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Abstract

Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying
and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal
experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection
against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is
limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified
LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human
dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory
molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of
proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on
dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-
infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this
strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for
growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-
presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge
in vivo within this model system.
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Introduction

The development of vaccines is essential to combat harmful

infectious diseases [1]. Obtaining licensure after discovery of a

vaccine, however, can take up to 20 years due to the stringent

testing required to confirm the safety and efficacy of the vaccine

[2]. To expedite this process, in vitro tests could be developed to

define correlates of protection and identify more promising

vaccine candidates. These assays would be particularly beneficial

with vaccine candidates for highly pathogenic organisms, such as

the bacterium Francisella tularensis, when challenge studies cannot

be performed in humans because of contemporary regulations that

govern clinical trials [3].

F. tularensis is the causative agent of tularemia [4]. This zoonotic

disease is endemic in North America and parts of Europe and

Asia, and outbreaks in these regions are frequently associated with

the handling of infected animals or transmission by arthropod

vectors [4,5]. F. tularensis is also classified by the Centers for

Disease Control and Prevention as a Category A bioterrorism

agent [6]. When inhaled, less than 10 organisms can cause an

acute pneumonia that is lethal in up to 60% of infected individuals

if left untreated [7]. The World Health Organization predicted

that if virulent F. tularensis was aerosolized over a metropolitan area

of five million people, more than 19,000 people would die and

250,000 individuals would be incapacitated [6]. An effective

vaccine would be useful to reduce the number of naturally

occurring tularemia cases and to protect against a possible

intentional release.

To date, two different types of tularemia vaccines have been

studied in humans. The Foshay vaccine consisted of chemically

killed F. tularensis and was effective at reducing the incidence of

laboratory-acquired tularemia cases from approximately 100% to

30% in the 1950s [8,9]. However, killed F. tularensis provided only

minimal protection from aerosol type A Francisella challenge in a
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vaccine trial [10]. Researchers in the former Soviet Union took a

different approach and developed a range of live attenuated

Francisella strains to immunize people against tularemia [11]. One

of these strains, a live attenuated strain of F. tularensis subsp. holarctica,

live vaccine strain (LVS), was superior to the Foshay-type vaccines at

providing protection [10,12,13]. While two clinical studies involving

small numbers of human vaccinees demonstrated effectiveness of

LVS against aerosol challenge by virulent type A Francisella [10,12], a

later study showed variable efficacy that diminished over time [14].

Vaccination of individuals by aerosol improved the efficacy of LVS

but this required a high dose of 106 to 108 organisms which

frequently resulted in severe adverse side effects [14].

Currently, LVS is not approved by the Food and Drug

Administration (FDA) due to concerns about its undefined

attenuation, mechanism of protection, and reversion frequency

[15]. In order to obtain FDA approval, several groups are working

to address these issues. Recent work by Salomonsson et al. identified

two regions of difference, RD18 and RD19, which are deleted in

LVS and account for its attenuation [16]. Additional studies

improved the manufacturing process of LVS in compliance with

good manufacturing practice guidelines [17]. This new lot of LVS

was further characterized in human phase I clinical trials [18].

Researchers are also introducing mutations into LVS in order to

improve its efficacy and bolster attenuation. One example is an LVS

mutant deficient in iron superoxide dismutase (sodBFt). Compared to

LVS, sodBFt increases median time to death and percent survival of

C57BL/6 mice from pulmonary type A Francisella challenge [19]. As

work toward the licensing of LVS continues, attempts have been

made to replace LVS with a genetically defined, attenuated type A

Francisella strain. For example, Schu S4 DFTT_1103 and Schu S4

DclpB, provide 75% and 60% protection, respectively, from virulent

type A Francisella challenge in BALB/c mice [20,21]. Nevertheless,

LVS remains the leading tularemia vaccine to date that has shown

activity in humans [10,12].

A potential limitation of LVS as a vaccine is its relative

stimulation of antigen-presenting cells (APCs). Published work has

shown LVS stimulates murine and human DCs [22,23], though it

is now known that culture conditions influence stimulation of

innate immunity [24,25,26,27,28]. In contrast, other studies have

shown that LVS suppresses the activation of murine macrophages

[24,29,30,31,32] and dendritic cells (DCs) [32]. Murine macro-

phages and DCs cultured with LVS produce little to no

proinflammatory cytokines in vitro compared to DCs cultured with

other bacteria or TLR ligands [24,29,30,32]. Stimulation with

TLR ligands such as Escherichia coli LPS fails to restore cytokine

secretion by these cells suggesting that LVS is actively suppressing

TLR signaling [24,25,29,32]. Another study showed that this

suppression is due to downregulation of critical inflammatory

signaling pathways involved in MAPK and NF-kB activation [30].

In this study, we tested whether in vitro screening of potential

tularemia vaccine candidates for enhanced stimulation of APCs

would improve a candidate’s immunogenicity, and ultimately

protection after challenge. After initial testing of several LVS

strains, we evaluated one genetic locus in detail with mutant strains

that showed desirable vaccine characteristics in vitro, including

attenuation in macrophages and enhanced DC stimulation.

Despite these traits, they did not predict better protection against

virulent type A Francisella challenge.

Materials and Methods

Ethics Statement
Human cells were purified from discarded buffy coats obtained

from the Central Blood Bank (Pittsburgh, PA). The use of these

samples was reviewed and approved by the Institutional Review

Board of the University of Pittsburgh, which made a ‘‘no human

subjects’’ determination and waived requirement for consent. All

research involving animals was conducted in accordance with

animal care and use guidelines, and animal protocols were

approved by the University of Pittsburgh Animal Care and Use

Committee (protocols 1003587 and 1002514).

Francisella strains and growth conditions
For cultivation of F. tularensis LVS strains and Schu S4, frozen

stock cultures were streaked onto chocolate II agar plates and

incubated at 37uC, 5% CO2 for 2–3 days. LVS strains were grown

in Chamberlain’s chemically defined broth medium (CDM) [33]

or MH broth [Mueller-Hinton broth (Difco) supplemented with

0.1% glucose, 0.025% ferric pyrophosphate (Sigma), and Iso-

VitaleX (Becton Dickinson)] for in vitro infections. For mouse

vaccinations, MH broth or TSBc [trypticase soy broth (BD

Biosciences) supplemented with 0.1% L-cysteine hydrochloride

monohydrate (Fisher)] was used for culturing of LVS strains. Schu

S4 was grown in MH broth for infections of vaccinated mice.

Broth cultures were grown at 37uC with shaking for 14–18 hours.

When required, antibiotics were added to the media at the

following concentrations: kanamycin at 10 mg/ml, chloramphen-

icol at 5 mg/ml, and hygromycin at 200 mg/ml.

