 patients collected at the Chil-
dren’s Hospital of Philadelphia (Pennsylvania, USA) and at other hospitals in the USA, 
gathered over several years, primarily from 2005 to 2017. This dataset consists of 16 clin-
ical variables, some having missing values. We report a quantitative description of this 
dataset in Table 1 and Table 2.

Our clustering study has been possible because the original curators of these datasets 
decided to release these datasets publicly online without restrictions, after obtaining the 
consent from the Institutional Review Board (IRB) of their hospital, following the open 
science best practices [25, 26].

Methods

Preprocessing  We initially applied the clustering methods to the three datasets with-
out removing any outliers from them. This way, we obtained satisfactory results on the 
Genoa and on the TARGET-NBL datasets, but not on the Shanghai dataset. On the 
Shanghai original dataset, we had to remove the most different 41% outliers: we com-
puted the average record value for all the patients, we ranked them in descending order, 
and then we removed the top 20% and the bottom 20%. By doing so, we removed 69 
outliers and ultimately obtained valuable clustering results. We used one-hot encoding 
to handle the first event variable of this dataset; all the other features are numeric and 
therefore do not need this step (Fig. 1).

Given the high heterogeneity of this dataset [11], which is further amplified by the gen-
eral heterogeneity of neuroblastoma data [27–29], it was necessary to remove 41% of 
data points from the Shanghai dataset. This step allowed DBSCAN to identify relevant 
clusters among the remaining data. Without this adjustment, DBSCAN assigns all data 
points to the noise clusters.

Clustering algorithms  Before applying the clustering algorithms, we decided to set the 
number of clusters to two, similar to what has been done in other neuroblastoma studies 

Table 1  TARGET-NBL stage-4 patients dataset, quantitative characteristics of the binary features. NA: 
missing values. More information on this dataset can be found in [12–14]

Feature Meaning Value # %

Differentiating grade undiff. or poorly diff. 0 72 79.121

Differentiating grade differentiated 1 6 6.593

Differentiating grade missing NA 13 14.286

Histology unfavorable 0 85 93.407

Histology favorable 1 2 2.198

Histology missing NA 4 4.395

MYCN amplification false 0 68 74.725

MYCN amplification true 1 23 25.275

Sex woman 0 36 39.560

Sex man 1 55 60.440

Vital status alive 0 38 41.758

Vital status dead 1 53 58.242
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involving clustering analyses [30–34]. In our work, we employed several clustering algo-
rithms using the scikit-learn Python library [35], each based on distinct principles 
and requiring specific hyperparameter tuning for optimal performance.

k-Means [36] is a popular clustering method that partitions data into a predefined 
number of clusters by minimizing within-cluster variance. The primary parameter for 
this algorithm is the number of clusters, which must be specified in advance. k-Means 
assigns points to clusters iteratively until convergence. Spectral Clustering [37] lever-
ages the eigenvalues of a similarity matrix to reduce dimensionality before applying 
clustering. Key parameters include the number of clusters, the kernel coefficient γ 
gamma for the radial basis function (RBF) kernel, and the number of eigenvectors 
used in the clustering process. This method is particularly effective for non-linear 
data separations.

Agglomerative Clustering [38], including Ward’s method [39] and other linkage 
strategies such as complete, average, and single linkage, performs hierarchical cluster-
ing by successively merging pairs of clusters. Important parameters include the num-
ber of clusters, the type of linkage criterion used, and the distance metric applied, 
such as Euclidean, Manhattan, or cosine. BIRCH (Balanced Iterative Reducing and 
Clustering using Hierarchies) [40] builds a clustering feature tree, making it suitable 
for large datasets. Its key parameters include the number of clusters, the threshold 
for forming sub-clusters, and the branching factor, which determines the maximum 
number of sub-clusters within a node.

Table 2  TARGET-NBL stage-4 patients dataset, quantitative characteristics of the numerical 
features. First event: 0 event, 1 progression, 2 relapse, 3 death. std. dev.: standard deviation. MKI: 
Mitotic Karyorrhectic Index. Percent Necrosis: percentage of dead tumor cells within the cancerous 
tissue, which can be an important factor in the pathology and prognosis of the disease. Percent 
Tumor: percentage of tumor cells present in a biopsy or surgical specimen compared to normal 
cells. Percent Tumor vs Stroma: percentage of tumor cells to stromal cells within a tumor sample. 
The stroma is the supportive tissue surrounding the tumor cells, which includes connective tissue, 
blood vessels, and immune cells. Ploidy Value: number of sets of chromosomes in the tumor cells. 
Neuroblastoma can be classified as either diploid (normal chromosome number) or aneuploid 
(abnormal chromosome number). Aneuploid tumors often indicate a more aggressive disease 
and are associated with poorer outcomes. In contrast, diploid tumors may have a better prognosis. 
Supenhancer group: 0 ATRX, 1 MES, and 2 MYCN, as defined in [12]. More information on this dataset 
can be found in [12–14]

