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Introduction
Bovine respiratory disease (BRD) is a leading cause of 
death of feedlot cattle in the USA. Annual costs associ-
ated with BRD total more than one billion dollars. Envi-
ronmental stress, compromised host immunity, and virus 
infection predispose the animal to bacterial lung infection 
(broncho-pneumonia).1 Primary virus infections damage the 
respiratory tract and subdue the host immune system. The 
respiratory tract commensal bacteria cause opportunistic 
secondary infections and lung pneumonia under immune-
compromised conditions (caused by viral infection and other 
factors). In fact, previous studies have reported bovine viral 
diarrhea virus, bovine respiratory syncytial virus, bovine 
herpesvirus 1, parainfluenza 3 virus, adenovirus, and bovine 
coronavirus from cattle with BRD.2–6 Although more than 
40 years ago, studies concluded that bovine rhinitis viruses 
(BRVs) (then known as bovine rhinoviruses) cause mild 
respiratory disease in cattle,7–10 it is a surprise that BRVs are 
sparsely studied. This is partly due to the fact that the virus 

grows poorly in cell culture and is known to cause only self-
limiting mild respiratory illness.

Based on the genomic organization and serologic and 
molecular characteristics, bovine rhinitis A virus (BRAV) and 
bovine rhinitis B virus (BRBV) along with foot-and-mouth 
disease virus (FMDV) and equine rhinitis A virus (ERAV) 
are classified as four species in the Aphthovirus genus of the 
family Picornaviridae.11,12 The Picornaviridae family consists of 
some of the most devastating human and animal pathogens, 
all of which are single-stranded positive-sense RNA viruses 
(+ssRNA). Presently, the following sequences of BRV iso-
lates are available in GenBank: BRAV (140032-1, KP236129; 
SD-1, KP236128; H-1, JN936206; and BSRI4, KP264974) 
and BRBV (EC 11, EU236594; 140032-2, KP236130; 
BSRI1, KP264980; BSRI2, KP264976-KP264979; and 
BSRI3, KP264975).7,8,13

In the new era of deep sequencing, metagenomic pro-
filing of biological samples has yielded a greater diversity 
of pathogens than was previously detectable. For example, 
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recently, Ng et  al.7, using metagenomic approach, detected 
bovine influenza virus, bovine adeno-associated virus, bovine 
parvovirus, picobirnavirus, and multiple strains of BRAV and 
BRBV along with earlier reported viruses from BRD cattle 
samples. In another independent study, Hause et al.8 showed 
that BRAV and BRBV commonly circulate in BRD cattle. 
These findings raise a concern that similar to other BRD-
associated viruses, primary infection with BRVs could facili-
tate bacterial infection. Alternatively, BRVs may themselves 
cause BRD in some cases.

Previously, we characterized the near full-length 
genome length sequence of BRBV strain EC11 (EU236594, 
previously known as bovine rhinovirus type 2) and com-
pared virus-encoded RNA elements and proteins with the 
related Aphthoviruses.13,14 BRVs can be safely handled in 
a biosafety level 2 laboratory and have thus received more 
attention after Osiceanu et  al.15 proposed BRBV as a sur-
rogate model for FMDV anti-viral development, the latter 
being a virus that requires strict biosafety level 3 conditions 
for any manipulation. The reason for the strict laboratory 
guidelines for handling FMDV stems from the fact that it 
is the etiological agent of an economically devastating dis-
ease and is one of the most infectious animal viruses known. 
Like BRV and other Aphthoviruses, of which FMDV is the 
prototypic member, FMDV is a +ssRNA virus with a large 
open reading frame (ORF) flanked by two highly structured 
5′ and 3′ untranslated regions (UTRs). As with other Aph-
thoviruses, the FMDV ORF encodes a polyprotein that is 
subsequently proteolytically cleaved into a series of interme-
diate and mature proteins, and often this ORF is subdivided 
into three regions namely P1, P2, and P3. Just upstream of 
the P1 region exists the coding sequence for the Lpro, which 
is preceded by two different AUG start codons that results 
in two different isoforms of the enzyme (Lab and Lb). The 
P1 region encodes four structural proteins: VP4 (1A), VP2 
(1B), VP3 (1C), and VP1 (1D), while P2 and P3 encode 
nine nonstructural proteins: 2Apro, 2B, 2C, 3A, 3B1, 3B2, 
3B3, 3C protease (3Cpro), and 3D RNA-dependent RNA 
polymerase (3Dpol).