Generation of formalin-fixed Francisella tularensis Schu S4
(ffSchu S4)

Schu S4 was grown in MH broth as described above. Following

overnight culture, bacteria were washed, resuspended in PBS

(Gibco), and adjusted to an OD600 of 0.3. Bacteria were then

resuspended in 10% buffered formalin (Fisher) and incubated at

25uC for 10 min with shaking (200 rpm). Bacteria were washed

five times and resuspended in PBS for an approximate

concentration of 1–36108 CFU/ml. Bacterial killing was con-

firmed by plating of formalin-fixed Schu S4 on chocolate II agar

plates in which no colonies were observed following extensive

incubation (data not shown). Prior to formalin fixation, an aliquot

of the bacterial suspension was removed and tested for viable CFU

by plating serial dilutions on chocolate II agar.

Construction of LVS mutants
Construction of LVS strain 1664d was described previously

[34]. The F. tularensis LVS DcapC mutant was generated using

homologous recombination with a suicide plasmid. This plasmid

contained two segments homologous to regions flanking

FTL_1415 and one third of the 59 and 39 ends of this ORF,

surrounding a chloramphenicol acetyltransferase gene (cat) under

the control of the F. tularensis groE promoter (Table 1). Linearized

plasmid was electroporated into LVS [35] and double cross-over

events were selected on cysteine heart agar with 5% defibrillated

rabbit blood containing 2.5 mg/ml chloramphenicol. Recombina-

tion was confirmed by PCR (data not shown).

To generate strain 13B47, plasmid pSD26 (a gift from Eric

Rubin and Simon Dillon) was electroporated into LVS as

previously described [36]. pSD26 is an E. coli plasmid delivery

vector (colE1, ApR) that encodes a Himar1 transposase [37] and a

transposon containing a kanamycin resistance cassette under the

control of the F. tularensis groE promoter (Table 1). Following

recovery in trypticase soy broth supplemented with 0.1% cysteine,

bacteria were plated on cysteine heart broth with 5% defibrinated

rabbit blood containing kanamycin (5 mg/ml). Colonies that

emerged in the presence of kanamycin were isolated and screened

for lack of response to extracellular spermine [38]. The selection

APC Stimulation and Vaccine Efficacy of LVS Mutant
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phenotype was lack of growth in CDM plus an inhibitor of

endogenous polyamine biosynthesis, dicyclohexylamine [38].

Transposon mutants that failed to grow were then tested for their

ability to stimulate cytokines [38]. Strain 13B47 elicited high

concentrations of TNF-a from human macrophages and had a

transposon insertion in FTL_0883 [38]. DNA sequencing showed

that the precise location of this transposon was in base pair 115 of

842 from the 59 end of FTL_0883. Construction of an in-frame

deletion mutant, DFTL_0883, and a cis-complement strain was

described previously [38].

Infection of macrophages and DCs with F. tularensis LVS
strains

Human monocytes were differentiated into macrophages and

DCs by in vitro culture as described previously [34]. For

generation of murine DCs, bone marrow was flushed from

femurs and tibias of C57BL/6J mice with complete DC medium

[DMEM supplemented with 10% heat-inactivated FBS, 25 mM

HEPES, 1% non-essential amino acids, 1% sodium pyruvate,

1% GlutaMAX and 0.1% 2-mercaptoethanol (all from Gibco)].

Freshly isolated cells were washed and red blood cells were lysed

with ACK Lysis Buffer (Gibco). After washing and counting,

cells were resuspended in complete DC media supplemented

with 500 U/ml GM-CSF (eBioscience) and seeded into T75

flasks or 24-well plates at a concentration of 20–30 million cells

per flask or 16106 cells/well, respectively. Cells were incubated

at 37uC, 5% CO2 for 5–6 days and fresh complete DC media

with 500 U/ml GM-CSF was added every 2 days. Bone marrow

DCs (BMDCs) were purified using CD11c magnetic beads

(Miltenyi Biotec) per the manufacturer’s instructions. The

resulting cells were greater than 90% CD11c+ as assessed by

flow cytometry.

For cytokine and flow cytometry experiments, human cells were

washed and resuspended in DMEM supplemented with 1%

human serum, 25 mM HEPES, and 1% GlutaMAX. Murine

BMDCs were washed and resuspended in DMEM supplemented

with 10% FBS, 25 mM HEPES, 1% non-essential amino acids,

1% sodium pyruvate, 1% GlutaMAX and 0.1% 2-mercaptoeth-

anol (all from Gibco). DCs and macrophages were seeded into 24-

well plates (Costar) at 56105 cells/well and 1.56105 cells/well,

respectively. Infections were conducted using two different

methods with the goal of maintaining eukaryotic cell viability. A

multiplicity of infection (MOI) of 10 was used for 24-hour co-

cultures at 37uC with 5% CO2, allowing cultures to proceed

without washing. In other experiments, DCs were cultured with

bacteria at an MOI of 500 for two hours as described below,

which results in a high infection rate but with minimal effects on

cell viability [25,34]. As a positive control, macrophages and DCs

were stimulated with E. coli strain sd-4 (ATCC 11143) [39].

Supernatants were collected at various times post infection (6, 12,

24, and 48 hours) and DCs were prepared for flow cytometric

analysis.

Gentamicin protection assays were used to assess intracellular

growth [40]. Here, macrophages and DCs were seeded in

Primaria 96-well culture dishes (BD Biosciences) at a density of

56104 cells/well and infected with bacteria at an MOI of 500.

After two hours, cells were incubated with Hanks balanced salt

solution (Gibco) containing gentamicin (20 mg/ml) for 20 min to

kill extracellular bacteria. Cultures were then washed three

times with warm Hank’s balanced salt solution and incubated at

37uC with 5% CO2 for another 22 h with fresh culture medium.

Actual MOIs were measured by plating serial dilutions of

inocula on chocolate II agar plates. At the indicated time points

post infection, viable CFU were measured as described

previously [34,41]. Bacterial growth was compared using

Student’s t-test.

For DC-T cell co-culture assays, DCs were resuspended in

complete T cell medium [DMEM supplemented with 10% heat-

inactivated FBS, 25 mM HEPES, 1% non-essential amino acids,

1% sodium pyruvate, 1% GlutaMAX and 0.1% 2-mercaptoeth-

anol (all from Gibco)] and seeded in 96-well round bottom plates

(BD Biosciences) at a density of 26104 cells/well. DCs were

cultured with different F. tularensis LVS strains at an MOI of 10 for

24 hours prior to co-culture with T cells (see ‘‘Human DC-CD4+

T cell co-culture’’).

Table 1. Bacterial strains, plasmids, and primers used in this study.