Feature Median Mean Range Std. dev. #NAs

Age at diagnosis days 1328.000 1618.813 [550, 6021] 1112.958

Event Free Survival Time in Days 709.000 1130.341 [87, 4948] 1030.418

First event 2.000 1.746 [0, 3] 0.842 28

MKI 1.000 1.000 [0, 2] 0.799 18

Overall Survival Time in Days 1330.000 1498.923 [87, 4948] 1050.606

Percent Necrosis 10.000 16.383 [0, 90] 18.583 27

Percent Tumor 80.000 71.098 [5, 97.5] 23.518 25

Percent Tumor vs Stroma 80.000 70.841 [5, 98] 23.076 28

Ploidy Value 1.030 1.218 [1, 3] 0.377

Superenhancer group 0.000 0.681 [0, 2] 0.880

Years from diagnosis to last follow-up 4.000 4.055 [0, 14] 2.911
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Gaussian Mixture [41] models data as a combination of multiple Gaussian dis-
tributions, allowing for flexible cluster shapes. Essential parameters include the 
number of components (clusters) and the covariance type, which can be full, tied, 
diagonal, or spherical, reflecting different assumptions about the cluster shapes.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [42] forms 
clusters based on dense regions of points. Its two key parameters are the maximum 
distance between points in a neighborhood and the minimum number of points 
required to form a dense cluster. It can identify clusters of varying shapes and sizes 
while labeling outliers.

Affinity Propagation [43] identifies clusters by exchanging messages between 
points until convergence. The damping parameter, which controls the extent of mes-
sage propagation, is crucial for avoiding oscillations during the clustering process.

MeanShift [44] locates high-density regions by shifting data points toward density 
peaks. The bandwidth parameter, which determines the size of the search window, is 
critical for accurate clustering.

In most of these algorithms (for example, k-Means), the numberof clusters is spec-
ified a priori (in our case, 2). For algorithms where this parameter cannot be set in 
advance (for example, DBSCAN), we disregarded parameter combinations that did 
not yield the desired number of clusters. We report the values of all the optimized 
hyperparameters for these algorithms in Table 3.

We selected eight of the most common clustering methods employed in the health 
informatics literature, for which an open source Python implementation is available 
[35]. Among these algorithms, DBSCAN is known to be particularly effective in bio-
medical datasets [45, 46]. This step refers to the clustering application phase in the 
flowchart of Fig. 1.

Evaluation metric  Finally, these clustering methods have been evaluated using the 
Density-Based Clustering Validation (DBCV) metric [47] (with the Felipe Alves Siquei-
ra’s Python implementation [48]), which assesses clustering quality by balancing density-
based validation criteria. The code iterates through various parameter combinations, 
aiming to maximize clustering performance.

Here we decided not to utilize common metrics for clustering internal assessments 
(such as Silhouette coefficient [49], Davies-Bouldin index [50], Calinski-Harabasz 
index [51], Dunn index [52], Shannon entropy [53], and Gap statistic [54]) because 
these indexes work only on convex-shaped clusters, and not on concave-shaped 
clusters. DBSCAN, in fact, can produce both convex or concave clusters, which can 
be correctly assessed by the DBCV score.

We decided to employ several density-based clustering algorithms and to use the 
DBCV index for evaluation because of their capability to handle non-convex or 
irregularly-shaped clusters.

We then studied the clusters assigned by the top performing method, DBSCAN, 
which is also the only method which produced sufficient results (Fig. 1).



Page 8 of 17Chicco et al. BioData Mining           (2025) 18:40 

Results
We applied all the unsupervised clustering methods described in the previous sec-
tion to the three datasets described in the Datasets section. We optimized the hyper-
parameters of the algorithms (Table  3) and tested the algorithms’ configurations 
through the DBCV index [47].

All the algorithms obtained negative values of DBCV, except DBSCAN which 
attained DBCV = +0.5968 on the Genoa dataset, DBCV = +0.49256 on the Shanghai 
dataset, and DBCV = +0.86032 on the TARGET-NBL (Fig.  2). The worst and mini-
mum value of DBCV is −1 , while the best and maximum value of DBCV is +1 . Some 
of the algorithms (Mean-Shift algorithm on the Genoa dataset and Affinity Propaga-
tion on both datasets) achieved DBCV = −∞ , indicating the possible presence of a 
technical bug in the implementation of the Python DBCV package [48].