The Lpro of FMDV cleaves a variety of host factors in 
the cell cytoplasm, which prime the host cell environment for 
virus replication and help to subvert the host innate immune 
response. As such, Lpro is considered as a significant viru-
lence factor. In an effort to produce a useful vaccine platform, 
“leaderless” FMDV constructs were characterized, showing 
considerable attenuation relative to parental virus. In a sepa-
rate study, the Lpro of FMDV was functionally exchanged with 
BRBV Lpro to develop an FMDV–BRBV chimera vaccine.16 
This vaccine showed promise in controlling FMDV infec-
tion under controlled experimental conditions. However, we 
speculated that the observed similarity between FMDV and 
BRV has another face to reckon with. Organisms containing 
similar (homologous) sequences may undergo recombination. 
In fact, multiple in-depth examinations of publicly available  

Picornavirus sequences have revealed evidence of significant 
recombination events among the +ssRNA genomes of 
Picornaviridae members.17–21

A large percentage of the published in silico experi-
ments were conducted using viruses belonging to Entero-
virus, Aphthovirus, and Teschovirus genera, which are the 
most highly represented in the public sequence databases. 
Recombination events and potential “recombination break-
point hotspots”17 in the FMDV genome are reportedly con-
fined to regions encoding the non-structural proteins and 
sequences flanking the genes for the capsid proteins.17,18 
The delineated patterns are reportedly mirrored among 
other Picornavirus genera.18,20,21 Nucleotide segments 
encoding structural proteins appear to be largely free of 
recombination events, and such “recombination immunity” 
has been hypothesized to be the result of selection against 
potentially deleterious effects to genetic fitness. Indeed, the 
1A–1D structural genes of Aphthoviruses are flanked by 
“recombination breakpoint hotspots” at the leader–1A and 
1D–2A junctions.

A potential recombination between BRV and FMDV 
has never been observed in the past, thereby making BRVs 
an attractive target to explore its possible exploitation in 
designing chimeric vaccine candidates. Therefore, we sought 
to address the probability of recombination between the 
FMDV and BRV genomes and, in particular, BRAV RS3X. 
To this end, we performed several in silico comparisons of 
the nucleotide sequences of each virus. First, we examined 
the full genomic sequences of BRAV RS3X (also known 
as BRV type 1), FMDV A24 Cruzeiro, BRBV EC 11, and 
ERAV; and then different BRVs in each of the two species. 
Subsequently, we performed recombination analyses with 
software packages recombination detection program (RDP) 
version 4.65.22–26 Finally, positive selection pressure was 
first determined in the Aphthovirus genus involving BRAV 
RS3X and then within BRV species to infer the evolution-
ary ancestry of BRAV RS3X in relation to Aphthoviruses 
and BRVs.

This study details new and important genomic infor-
mation regarding Aphthoviruses in general and specifically, 
we report a new member of the bovine rhinoviruses, which 
is BRAV. Several bioinformatics tools employed in this study 
help to elucidate the molecular diversity of Aphthoviruses, 
and help to distinguish BRAV from other members of the 
virus lineage. The knowledge gleaned herein and the applica-
tions of these bioinformatics tools will assist other researchers 
to investigate novel viral pathogens.