Strain, plasmid, or primer Description Source or Reference

F. tularensis Strains

LVS F. tularensis subsp. holarctica live vaccine strain Karen Elkins

13B47 LVS with the Tn from pSD26 disrupting FTL_0883 in base pair 115 of 842 from the 59 end This study

1664d LVS deoB (FTL_1664) disruption mutant [25]

DcapC LVS containing cat replacing the central one third of capC (FTL_1415) This study

DFTL_0883 LVS FTL_0883 in-frame deletion mutant [38]

DFTL_0883::pJH1-FTL-0883 LVS DFTL_0883 cis-complement [38]

E. coli Strains

sd-4 Streptomycin-dependent E. coli mutant (ATCC 11143) ATCC 11143

Plasmids

pSD26 E. coli shuttle plasmid (colE1, ApR) encoding the C9 transposase and himar transposon (KmR) Simon Dillon and Eric Rubin

Primers

capC-1 59–CCGCGGAAGCGACACATGGACTTTTGA–39 This study

capC-2 59–GAATTCAATATGATAATAGTTACTATAACT–39 This study

capC-3 59–ATGCATTTATATTATCCCTGGACTTAT–39 This study

capC-4 59–ACTAGTTTAGATTTTTTATTATCGTTA–39 This study

doi:10.1371/journal.pone.0031172.t001
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Flow cytometry and analysis of human monocyte-
derived DCs

Surface markers on F. tularensis-infected human monocyte-

derived DCs were evaluated by flow cytometric analysis. Following

infection, DCs were removed from 24-well plates using a 2 mM

EDTA solution. Cells were washed once and resuspended in

FACS staining buffer [0.1% bovine serum albumin and 0.1%

sodium azide in PBS]. Nonspecific antibody binding was blocked

with human FcR Blocking Reagent (Miltenyi Biotec). Cells were

stained with fluorescein isothiocyanate (FITC)-conjugated anti-

CD1b (clone MT-101, AbD Serotec), phycoerythrin (PE)-conju-

gated anti-CD86 (clone IT2.2, eBioscience), PE-Cy5-conjugated

anti-CD80 (clone 2D10.4, eBioscience), and PE-Cy7-conjugated

anti-HLA-DR (clone LN3, eBioscience) at 4uC for 30 min. Isotype

control antibodies were included in each experiment to confirm

specificity of staining. After washing and fixing in 2% parafor-

maldehyde for 30 min at 4uC, cells were analyzed using a LSRII

flow cytometer (BD Biosciences) and FlowJo Software (Tree Star).

Statistically significant differences in CD80, CD86, and HLA-DR

expression by infected DCs were determined by one-way

ANOVA, followed by Bonferroni comparison of means.

Human DC-CD4+ T cell co-culture
DC-T cell co-cultures were performed similarly to previous

studies [42,43,44]. CD4+ T cells were purified from human

peripheral blood mononuclear cells that passed through the

Optiprep gradient by positive selection using the Dynal CD4

Positive Isolation Kit (Invitrogen) per the manufacturer’s instruc-

tions. These cells were .95% CD3+CD4+ T cells as assessed by

flow cytometry. Purified CD4+ T cells were then stained with

2.5 mM CFSE for 10 min at 37uC, washed, and resuspended in

complete T cell medium. CFSE-labeled T cells from a single

donor were then added to DCs from a different donor that had

been exposed to bacteria. DC-T cell co-cultures were performed in

a 96-well round bottom plate at a ratio of 10:1 (26105 T cells/

26104 DCs/well) for a period of 5 days at 37uC with 5% CO2.

After harvesting supernatants, cells were washed once and

resuspended in FACS staining buffer, treated with human FcR

Blocking Reagent (Miltenyi Biotec), and stained with APC-

conjugated anti-CD4 (clone OKT4, eBioscience) at 4uC for

30 min. After washing and fixing in 2% paraformaldehyde for

30 min at 4uC, fluorescence was measured using a FACSCalibur

flow cytometer (BD Biosciences) and analyzed with FlowJo

Software (Tree Star). For T cell proliferation, CFSElow cells were

measured in the CD4+ gate. Statistically significant differences in

the percentage of proliferating T cells following co-culture with

infected DCs were determined by one-way ANOVA, followed by

Bonferroni comparison of means.

Mice
Six- to eight-week old female C57BL/6J mice were purchased

from Jackson Laboratories (Bar Harbor, ME). Mice were housed

in microisolator cages under specific pathogen-free conditions in a

biosafety level-3 animal facility.

Immunization of mice
LVS and DFTL_0883 were cultured in MH broth or TSBc as

described above. Mice were immunized subcutaneously (s.c.) or

intratracheally (i.t.). Vaccinations were performed i.t. by

oropharyngeal instillation as described previously [41]. A subset

of mice was sacrificed at 2 hours post infection, and their lungs

were homogenized and plated to confirm delivery of bacteria to

the respiratory tract. Actual administered doses were determined

by plating serial dilutions of the inocula onto chocolate II agar

plates.

Infection of mice with F. tularensis Schu S4
Schu S4 was grown in MH broth as described above. Mice were

infected i.t. with 100 CFU of Schu S4 six weeks following LVS or

DFTL_0883 vaccination. The actual dose was calculated by

plating serial dilutions of the inoculum onto chocolate II agar

plates. Following infection, mice were monitored daily for survival.

Measurements of bacterial burden in vivo
Bacterial burdens in the organs of mice vaccinated with LVS

strains were measured as previously described [38,41]. Mice were

sacrificed at the indicated time points and lungs, spleens, and livers

were removed and homogenized in 1 ml (lungs, spleens) or 2 ml

(livers) of TSBc. A portion of the organ homogenates were serially

diluted and plated onto chocolate II agar plates. Plates were

incubated at 37uC at 5% CO2 and individual colonies were

enumerated.

In vitro stimulation of lung cells from vaccinated mice
Six weeks following vaccination with LVS or DFTL_0883, lungs

were excised, minced, and incubated in RPMI (Gibco) supple-

mented with 12 mg type I collagenase (Gibco), 100 mg DNase I

(USB), and 3 mM CaCl2 for 30 min at 37uC with shaking

(170 rpm). The digested tissue was passed through a 40 mm cell

strainer (BD Biosciences) to generate single cell suspensions.

Erythrocytes were lysed with ACK Lysis Buffer (Gibco) and

remaining cells were washed with RPMI. Viable cells were

counted using trypan blue exclusion. Cells were resuspended in

complete RPMI [RPMI supplemented with 10% heat-inactivated

FBS, 25 mM HEPES, 1% non-essential amino acids, 1% sodium

pyruvate, 1% GlutaMAX and 0.1% 2-mercaptoethanol (all from

Gibco)] and seeded into 96-well round bottom plates at 1.56106

cells/well. Lung cells from naı̈ve mice served as controls. BMDCs

were generated as described above without CD11c magnetic bead

purification. BMDCs were resuspended in complete RPMI and

added at a 1:10 ratio (1.56105 BMDCs/1.56106 lung cells) to

lung cells.