The top performing DBSCAN method identified two clusters in each of the three 
datasets having different sizes (Table 4).

We then scrutinized the results obtained by DBSCAN and observed the feature par-
titions of the patient clusters identified by this algorithm (Fig. 3a).

In the Genoa dataset results, three clinical features completely partition the dataset 
patients into two clusters: INRG risk classification, outcome, and MYCN amplifica-
tion. The INRG risk classification feature clearly partitions the data into cluster 0 for 

Table 3  Optimized hyperparameters for the tested algorithms on the two datasets analyzed. These 
hyperparameters refer to the functions implemented in scikit-learn Python library [35]

Genoa dataset
     Affinity Propagation: damping = 0.97465

     Agglomerative Clustering: linkage = single, metric = euclidean

     BIRCH: branching factor = 4, threshold = 0.88862

     DBSCAN: epsilon = 0.792016, min samples = 8

     Gaussian Mixture: covariance type = full

     k-Means: init = k-means++, n init = auto, max iter = 300, algorithm = lloyd

     Spectral Clustering: gamma = 0.88862, n components = 2

     Ward: linkage = ward, metric = euclidean

Shanghai dataset
     Agglomerative Clustering: linkage = single, metric = L1

     BIRCH: branching factor = 2, threshold = 0.888623

     DBSCAN: epsilon = 0.526646, min samples = 4

     Gaussian Mixture: covariance type = diag

     k-Means: init = k-means++, n init = auto, max iter = 300, algorithm = lloyd

     Spectral Clustering: gamma = 0.388815, n components = 2

     Ward: linkage = ward, metric = euclidean

TARGET-NBL stage-4 dataset
     Agglomerative Clustering: linkage = average, metric = cosine

     BIRCH: branching factor = 4, threshold = 0.888624

     DBSCAN: epsilon = 0.35019, min samples = 4

     Gaussian Mixture: covariance type = full

     k-Means: init = k-means++, n init = auto, max iter = 300, algorithm = lloyd

     Spectral Clustering: gamma = 0.0001, n components = 9

     Ward: linkage = ward, metric = euclidean
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high risk and into cluster 1 for intermediate or low risk. Similarly, the outcome vari-
able assigns all the dead of disease patients into cluster 0, and all the patients with the 
alive in complete remission or alive with disease in cluster 1. Also the MYCN gene 
amplification clearly separates the patients into the two clusters: all patients having 
MYCN amplification were assigned to the cluster 0, and all the patients without were 
set to cluster 1.

Some other clinical variables showed average differences among the two clusters (age 
at diagnosis, progression free survival months, overall survival months, ferritin), but did 
not partition the patients into two completely separated groups (Fig. 3a). These results 
show the partitioning power of the three clinical variables INRG risk classification, out-
come, and MYCN gene amplification.

Regarding the Shanghai dataset, a few variables indicated differences in the composi-
tion of the two clusters of patients: age, months time of overall survival and outcome 
(Fig. 3b). Among these three medical variables, only outcome completely separated the 
patients into two clusters. All the alive patients and all the patients that were lost during 
follow-up were assigned to cluster 0, and all the patients dead of disease were assigned 
to cluster 1.

Only the sex variable completely discriminated the two clusters of patients in the 
TARGET-NBL stage-4 dataset (Fig. 3c): all the women were included in cluster 0, while 
all the men were put in cluster 1. Other variables, however, indicated a clear separation 
between the two clusters. DBSCAN assigned to cluster 0 the majority of patients with 
more years from diagnosis to last follow-up, more overall survival days, and higher per-
centage of necrosis. The patients assigned by DBSCAN to cluster 1, instead, had more 
severe first neuroblastoma events and a higher MKI score. The patients of the two clus-
ters had several other minor differences in other clinical features (age at diagnosis, per-
centage of tumor, percentage of tumor versus stroma, and ploidy value), but we consider 
these differences irrelevant (Fig. 3c).

For all the three datasets analyzed, DBSCAN assigned some patients to the noise −1 
cluster: 33 patients out of 121 in the Genoa dataset, 88 out of 100 in the Shanghai data-
set (where 69 patients were already removed during the preprocessing phase), and 82 
out of 91 in the TARGET-NBL dataset. The algorithm considered these data points as 
outliers and inserted them into no cluster.