Materials and Methods
RNA isolation, cDNA synthesis, and nucleic acid 

sequencing. Viral RNA was extracted from a field sample of 
BRAV RS3X (Ide and Darbyshire, 1969) using an RNeasy 
mini kit (Qiagen NV). First strand cDNA synthesis was 
performed using SuperScript® III First-Strand Synthesis 
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System for reverse transcription-polymerase chain reaction 
(RT-PCR; Thermo Fisher Scientific) with an oligo-dT primer 
and approximately 1 µg of total RNA as the template. Differ-
ent fragments of RS3X cDNA from the 5′ UTR end to the 
3′ UTR end were amplified in a model PTC-200 thermal 
cycler (MJ Research Inc.) and using the Phusion High Fidel-
ity PCR kit (Thermo Fisher Scientific) with specific primer 
pairs complementary to BRAV. The PCR reaction conditions 
used were according to the manufacturer's recommendations 
for amplification products between 5 kilobase (kb) pairs and 
9  kb pairs. The 5′ end of the genome between the putative 
poly(C) and VP3 coding regions was isolated by using a com-
mercially available rapid amplification of cDNA ends (RACE) 
kit (SMART™ RACE; Clontech Laboratories Inc.). A 3′ 
anchored cDNA was synthesized using the complimentary 
gene specific primer (VP3-R1: 5′ TTGGGCCTCACTCA-
GAGTGGTGGGGGGAT-3′) and by following the manu-
facturer's protocol. By using the Advantage® 2-PCR enzyme 
system, 5′ RACE reactions were carried out using anchor 
(universal primer mix) and gene-specific primers (VP3-R2: 
5′-TGGGTCCGCGGTGATGGGACTAGTGGTGC-3′) 
according to the manufacturer’s recommendations for ampli-
fication of products ranging from 1 kb to 5 kb. PCR products 
were purified using a PCR-purification kit (Qiagen NV), and 
the integrity of amplicons was confirmed on a 1% agarose gel. 
Sequences corresponding to the ends of the purified ampli-
cons were obtained by direct sequencing with specific prim-
ers designed from previously determined partial BRAV (SD-1) 
sequence. Subsequent sequence data were determined by using 
a “primer walking” strategy in which primers for sequencing 
were designed based on ongoing sequence determination. All 
sequencing reactions were carried out using the Big Dye Ter-
minator cycle sequencing kit (Thermo Fisher Scientific) and 
analyzed on a PRISM 3730xl automated DNA sequencer 
(Thermo Fisher Scientific).

Sequence assembly and genome annotation. Nucleotide 
sequences were assembled and analyzed with Sequencher 
(Gene Codes Corporation). The sequence reported in this 
work has been deposited in the GenBank database under 
accession number KT948520. All other GenBank accession 
numbers are indicated either in figures or figure legends.

Analysis of nucleic acid and amino acid sequences in 
relation to related Aphthoviruses. Molecular phylogenetic 
analysis by neighbor-joining method. The evolutionary history of 
BRAV RS3X was inferred by building P1 and 3Dpol coding 
region phylogeny in Picornaviridae using the neighbor-joining 
method based on the Jones–Taylor–Thornton (JTT) matrix-
based model for amino acid substitution27 included in MEGA 
6  software package.28 The bootstrap consensus tree inferred 
from 1,000 replicates is taken to represent the evolutionary 
history of the taxa analyzed.29 Positions containing gaps and 
missing data were eliminated (pairwise deletions only). There 
were a total of 1247 sites for the P1 region and 552 sites for 
3Dpol in the final dataset.

Selection pressure analysis. Selection pressure was evaluated 
by determining the natural selection mechanisms acting 
on the codons of the ORFs of Aphthoviruses and BRVs. 
These mechanisms were determined using hypothesis test-
ing using phylogenies package under the Datamonkey 
web-server (www.datamonkey.org).30 The dN/dS ratios (v) 
were calculated using three different codon-based maxi-
mum likelihood approaches: the single-likelihood ancestor 
(SLAC), fixed-effects likelihood (FEL), and the inter-
nal branch fixed-effects likelihood (IFEL).31,32 The mixed 
effects model of evolution (MEME) method, a branch-site 
model, was also employed for studying the selection pres-
sure. This method is a generalization of FEL, which models 
variable (v) across lineages at an individual site that could to 
detect smaller proportions of evolving branches subject to 
positive selection that would otherwise be detected as “neg-
atively” selected by FEL.33 For all the methods employed 
for the ORF datasets, the HKY 95  model was used as a 
nucleotide substitution bias model. Trees were inferred by 
the neighbor-joining method and significance levels were 
set at P , 0.05 or Bayes factor 0.50.