Preliminary experiments were performed with lung cells from

LVS-vaccinated mice to determine the optimal antigen concen-

tration and length of co-culture for this assay. Peak cytokine

production was detected after 48 hours of co-culture with similar

results observed at 72 hours (data not shown). Little to no cytokine

production was detected from lung cells cultured with BMDCs

and ffSchu S4 below an MOI of 10 (data not shown). As a result,

cells were incubated at 37uC with either media alone or ffSchu S4

at dose of 10 CFU per cell. After 48 hour co-culture, supernatants

were collected for analysis of cytokines and chemokines.

Cytokine and Chemokine Assays
DCs and macrophage supernatants were tested by ELISA using

commercially available kits to measure TNF-a (R&D Systems), IL-

12p40 (human, R&D Systems; mouse, eBiosciences), and IL-6

(human, R&D Systems) according to the manufacturer’s instruc-

tions. IFN-c in supernatants from human DC-CD4+ T cell co-

cultures was also measured by ELISA (human, R&D Systems).

The limits of detection for the ELISAs were: human TNF-a –

15.6 pg/ml, human and mouse IL-12p40 – 31.2 pg/ml, human

IL-6 – 9.7 pg/ml, and human IFN-c – 15.6 pg/ml. Cytokine and

chemokine levels in lung supernatants from in vitro re-stimulation

assays were determined by ELISA (mouse IFN-c, R&D Systems;

mouse IL-17A, Biolegend) or by using the Milliplex 32-plex Mouse

APC Stimulation and Vaccine Efficacy of LVS Mutant

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e31172



Cytokine/Chemokine Panel (Millipore) on a Bio-Plex 200 system

(Bio-Rad Laboratories). Analyte concentrations were calculated

against the standards using Milliplex Analyst software (version 3.5;

Millipore). The limits of detection for the ELISAs were 31.2 pg/

ml for mouse IFN-c and 15.6 pg/ml for mouse IL-17A.

Statistically significant differences in cytokine production were

identified by one- or two-way ANOVA followed by Bonferroni

comparison of means.

Results

Limited inflammatory response of human DCs to LVS
We have shown previously that human macrophages have a

limited capacity to produce proinflammatory cytokines following

infection with LVS [25]. We hypothesized that human DCs would

also be hyporesponsive to LVS stimulation. To test this, human

macrophages and DCs were co-cultured with LVS, and then

supernatants were harvested and analyzed for the proinflamma-

tory cytokines TNF-a, IL-6, and IL-12p40. Similar to our findings

with macrophages (Fig. 1A), LVS elicited little to no proin-

flammatory cytokines from human DCs (Fig. 1B). Pre-treating

LVS with 100% human serum failed to enhance cytokine

production (data not shown). As a positive control, human DCs

were stimulated with E. coli [39]. E. coli-stimulated DCs produced

significantly higher levels of all cytokines measured compared to

untreated DCs or DCs cultured with LVS (Fig. 1B).

Identification of an immunostimulatory F. tularensis LVS
strain

We hypothesized that a LVS mutant inducing a stronger

proinflammatory response from APCs in vitro would be a more

effective tularemia vaccine candidate. Surveying pre-existing LVS

mutants generated in our laboratory, we tested several for their

Figure 1. F. tularensis LVS strain 13B47 stimulates human monocyte-derived DCs and macrophages to produce proinflammatory
cytokines. LVS and LVS mutants, 13B47, DcapC, and 1664d, were cultured overnight in a chemically defined media (CDM) or Mueller-Hinton (MH)
broth. The four bacterial cultures were used to inoculate macrophages (A, 1.56105 cells/well) and DCs (B and C, 56105 cells/well) at an MOI of 10. As a
positive control, DCs and macrophages were cultured with E. coli strain sd-4 (MOI = 10). Supernatants were harvested after 24 hours (A–B) or at
indicated times (C), and TNF-a, IL-6, and IL-12p40 were measured by ELISA. Data are expressed as the mean 6 SEM of three individual experiments
with different donors. The level of cytokine production from each group was compared by a one (A–B) or two-way ANOVA (C), followed by the
Bonferroni comparison of means. ($$$, p,0.001 for E. coli vs. all other groups). When comparing only the DCs infected with the F. tularensis strains,
13B47 elicited higher cytokine production than the uninfected group (A–B) or LVS cultured in the same media (C). *, p,0.05; **, p,0.01;
***, p,0.001. BLD = below limits of detection of the ELISA.
doi:10.1371/journal.pone.0031172.g001
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ability to stimulate cytokine production from human DCs and

macrophages (Table 1). Human DCs and macrophages were co-

cultured with each of the mutants in parallel with wild-type LVS,

and supernatants were analyzed for cytokines. Cytokine produc-

tion by DCs and macrophages infected with either DcapC or

1664d was similar to LVS-infected cells at 24 hours post infection

(Fig. 1A–B). In contrast, DCs and macrophages infected with the

13B47 strain produced elevated levels of all cytokines measured

(Fig. 1A–B). Similar results were observed when cytokine levels

were measured 48 hours after infection (data not shown).

Although the cytokine levels elicited by 13B47 were lower than

those produced by cells stimulated with E. coli (Fig. 1A–B), each

was readily detected. Among the LVS strains tested, therefore,

13B47 stimulated the most proinflammatory cytokines from

human APCs.

We next assessed whether the medium used to grow the bacteria

would influence stimulation of DCs. LVS grown in media

containing high levels of polyamines such as CDM stimulates

low levels of proinflammatory cytokines from macrophages

[25,27,38]. To address the effect culture conditions may have on

the DC phenotypes observed here, LVS and 13B47 were cultured

in CDM or MH broth prior to co-culture with human DCs. At

various time points post infection, supernatants were harvested

and analyzed for detection of IL-12p40. At 24 and 48 hours post

infection, greater than 10-fold higher levels of IL-12p40 were

produced by human DCs cultured with 13B47 compared to wild-

type LVS (Fig. 1C). IL-12p40 production by DCs was higher

regardless of whether 13B47 was cultured in CDM or MH broth

(Fig. 1C). This result indicated that induction of cytokine

production by 13B47 was not dependent on the growth medium

used to culture this strain.