Tests of robustness  To verify the robustness of the results we obtained, we performed 
a subsampling analysis without repetitions. For each of the ten iterations, we randomly 
selected 90% of the data points, applied DBSCAN, and saved the results measured 

Table 4  Composition of the clusters identified by DBSCAN. removed: number of patients removed 
during preprocessing. Each cell represents a number of patients

DBSCAN

Dataset Size Removed Noise cluster Cluster 0 Cluster 1

Genoa dataset 121 33 76 12

Shanghai dataset 169 69 88 6 6

TARGET-NBL stage-4 dataset 91 82 5 4
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though the DBCV index. We reported these results in Table 5. These outcomes confirm 
the robustness of our approach, indicating even an average improvement compared to 
the results obtained on the whole datasets.

Fig. 2  Clustering results obtained by the clustering algorithms on the two dataset. a Upper image: Genoa 
dataset. b Mid image: Shanghai dataset. c Bottom image: TARGET-NBL dataset. We employed the DBCV 
(Density-Based Clustering Validation) index for clustering internal assessment. DBCV index interval: [−1;+1] , 
with −1 meaning worst possible clustering and +1 meaning perfect clustering. We also tried Mean-Shift 
algorithm on the Genoa and TARGET-NBL datasets, Affinity Propagation on the Genoa and Shanghai datasets, 
but our scripts generated −∞ for these cases, probably for some code implementation bugs
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Fig. 3  Partition of the clinical features among the two clusters identified by DBSCAN. a Top image: 
representation of the normalized values of the clinical variables of the Genoa dataset in the subset of 
patients of the 0 cluster (red bars) and in the subset of patients of the 1 cluster (green bars). b Mid image: 
representation of the normalized values of the clinical variables of the Shanghai dataset in the subset of 
patients of the 0 cluster (red bars) and in the subset of patients of the 1 cluster (green bars). c Bottom image: 
representation of the normalized values of the clinical variables of the TARGET-NBL dataset in the subset 
of patients of the 0 cluster (red bars) and in the subset of patients of the 1 cluster (green bars). Each bar 
represents the average value for that specific factor for that specific cluster. We listed the meaning of the 
clinical variables in “Datasets” section and in [16]
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Discussion
Neuroblastoma is a rare type of childhood cancer characterized by significant hetero-
geneity in its clinical presentation and in the underlying biological mechanisms driving 
its onset and development [9]. Clinical parameters such as age, stage, and MYCN ampli-
fication status are used at diagnosis to assign a risk group. Risk assignment is used to 
determine the most appropriate treatment according to international guidelines, such 
as the INRG pretreatment risk assignment system [55]. Despite multimodal treatments, 
disease outcomes remain poor for high-risk patients.

The scientific community has conducted numerous studies in recent years, proposing 
new treatments, prognostic factors, and therapeutic targets [5, 9, 56–59]. Supervised and 
unsupervised approaches, such as classification and clustering, are two most commonly 
encountered knowledge-discovery techniques [60]. Supervised approaches have been 
widely reported in the literature to analyze multi-omics data, EHRs and medical images 
to accurately stratify patients with neuroblastoma and to predict prognosis [61]. How-
ever, to the best of our knowledge, unsupervised approaches have not previously been 
reported for neuroblastoma EHRs analyses. The problem of clustering in general deals 
with partitioning a data set consisting of n points embedded in m-dimensional space 
into k distinct set of clusters of similar data points [60]. Traditional clustering algorithms 
use distance metrics such as Euclidean distance to assess similarity among data points. 
Although these metrics are suitable for features with purely numeric values, they fail to 
capture the similarity of data elements when attributes are categorical or mixed [60]. 
Clustering mixed data sets into meaningful groups is a well-known challenging task [60]. 
Discretization and dummy coding are straightforward and intuitive methods for creat-
ing a homogeneous dataset consisting solely of categorical data, enabling the application 
of classical techniques. However, these methods can distort the original data, potentially 
introducing bias. In the literature, a variety of clustering algorithms have been specifi-
cally designed to handle mixed data [62].

Previously published studies exploring appropriateness of unsupervised machine-
learning methods for “heterogeneous” or “mixed” data used simulated and large real 
world datasets [62]. Pediatric datasets represented emblematic use cases for testing 
unsupervised clustering methods on mixed data because pediatric disease can be heter-
ogeneous and the number of patients enrolled in the study rarely exceeds one thousand 
patients. The three datasets used in the present retrospective study are publicly available 
[10–14].