Recombination analysis. Possible recombination events 
among different Aphthoviruses and BRVs were assessed 
separately using RDP v.4.65.34 In default mode, RDP, 
GENECONV, CHIMAERA, MAXCHI, BOOTSCAN, 
PHYLPRO, LARD, SISCAN, and 3SEQ algorithms were 
utilized to detect potential recombination events between the 
input sequences.34

Structural modeling. Homology models of BRAV RS3X 
2B and FMDV A24 Cruzeiro 2B were built using the hepatitis 
C virus structure (protein data bank (PDB): 2MTS). VP1 of 
FMDV A24 Cruzeiro and BRAV RS3X were modeled using 
the FMDV type O capsid (PDB: 1FOD Chain 1) as a tem-
plate. All of the homology models were prepared on SWISS-
MODEL workspace.35–39 The stereochemical quality of the 
models was further validated with PROCHECK.40 Struc-
tures were rendered using USCF-Chimera 1.10.41

Results
Genome and genome encoded proteins. We sequenced 

the near full-length genome of BRAV RS3X (7,267 nucle-
otides) from a putative poly(C) tract at the 5′ UTR end to the 
poly(A) tail at the 3′ end.

5′ UTR. Starting with the 5′ UTR poly(C) of BRAV, 
RS3X shares 64.12%, 54.00%, and 41.03% nucleotide 
sequence identity to FMDV (A24 Cruzeiro), BRBV, and 
ERAV, respectively.

Lpro. ORF scan analysis suggests that Lpro of BRAV RS3X 
is smaller in comparison with the Lab form observed in other 
Aphthoviruses including FMDV, BRBV, and BRAV isolates 
BSRI 4 and 140032-1. As shown in Figure 1, the Lpro active 
site (highlighted in yellow color)42 and translation initiation 
factor-binding sites (highlighted in cyan color) are conserved 
among BRAVs. Importantly, in BRAV RS3X, these sites are 
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identical to other members of the Aphthovirus genus (Figs. 1A 
and B).43–45

P1 region. The structural protein VP4, the first encoded 
protein from the P1 region, shows the highest conserva-
tion among Aphthoviruses as well as BRVs. However, BRVs 
encode a longer VP4 protein than other Aphthoviruses. The 
N-terminus of VP2 is remarkably conserved among all Aph-
thoviruses. The rest of the VP2 protein and the entire VP3 and 
VP1 of BRVs and ERAV are distinctively different from that 
of FMDV. Additionally, the characteristic RGD tripeptide, 
which serves as the cell surface-binding site in the VP1 G–H 
loop of FMDV,46–48 is lacking in all other Aphthoviruses, sug-
gesting an alternative mechanism of their interaction/attach-
ment to the cell surface (Figs.  1A and B). Considering the 
absence of the RGD tripeptide in BRAV RS3X VP1, struc-
tural models of FMDV A24 Cruzeiro and BRAV RS3X were 
prepared and compared. Structural models of the two proteins 
when superimposed on each other show that the G–H loop 
region is completely disordered in the BRAV RS3X VP1 mol-
ecule, which reinforces the speculation that a different virus–
receptor interaction occurs on the cell surface (Fig. 2Bi).