Maturation of DCs infected with F.tularensis strain 13B47
In addition to the secretion of cytokines, DCs must undergo a

process called maturation in order to efficiently prime T cells and

initiate the adaptive immune response [45]. Among these

alterations, the expression of MHC and costimulatory molecules

increases. Since 13B47 stimulated cytokine production from

human DCs, we next evaluated whether these cells also changed

their surface phenotype in response to this mutant. The expression

of CD80, CD86, and HLA-DR was measured on DCs following

culture with either wild-type F. tularensis LVS, 13B47, DcapC,

1664d, or E. coli as a positive control for maturation. LVS elicited

little to no change in expression of maturation markers on the

surface of human DCs (Fig. 2A–C). Similar results were observed

with the LVS mutants DcapC and 1664d (Fig. 2B, C). In contrast,

the percentage of high-expressing cells and/or geometric mean

fluorescence intensity increased after culture with 13B47 for CD80

and CD86 (Fig. 2). A similar trend of heightened expression of

HLA-DR was also observed with 13B47-infected DCs (Fig. 2).

Likewise, E. coli-stimulated DCs increased expression of costimu-

latory molecules and MHC (Fig. 2). These data suggest that DCs

undergo maturation after exposure to F. tularensis strain 13B47

and, therefore, may be better suited to initiate an adaptive

immune response.

Growth of 13B47 in human macrophages and DCs
Intracellular growth is a hallmark of pathogenic Francisella

strains. Although 13B47 stimulated APCs to secrete cytokines and

upregulate costimulatory molecules, it was unclear if its intracel-

lular growth was altered. To test this, human DCs and

macrophages were infected with either wild-type LVS or strain

13B47, and lysed at various times post infection to enumerate

intracellular bacteria. 13B47 was attenuated for growth at

24 hours post infection in human macrophages (Fig. 3). Surpris-

ingly, 13B47 was still capable of replicating in human DCs (Fig. 3),

albeit with a slightly slower rate compared to wild-type LVS

(estimated generation time of 783 minutes versus 275 minutes for

wild-type). These phenotypes could not be attributed to a general

growth defect since 13B47 grew similar to wild-type LVS in

bacterial growth medium (data not shown). These data suggest

that, while the cytokine response to 13B47 is similar between

macrophages and DCs, these cells differ in their ability to control

growth of this mutant.

Enhanced activation of CD4+ T cells by F. tularensis strain
13B47-infected DCs

Enhanced maturation of human DCs by 13B47 led us to

hypothesize the resulting DCs would stimulate T cells more

effectively. This was tested by measuring human CD4+ T cell

proliferation and cytokine production following co-culture with

allogeneic DCs pre-treated with LVS, 13B47, or E. coli. T cell

proliferation was measured by CFSE dilution after co-culture with

infected DCs for 5 days as described previously [42,43,44]. An

increase in the percentage of proliferating CD4+ T cells was

observed following co-culture with 13B47-infected DCs compared

to unstimulated CD4+ T cells (Fig. 4A and B). This increased

percentage of proliferating CD4+ T cells was comparable to the

level of proliferating T cells observed following co-culture with E.

coli-infected DCs (Fig. 4A and B). Similar rates of CD4+ T cell

proliferation were observed after 7 days of culture with infected

DCs (data not shown). In contrast, the percentage of proliferating

CD4+ T cells following co-culture with LVS-treated DCs was not

significantly different from the baseline level of proliferation

observed with unstimulated DCs (Fig. 4B).

T cell activation following co-culture with infected DCs was also

assessed by cytokine production. IFN-c concentrations in the

supernatants of the DC-T cell co-cultures described above showed

a similar trend to the proliferation data. CD4+ T cells cultured

with 13B47-infected DCs produced higher levels of IFN-c
compared to those stimulated with LVS-infected DCs (Fig. 4C).

T cells stimulated with bacteria alone in the absence of DCs did

not proliferate or produce measurable levels of IFN-c (data not

shown). The proliferation and cytokine production data together

suggest DC maturation induced by 13B47 had measurable

consequences on T cells in vitro.

Evaluation of the LVS FTL_0883 deletion mutant as a
tularemia vaccine

Protection from virulent type A Francisella infection is largely

dependent on the development of robust T cell-mediated

immunity [46]. Based on the data obtained with human cells in

vitro, we hypothesized that vaccination with 13B47 would prolong

survival and improve T cell responses compared to LVS in mice

challenged with virulent Francisella. However, 13B47 is not optimal

since it contains a transposon that could be unstable. To generate

a more suitable vaccine candidate, an in-frame deletion mutant

was created in LVS, DFTL_0883, that does not incorporate an

antibiotic resistance marker [38]. Similar to human macrophages

[38], more IL-12p40 and TNF-a was produced by human DCs

cultured with DFTL_0883 than wild-type LVS (Fig. 5A–B). These

cytokine levels were similar to, or greater than, that produced by

DCs cultured with 13B47 (Fig. 5A–B). Moreover, IL-12p40 and

TNF-a levels continued to rise from 24–48 hours when DCs were

cultured with DFTL_0883 (Fig. 5B). To confirm the heightened

stimulation of macrophages and DCs was due to deletion of

FTL_0883, an in cis-complementing construct (pJH1-FTL_0883)
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was generated and introduced into DFTL_0883 [38]. Comple-

mentation of DFTL_0883 with the wild-type copy of the gene

significantly reduced IL-12p40 and TNF-a production by human

macrophages [38] and DCs (Fig. 5B). Differential induction of IL-

12p40 from human DCs by FTL_0883 mutants and wild-type

LVS was also observed at a higher MOI of 500 (Fig. 5C).

Changes in CD80 and CD86 expression were also evaluated in

human DCs cultured with either wild-type LVS or FTL_0883

mutants. As demonstrated previously in Fig. 2, expression of

CD80 and CD86 was not altered on human DCs cultured with

wild-type LVS at a low MOI (Fig. 5D). Culturing of human DCs

with 13B47 or DFTL_0883, however, caused a statistically

significant increase in expression of both costimulatory molecules

on the surface (Fig. 5D). CD80 and CD86 expression were also

higher on DCs cultured with 13B47 or DFTL_0883 than on LVS-

infected DCs using a higher MOI (Fig. 5D). Lower levels of CD80

and CD86 were also measured on human DCs cultured with the

DFTL_0883 strain complemented with a wild-type copy of the

gene compared to DCs cultured with DFTL_0883 (Fig. 5D).