Datasets are composed of mixed EHRs features covering patients with neuroblastoma 
of all risk groups, as is the case of the Genoa and Shanghai datasets, as well as, the subset 

Table 5  Results obtained by DBSCAN on ten subsampled datasets. DBSCAN refers to the optimized 
hyperparameters listed in Table 3. DBCV index interval: [−1;+1] , the higher the better

Average Standard
Dataset DBCV index Deviation

Genoa dataset 0.858 ±0.0024

Shanghai dataset 0.779 ±0.0212

TARGET-NBL stage-4 dataset 0.941 ±0.0006
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of high-risk patients, as is the case of the TARGET-NBL dataset. The dataset with the 
highest number of patients is the Shanghai dataset with 169 patients. Therefore, feasi-
bility of unsupervised machine-learning methods for small, heterogeneous and mixed 
datasets remains to be demonstrated. Our analyses demonstrated that DBSCAN was 
the unique method able to identify clusters with a clear segregation in the NB datasets. 
Heterogeneity of the datasets brought the DBSCAN algorithm to cluster a large number 
of patients of the Shanghai and TARGET-NBL datasets into the noise group. Previous 
studies have highlighted the effectiveness of a modified version of the DBSCAN algo-
rithm for mixed data analysis, but none have tested the method on real world pediatric 
datasets [63].

Our density-based spatial clustering analysis assigned significant portions of the 
Genoa dataset to the two clusters (63% to the first cluster and 10% to the second cluster), 
but only few patients in the other two datasets. In fact, for the TARGET-NBL dataset 
only 5% of patients were placed in the first cluster and only 4% of them were assigned 
into the second cluster, leaving 91% of patients in the noise cluster. For the Shanghai 
dataset, we initially used all the dataset, but no method could find any cluster in it. So 
we had to remove the top 20% and the bottom 20% outliers and to work only on 100 
patients out of 69. BSCAN placed 6 of these patients’ profiles in the first cluster and 6 in 
the second cluster, assigning the remaining 88 to the noise cluster. For this dataset, we 
assigned 92% of patients to no cluster.

We recognize that these clusters are small compared to those in other health infor-
matics studies involving cluster analysis. However, with a rare disease such as neuro-
blastoma, where datasets are rare, data are small and so are the number of patients, we 
consider this result to be relevant for the medical significance of the clusters identified. 
In a landscape where seven traditional clustering algorithms found nothing, at least 
DBSCAN was able to find thus: even if small, these clusters make clinical sense, and 
therefore confirm the clustering capability of DBSCAN.

Moreover, neuroblastoma data are known to be extremely heterogeneous [27–29], 
making them difficult to analyze and process, especially in an unsupervised scenario. The 
consequence of this heterogeneity is that the the noise clusters identified by DBSCAN 
have a huge size, compared to te data clusters.

We used the pre-treatment risk groups, when available, and the outcome to evaluate 
the prognostic value of each cluster. Analysis of the main characteristics differentiating 
clusters revealed a clear association between clusters and prognosis in the Genoa and 
Shanghai datasets, thereby confirming the feasibility and potential utility of DBSCAN on 
small, heterogeneous and mixed data analysis.

Conclusions
Neuroblastoma is a rare cancer that affects around five thousand infants worldwide, 
and datasets for scientific research on this disease are scarce. In this study, we leveraged 
three open, unrestricted, public datasets of electronic health records of patients diag-
nosed with this pediatric cancer to identify clustering methods which can discriminate 
significant subgroups of patients. To do so, we took advantage of eight different unsu-
pervised clustering methods and of the DBCV metric implemented in Python, and then 
analyzed the the medical meaning of the clusters identified.
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Our results show that DBSCAN paired with DBCV implemented through an open 
source programming language, applied to open data, can produce significant results and 
outcomes that have clinical meaning. Health informatics researchers and analysts can 
now leverage our discoveries and, when conducting a clustering analysis on small data-
set of EHRs of neuroblastoma, can choose to use DBSCAN rather than utilizing more 
traditional techniques k-Means and DBCV rather than utilizing more traditional metrics 
such as Silhouette coefficient. We highlight the fact that DBSCAN is not only the best 
performing method among the ones that we employed, but it is also the only one that 
was able to obtain sufficient results, according to the DBCV index.

Moreover, our study stands for its adherence to the principles of open science: we uti-
lized only open source software code (in Python) to analyze only open data (of electronic 
medical records), and are publishing the results in an open access journal. Anyone with 
a technological device can read our findings, reuse our software code, and reutilize the 
datasets we analyzed here.

Regarding limitations, we need to report that unfortunately we employed datasets with 
many different features: it would have been better to use datasets having all the same 
variables, but it was impossible. To the best of our knowledge, no other open EHRs data-
sets than the three we employed exist in the scientific literature nowadays. Moreover, 
our clustering analysis did not identify any relevant clinical feature that might impact 
neuroblastoma treatment or research. In the future, we plan to repeat a similar unsuper-
vised computational analysis on medical records’ data of patients with glioblastoma [64] 
and other diseases.
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