Non-structural proteins. 2A containing a C-terminal 
ribosome-skipping motif NPG↓P encoded by all Aphtho
viruses (and many other Picornaviruses) is similar in size. The 
N-termini of 2A show greater variation, suggesting a lesser 
functional significance for this region.49,50

The most obvious differences between BRVs (including 
BRAV RS3X reported here) and FMDV (Figs. 1A and B) are 
the sizes of the 2B and 3A proteins as well as the number of 3B 
(VPg) peptides encoded. The N-terminus of the 2B “viropo-
rin”51–53 in all Aphthoviruses, but FMDV bears a significant 
deletion toward the N-terminus. TMMH (membrane protein 
topology prediction method) web server analysis revealed that 
2B of BRAV RS3X lacks a trans-membrane region that is 
observed in FMDV A24 Cruzeiro (Figs. 2Ai and ii). However, 
when we built a homology model of BRBV RS3X 2B using 
hepatitis C virus (HCV) p7 viroporin (PDB: 2MTS), the 
viroporin domain appeared to be conserved in BRAV RS3X 
and was very similar to HCV p7. In fact, the pore lining his-
tidine residue is only present in BRAV RS3X, and FMDV 2B 
lacks the pore lining α-helix altogether, suggesting a differ-
ent mechanism for FMDV 2B interaction with intracellular 
membranes (Fig. 2Bi).

The non-structural protein 3A contains two hydro-
phobic residues (L38 and 41 in FMDV) that are supposedly 
important for its attachment to intracellular membranes. 
Although the hydrophobicity of the amino acid resi-
dues corresponding to residues 38 and 41 of FMDV 3A 
are conserved among all the Aphthoviruses, the smaller 
3A of BRAV RS3X and ERAV followed by BRBV indi-
cates a divergence in the membrane association of 3A of 
these viruses from FMDV.54 The functional significance of 
smaller 2B and 3A proteins remains undefined and invites 
further investigation.

Furthermore, the 2C-ATPase is conserved in BRAV 
RS3X as well as other Aphthoviruses when compared to 
FMDV. Importantly, the amino acid residues corresponding 
to residues 116, 160, and 207 of FMDV 2C that are critical to 
2C activity are conserved in BRV RS3X and other Aphtho
viruses compared here (Figs. 1A and B).

FMDV is unique among Picornaviruses with respect to 
encoding three non-identical copies of the 3B (VPg) protein in 
its P3 region, although possible examples of two copies of VPg 
are speculated for members of the Aquamavirus, Mosavirus, 
and possibly Passerivirus genera (N.J.K., unpublished obser-
vations). Unlike FMDV, BRAV RS3X and all other Aphtho-
viruses encode only one copy of the nonstructural protein 3B 
that closely resembles the third non-identical copy of FMDV 
3B (3B3). Importantly, the tyrosine residue at position 3,  
a target for uridylation and a substrate for virus genome repli-
cation, is conserved in this single copy gene.55

Finally, as expected, both the 3Cpro and 3Dpol (high-
lighted in yellow color) are most conserved and catalytically 
important residues of the two proteins (highlighted in yel-
low color) are absolutely conserved in all the viruses com-
pared herein.56,57

Phylogeny. We constructed neighbor-joining phylo-
genetic trees of the structural protein region P1 as well as 
non-structural protein 3Dpol, the former being most diverse 
and latter being most conserved. The BRAV RS3X sequence 
reported in this study and all of the classified Picorna
viruses (54  species in 31  genera, as shown in Fig.  3) were 
utilized to illustrate the evolutionary space of BRAV RS3X 
in Picornaviridae.11 The amino acid sequences of the P1 and 
3Dpol regions were first aligned with the Muscle algorithm 
implemented in MEGA 6, and later were manually curated 
to ensure the accuracy of the alignment. Finally, a phylogeny 
tree was constructed as specified in the Materials and methods 
section. The resulting P1 phylogenetic trees (Fig.  3A) show 
clear divergence between the BRAVs separated by distinct 
nodes. The RS3X strain and isolate BSRI4 cluster together, 
while isolate SD1 forms another distinct node, and isolate 
H1 and strain 140032-1 form a third distinct cluster. Other 
Aphthoviruses including FMDV strain A24 Cruzeiro, BRBV, 
and ERAV each form separate nodes characteristic of their 
genera. However, as would be expected, all of the Aphtho-
viruses group together, thus proving their close evolutionary 
relationship within the genus Aphthovirus.