Deletion of FTL_0883 in LVS reduces its ability to replicate in

human and murine macrophages [38]. Additionally, the LVS

mutant containing a transposon insertion in the FTL_0883 gene,

13B47, was attenuated for growth in human macrophages and

replicated slowly in human DCs (Fig. 3). To measure DFTL_0883

replication in human DCs, DCs were infected with either wild-

type LVS, 13B47, DFTL_0883, or the complemented strain, and

lysed at various times post infection to enumerate intracellular

bacteria. DFTL_0883 replicated more slowly in human DCs than

wild-type LVS, exhibiting at least 5-fold less growth 24 hours post

infection (Fig. 5E). Similar results were observed 48 and 72 hours

post infection with up to a 20-fold difference in growth between

DFTL_0883 and LVS measured 72 hours post infection (Fig. 5E).

The growth kinetics for DFTL_0883 and 13B47 in human DCs

over the 72 hour period were indistinguishable (Fig. 5E). Com-

plementation of DFTL_0883 with a wild-type copy of the gene

restored growth of the mutant to near wild-type levels (Fig. 5E). In

summary, 13B47 and DFTL_0883 were similar with 1) reduced

growth in human DCs, 2) increased expression of CD80 and

Figure 2. Human monocyte-derived DCs mature following exposure to LVS strain 13B47. DCs were stimulated with either LVS, 13B47,
DcapC, 1664d, or E. coli for 24 hours (MOI = 10). Cells were harvested and analyzed for changes in surface expression of CD86, CD80, and HLA-DR.
Cells were gated on CD1b-positive population. (A) Representative histograms for CD86, CD80, and HLA-DR expression on LVS-, 13B47-, and E. coli-
treated DCs from one experiment. Histograms for DcapC- and 1664d-infected DCs were similar to LVS (data not shown). (B) Mean percentages of DCs
with high CD86, CD80, and HLA-DR expression (6 SEM) from three individual experiments with different donors. (C) Geometric mean fluorescence
intensities (GMFI) of CD86, CD80, and HLA-DR (6 SEM) on DCs from three individual experiments with different donors. Statistically significant
differences in CD86, CD80, and HLA-DR expression by infected DCs were determined by one-way ANOVA, followed by Bonferroni comparison of
means (*, p,0.05; **, p,0.01; ***, p,0.001).
doi:10.1371/journal.pone.0031172.g002
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CD86, and 3) stimulation of IL-12p40 and TNF-a production by

human DCs.

To test whether the phenotypes observed in human DCs were

species-specific, murine DCs were also tested with these LVS

strains. IL-12p40 levels were higher in supernatants from murine

DCs cultured with either 13B47 or DFTL_0883 compared to LVS

(Fig. 5F). Growth of strains with mutations in FTL_0883 was also

less than wild type in murine DCs (Fig. 5G). Similar to published

work [32], LVS replicated approximately 100-fold over 24 hours

in murine DCs (Fig. 5G). Both 13B47 and DFTL_0883 grew less

robustly in murine DCs, which was less than wild-type at 24, 48,

and 72 hours post infection (Fig. 5G). Growth of the DFTL_0883

was nearly restored to wild-type levels by the complementing

construct containing a wild-type copy of the gene (Fig. 5G). These

results showed that human and murine DCs responded similarly to

13B47 and DFTL_0883.

Having established the in vitro phenotypes of the DFTL_0883

strain, we next assessed its ability to stimulate adaptive immune

responses in vivo. C57BL/6J mice were vaccinated by either

subcutaneous (s.c.) or respiratory (i.t.) routes with LVS or

DFTL_0883. Mice were challenged six weeks later i.t. with the

type A F. tularensis strain Schu S4. Vaccination of C57BL/6J mice

with LVS prolongs survival but does not completely protect

against a secondary challenge with a type A Francisella strain

[47,48]. This experimental design allowed us to determine

whether DFTL_0883 vaccination conferred better protection than

LVS. All mice that received a sham vaccination with PBS

succumbed to the Schu S4 infection within 5 days following

challenge (Table 2). Although mice vaccinated s.c. with LVS and

DFTL_0883 survived longer than sham-vaccinated controls, they

still required euthanasia within 7 days of Schu S4 infection

(Table 2). No survival differences were observed between animals

vaccinated s.c. with LVS and DFTL_0883 (Table 2).

Vaccination by a respiratory route, however, showed statisti-

cally significant differences in protective efficacy. The median time

to death of mice vaccinated i.t. with LVS was approximately 10–

12 days following Schu S4 challenge (Table 2). This median time

to death was double the median time to death for sham-vaccinated

controls (5 days, Table 2) and was similar to previous work [47]. In

contrast, mice vaccinated with DFTL_0883 survived for a median

of 6 days (Table 2). Therefore, vaccination with DFTL_0883 by a

respiratory route provided less protection than that elicited by

wild-type LVS.

To investigate the differences in the protection elicited by the

two strains, we evaluated bacterial burdens in the lung and

peripheral organs following respiratory vaccination. LVS replicat-

ed exponentially in the lung for the first three days following i.t.

immunization (Fig. 6). The lung bacterial burden remained steady

until day 6 post immunization and then slowly began to decline up

to day 10 (Fig. 6). Dissemination to the spleen and liver occurred

at day 3 with LVS burden peaking at day 6 and being cleared by

day 10 (Fig. 6). Despite comparable doses of bacteria used in the

vaccinations, lower levels of DFTL_0883 were detected at all time

points in the lung and beginning at day 3 in peripheral organs post

immunization (Fig. 6). While clearance of LVS from the lung does

not occur until 22 days post infection [49], DFTL_0883 was

cleared more rapidly at approximately 10 days post infection

(Fig. 6). Viable DFTL_0883 were measured in the spleens and

livers of seven of eight mice by day 6, but none were detected in

these organs at day 10 (Fig. 6). Therefore, LVS achieved higher

numbers for a longer period of time in the lung and periphery

following vaccination.

We next sought an immunological explanation for the

performance of DFTL_0883 vaccination. We hypothesized wild-

type LVS induced superior T cell responses than DFTL_0883, and

measured cytokine and chemokine responses by lung cells after i.t.

vaccination. Cells were harvested from the lungs of LVS- and

DFTL_0883-vaccinated mice and were re-stimulated in vitro with

ffSchu S4. Cells from mice vaccinated with LVS produced higher

amounts of IFN-c with re-stimulation than cells from naı̈ve mice

or those that received DFTL_0883 (Fig. 7). IFN-c production by

lung cells from mice vaccinated with DFTL_0883, however, was

not statistically significantly different than naı̈ve controls (Fig. 7).

Increasing the vaccination dose of DFTL_0883 by three-fold failed

to improve IFN-c responses by the lung cells (data not shown).

Consistent with the IFN-c results, the IFN-c inducible chemokine

MIG was also higher in cultures from mice vaccinated with LVS

(data not shown). In contrast to IFN-c, cells from both vaccination

groups produced comparable amounts of IL-17 after re-stimula-

tion. A 2–3 fold increase in IL-17 production was observed in lung

cells from mice vaccinated with DFTL_0883 and LVS compared

to naı̈ve controls (Fig. 7). No other statistically significant

differences were consistently detected in the other cytokines and

chemokines that were tested (data not shown). Therefore, the

protection elicited by LVS against Schu S4 challenge correlated

with IFN-c production by lung cells after re-stimulation with

antigen.

Discussion

Several studies, including this one, indicate LVS poorly

stimulates innate immune cells [24,25,27,29,30,32]. This suggests

insufficient activation of DCs could contribute to incomplete

protection engendered by LVS. In this study, we sought to

Figure 3. LVS strain 13B47 is attenuated for growth in human
macrophages and replicates slowly in DCs. DCs or macrophages
were infected in gentamicin protection assays (MOI = 500) with LVS or
13B47 and lysed at the indicated times post infection. Data shown are
mean 6 SEM from three individual experiments with different donors.
Statistically significant differences in growth at 24 hours post infection
were determined by Student’s t-test (*, p,0.05).
doi:10.1371/journal.pone.0031172.g003
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improve vaccine efficacy with a LVS strain that stimulated APCs

better than wild-type LVS. The LVS mutants used in this study

(Table 1) were selected based on specific characteristics. All three

of these genes (FTL_1415, FTL_1664, and FTL_0883) have been

identified in negative selection screens in F. novicida and/or LVS to

be necessary for growth and/or survival in mice [50,51]. The

DcapC mutant was of interest because another LVS mutant in the

capBCA operon, DcapB, afforded protection in BALB/c mice

against challenge with the virulent Francisella strain Schu S4 [49].

Mutation of FTL_1664 in LVS resulted in diminished uptake by

human DCs [34], which may impact DC activation. Recently, our

laboratory has shown that LVS FTL_0883 mutants like 13B47

stimulate innate immune cells and are attenuated in vitro and in

vivo, making this mutant a possible vaccine candidate [38].

Strains with mutations in the FTL_0883 locus of LVS showed

promise based on in vitro results. The 13B47 and DFTL_0883

derivatives of LVS stimulated human DCs and macrophages

(Fig. 1, 2, and 5), which was associated with better stimulation of T

cells in vitro (Fig. 4). Contrary to our hypothesis, however,

improving APC stimulation in vitro with the DFTL_0883 strain

did not enhance protection in vivo. The median time to death

doubled in mice vaccinated in the respiratory tract with LVS

compared to naı̈ve animals. In contrast, the median time to death

of mice vaccinated with DFTL_0883 was similar to naı̈ve animals

(Table 2). Enhancing DC stimulation with DFTL_0883, therefore,

failed to establish a protective immune response.

The poor performance of DFTL_0883 as a vaccine may be due

directly to its attenuation. Mutation of the FTL_0883 locus in LVS

attenuates growth in macrophages and DCs (Fig. 3, 5E, and 5G,

and [38]). In addition, bacterial burdens in the lung and periphery

of DFTL_0883-vaccinated mice are less than in animals receiving

wild type (Fig. 6). Based on these findings, the attenuation and

accelerated clearance of DFTL_0883 in vivo may prevent a

sufficient adaptive immune response from being established.

Consistent with this model, restimulation of lung cells isolated

from DFTL_0883-vaccinated mice produced less IFN-c than mice

receiving wild type (Fig. 7). Since IFN-c is a critical mediator of

protective immunity against tularemia [48,52,53], the diminished

IFN-c response we observed following restimulation likely

contributed to the lack of protection after vaccination with

DFTL_0883.

Additional factors may also contribute to the vaccination

results seen in this study. Though the molecular function of the

protein encoded by FTL_0883 is unknown, it is possible that

protective antigens may not be expressed since spermine

responsiveness and transcription are altered after mutation of

FTL_0883 [38]. Alternatively, different cytokine profiles stimu-

lated in the host by the DFTL_0883 mutant may influence the

vaccine performance. Inflammatory signals such as IL-12 can

modulate T cell differentiation, promoting the generation of more

short-lived effector cells compared to memory precursors [54].

The higher levels of IL-12 stimulated by DFTL_0883 (Fig. 5) may

Figure 4. Enhanced proliferation and IFN-c production by CD4+ T cells stimulated with LVS strain 13B47-infected DCs. Purified CFSE-
labeled CD4+ T cells from a single donor were co-cultured with either E. coli-infected, F. tularensis LVS-infected, or 13B47-infected DCs from a different
donor at a ratio of 10:1 (26105 T cells/26104 DCs/well) for 5 days. (A) Representative dot plots showing loss of CFSE fluorescence versus CD4 staining
on day 5 for each group from one experiment. (B) The mean percentages of proliferating CD4+ T cells were calculated (6 SEM) from five individual
experiments with different donors. (C) IFN-c levels were measured in day 5 supernatants by ELISA. Data are presented as the mean 6 SEM from four
individual experiments with different donors that were represented in Figure 4B. BLD = below limits of detection of the ELISA. Statistically significant
differences in mean percentages and GMFI for all groups were determined by one-way ANOVA, followed by Bonferroni comparison of means
(*, p,0.05; **, p,0.01; ***, p,0.001).
doi:10.1371/journal.pone.0031172.g004

APC Stimulation and Vaccine Efficacy of LVS Mutant

PLoS ONE | www.plosone.org 9 February 2012 | Volume 7 | Issue 2 | e31172



have shifted T cell development, impairing the development of

memory cells. Each of these possibilities is consistent with the

reduced IFN-c observed during re-stimulation of lung cells with

antigen in vitro. The mechanism(s) accounting for the poor re-

call responses observed with DFTL_0883 is currently being

investigated.

Figure 5. FTL_0883 deletion mutant, DFTL_0883, elicits maturation of DCs and is attenuated for growth similar to 13B47. Human (A–
E) and murine DCs (F–G) were cultured with either LVS, 13B47, DFTL_0883, or DFTL_0883::pJH1- FTL_0883 at an MOI of 10 (A–B, D, and F) or 500
followed by gentamicin treatment (C–E, and G). For cytokines, supernatants were harvested at 24 hours (A, C, and F) or the indicated time points (B),
and IL-12p40 and TNF-a were measured by ELISA. For flow cytometry experiments (D), DCs were harvested 24 hours post infection and GMFIs for
CD80 and CD86 were measured. For gentamicin protection assays (E, G), DCs were infected with LVS strains at an MOI of 500 and then lysed at
indicated time points to enumerate intracellular bacteria. Data are presented as the mean 6 SEM from at least two independent experiments.
Statistically significant differences between groups were determined by one (A, C, D, and F) or two-way ANOVA (B, E, and G), followed by Bonferroni
comparison of means (*, p,0.05; **, p,0.01; ***, p,0.001). BLD = below limits of detection of the ELISA.
doi:10.1371/journal.pone.0031172.g005

Table 2. Survival of immunized mice following intratracheal Schu S4 challengea.