The NJ–JTT phylogeny tree of the 3Dpol region showed 
similar clustering of Aphthoviruses (Fig. 3B). BRAV RS3X 
and the isolates BSRI4, SD1, H1, and 140032-1 form a clus-
ter distinct from FMDV A24 Cruzeiro, BRBV, and ERAV. 
Finally, the order of relatedness exactly matched with that of 
the P1 region phylogeny.

Selection pressure analysis. Positive selection is a major 
mechanism of RNA virus evolution. Therefore, we first ana-
lyzed the selection pressure between Aphthoviruses that are the 
closest relatives to BRAV by including the BRAV RS3X strain, 
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Figure 1 (Continued)
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Figure 1 (Continued)
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Figure 1. (A) Alignment of polyprotein of Aphthoviruses: FMDV A24 Cruzeiro strain was used as a template for alignment and feature annotation and 
marked as FMDV A24 Cruz. BRAV RS3X (GeneBank: KT948520), BRBV EC-11 (GeneBank: EU236594) and ERAV (GeneBank: DQ272578) were 
aligned to FMDV A24 Cruz (GeneBank: AY 593768). Marks the start of a protein sequence (N-terminus of), and the text following it identifies the protein. 
Yellow highlights suggest functionally critical (active site residue). ( ) denotes a conserved residue in comparison to FMDV A24 Cruz. (-) denotes a gap 
introduced in the alignment. Cyan highlights indicate functionally important residues of a protein other than active site residues. Green highlights denote 
the RGD cell surface receptor. (B) Alignment of polyprotein of BRVs: Color code of highlighting and feature marking is the same as (A). Text at the 
beginning of each line is the sequence identifier for the given virus strain. For example, BRAV RS3X indicates BRAV RS3X sequence. The GeneBank 
accession numbers of the sequences used in the alignment are KT948520, KP236128, KP236129, JN936206, KP264974, EU236594, KP236130, 
KP264975, and KP264980 for BRAV RS 3X, BRAV Sd-1, BRAV 140032-1, BRAV H-1, BRAV BSRI4, BRBV EC-11, BRBV 140032-2, BRAV BSRI3, and 
BRAV BSRI1, respectively.
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FMDV A24 Cruzeiro, BRBV, and ERAV by various methods 
included in the Datamonkey web-server. The results shown in 
Table 1 show that the SLAC method did not detect any codon 
site subject to positive selection between these viruses. How-
ever, the FEL method detected codon sites 489 and 832 in the 
structural protein P1 region and codon site 1958 in the 3Dpol 
region under positive selection pressure. The IFEL method 
that computes site-wise selection only on the internal branches 
of the phylogeny tree detected 14 sites subject to positive evolu-
tionary selection, with ten sites in the 3Dpol region and four in 
the structural protein P1 region. Together, these data suggest 
that the 3Dpol region has the higher prevalence of evolutionary 
selection. SLAC and FEL methods detected 363 and 425 sites 
under negative evolutionary pressure, whereas IFEL unexpect-
edly found only 3 sites under negative selection. It appears that 
the selection pressure detected by IFEL, by virtue of working 
on the internal branches of the phylogeny tree, detects mostly 
the selection events within species and hence BRAV RS3X 
and BRBV, being more closely related, would yield such unex-
pected results.

Analysis of selection pressures acting among BRVs by 
the SLAC method did not detect any positive selection. The 
FEL method detected one codon site, 680  in the structural 
protein region under positive selection. However, the IFEL 
method detected six codon sites subject to positive selection. 