Route Vaccine Vaccination Dose
Time to Death of Individual
Mice (days) Median Time to Death (days)

Control PBS N/A 5, 5, 5, 5, 5 5

Subcutaneous LVS 16104 6, 7, 7, 7, 7 7

DFTL_0883 16104 6, 6, 7, 7, 7 7

Intratracheal Experiment 1

LVS 16103 10,12,12, .33, .33 12b

DFTL_0883 16103 5, 6, 6, 7, 7 6

Experiment 2

LVS 26103 9, 9, 10, 11, 12 10b

DFTL_0883 26103 6, 6, 6, 7, 7 6

aMice were immunized with either LVS or DFTL_0883 at the indicated dose and then challenged with 100 CFU of Schu S4 i.t.
bSignificant difference p,0.005 by log rank test.
doi:10.1371/journal.pone.0031172.t002
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The results presented here with the FTL_0883 mutants share

common outcomes with studies of other genetically altered

Francisella. Mutation of iglC or mglA, genes important for

intracellular growth of Francisella, or deletion of the purMCD

purine biosynthesis operon resulted in highly attenuated strains

that did not provide better protection than LVS against virulent

Francisella challenge [55,56,57]. In contrast, vaccination with a

DclpB mutant in the Schu S4 background is superior to wild-type

LVS [21]. A greater IFN-c response was measured four days after

challenge of mice vaccinated with the more successful DclpB

mutant than those vaccinated with LVS [58]. Coupled with our

results, IFN-c responses measured during restimulation could be a

useful predictor of vaccine efficacy.

Several recent studies have shown that IL-17 is also required for

control of F. tularensis growth and the generation of an effective

Th1 response following pulmonary challenge [59,60,61]. Although

the role of IL-17 in the immune response to acute F. tularensis

infection has been characterized [59,60,61], its role in vaccination

against tularemia remains to be elucidated. Paranavitana et al.

demonstrated that PBMCs from LVS-vaccinated individuals

produce high levels of IL-17 following in vitro re-stimulation [62].

Similarly, we have shown that pulmonary vaccination of mice with

LVS results in an increase in IL-17 compared to naı̈ve controls

(Fig. 7). Production of IL-17, however, did not correlate with

vaccine efficacy since comparable levels of IL-17 were produced

by cells from mice receiving wild-type or DFTL_0883 vaccinations

(Fig. 7). Additionally, neutralization of IL-17 in mice successfully

protected by a Schu S4 DclpB vaccine did not reduce survival after

a pulmonary type A challenge despite increasing bacterial burden

[58]. Therefore, IL-17 alone is not sufficient to predict vaccine

efficacy.

Defining an optimal strategy for vaccine development remains a

significant challenge for many pathogens. Improving APC

stimulation using genetic modifications of LVS in this project

failed to improve protection against a virulent F. tularensis strain. In

addition, modeling vaccination and challenge in vitro with human

cells did not predict in vitro responses in mice. Comparison of

different vaccine strains and the protection conferred, however,

confirmed IFN-c production as a potential correlate of protection.

A similar experimental approach by Shen et al.. successfully

characterized the immune response to Francisella strains that varied

in vaccine efficacy [58]. Nevertheless, our current study and that

of Shen et al. are limited by the conditions tested (the number of

vaccine and mouse strains used), the limited number of output

variables measured (relying primarily on multiplex cytokine

measurements), and the timing of sampling (responses tested after

challenge in vitro or in vivo). This leaves open the possibility that

more comprehensive investigations could yield additional insights.

Recently, a systems-wide analysis of vaccine responses against

yellow fever has met with significant success [63,64]. In this

approach, genome-wide transcriptional studies using microarrays

provided a broader assessment of in vivo host responses to

vaccination [63]. A seminal application of these concepts to

Francisella was also recently published by DePascalis et al. [65].

Here, an in vitro lymphocyte-macrophage co-culture was used to

model the immune responses elicited by LVS vaccines of varying

efficacies [65]. Analysis of 84 immunologically-relevant genes by

real time PCR identified a list of immune mediators whose

expression pattern correlated with protection from F. tularensis

infection, including IFN-g [65]. These higher order analyses,

which integrate multi-parameter data sets of a variety of

measurements, combined with traditional testing of specific

Figure 6. DFTL_0883-vaccinated mice have reduced bacterial burdens. Mice were vaccinated i.t. (1.56103 CFU) with either LVS or
DFTL_0883 (n = 4 mice/group/time point). At indicated time points (days 1, 3, and 6 for experiment 1; days 3, 6, and 10 for experiment 2), mice were
sacrificed and the CFU/organ was determined as described in Materials and Methods. The limits of detection for the lung, spleen, and liver are
depicted by the black dashed lines and were 100, 100, and 200 CFU, respectively. Data are presented as mean 6 SD for each individual experiment.
Statistically significant differences between groups in each experiment were determined by two-way ANOVA, followed by Bonferroni comparison of
means (*, p,0.05; ***, p,0.001).
doi:10.1371/journal.pone.0031172.g006

Figure 7. Cells from mice vaccinated with LVS produce more
IFN-c after re-stimulation. Mice were vaccinated i.t. (86103 CFU)
with either LVS (n = 3) or DFTL_0883 (n = 4). Age-matched naı̈ve mice
(n = 3) served as negative controls. Lung cells were isolated from
vaccinated and unvaccinated mice 30 days post vaccination and
incubated with formalin-fixed SchuS4 (ffSchu S4) and BMDCs. Culture
supernatants were collected 48 hours later and assessed for multiple
cytokines and chemokines using the Milliplex 32-plex Mouse Cytokine/
Chemokine Panel (Millipore) on a Bio-Plex system (Bio-Rad Laboratories,
Inc.). Baseline levels of cytokine/chemokine production were estab-
lished by the culturing of lung cells in media alone (no antigen). Data
are presented as the mean 6 SD of triplicate wells from one individual
experiment. Another experiment of similar design was performed with
a vaccination dose of 500 CFU i.t., and IL-17 and IFN-c levels were
measured by ELISA. Similar results were observed in both experiments.
Statistically significant differences in cytokine/chemokine production
were determined by a one-way ANOVA, followed by Bonferroni
comparison of means. (**, p,0.01; ***, p,0.001 for LVS v. DFTL_0883
following ffSchu S4 re-stimulation).
doi:10.1371/journal.pone.0031172.g007
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hypotheses will continue to yield insights into correlates of

protection and biological response modifiers that may be exploited

during acute infection and vaccination.
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