Four of these sites (614, 617, 680, and 811) are in the structural 
proteins, one (139) in Lpro, and one (1806) in 3Cpro. All three 
methods identified numerous sites under negative selection 
pressure in BRVs with SLAC, FEL, and IFEL detecting 511, 
1143, and 843 sites subject to negative selection, respectively. 
The MEME method, which represents an advancement to the 
FEL method and detects positive selection sites that would be 
detected negative in the FEL method, detected 6 codon sites 
under positive selection among Aphthoviruses: three in the 
3Dpol region at positions 2054, 2331, and 2394; one at position 
49 in the Lpro region; and sites 735 and 884 in the P1 structural 
region (Table 1). Among BRVs, the MEME method detected 
22 sites subject to positive purifying selection and distributed 
evenly along the ORF, clearly suggesting the existence of 
strong positive selection within BRV species (Table 2).

Determination of potential recombination events. 
During recombination, two molecules of DNA or RNA 
that carry matching sites (homologous sequences) exchange 
their segments to yield novel combinations. In fact, recom-
bination is considered to contribute significantly to RNA 
virus evolution. When analyzing a group of nucleotide 
sequences for the probability of recombination events, the 
most common first step is to search for so-called “recom-
bination breakpoints” in the existing sequences. Multiple 
algorithms have been designed to dissect an alignment of 

(i) Prediction of trans-membrane domains in FMDV A24 2B

(ii) Prediction of trans-membrane domains in BRAV RS3X 2B
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Table 1. Distribution of positively or negatively selected sites among Aphthoviruses.

Analysis Negative sites Positive sites 

No. Codon site AvG.   
dN/dS 

P-value No. Codon site AvG.  
dN/dS 

P-value 

SLAC 363 N.A. 7.65015e-05 0.004–0.05 0 N.A. N.A. $0.05

FEL 425 N.A. 0.001946 0.002–0.05 3 489, 832, 1958 Infinite 0.038–0.045 

IFEL 3 1119, 2001,  
2439

0.0003 0.002–0.05 14 393, 431, 465, 
993, 1123, 1471,  
1742, 1880, 1901,  
1914, 1920, 2055,  
2059, 2331

Infinite 0.008–0.05

MEME N.A. N.A. N.A. N.A. 6 49, 735, 884, 2054,  
2331, 2394

N.A. 0.015–0.048

Figure 2. (A) Prediction of the transmembrane domain in: (i) FMDV A24 Cruz 2B and (ii) BRAV RS3X 2B. Color codes for different features are explained 
adjacent to each image. (B) Modeled structures of VP1 structural proteins of (i) FMDV A24 Cruz and BRAV RS3X are colored cyan, the G–H loop is 
marked with a yellow oval, and the RGD tripeptide is marked with cyan text. N- and C-terminus of the proteins in the structure are marked. (ii) The 
prediction of the 2B viroporin of: FMDV A24 Cruz (purple) and BRAV RS3X (cyan) were superimposed on HCV p7. N- and C-terminus of the proteins 
in the structure are marked. Structure-based sequence alignments are positioned to the left of each image. All structures are rendered in cartoon 
representation using UCSF-Chimera ver 1.10

several nucleotide sequences for local regions that exhibit 
the hallmarks of a recombination breakpoint. The RDP 
software package uses multiple algorithms, such as RDP, 
GENECONV, CHIMAERA, MAXCHI, BOOTSCAN, 
PHYLPRO, LARD, SISCAN, and 3SEQ. In its default 
mode, RDP calculates even the least possible event. How-
ever, a recombination event should only be considered sig-
nificant if it is evidenced by multiple methods. In this study, 
we considered an event to be significant only when evidence 
was provided by four or more methods. In this way, we could 

take into account the results produced by four out of nine 
methods employed. Such a strategy has been applied to 
interpret the recombination events detected using RDP.58 
Table 3 shows the results from an analysis of BRAV RS3X 
and three other viruses: FMDV A24 Cruzeiro, BRBV, and 
ERAV. Due to several breaks produced in the ORF due to 
inclusion of both the 5′ and 3′ UTR, these regions were 
excluded from the alignment and only single ORFs from 
the Lpro to 3Dpol regions of these viruses were aligned and 
included for recombination detection. RDP that recognizes 
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Table 2. Distribution of positively or negatively selected sites among Bovine rhinitis viruses.

Analysis Negative sites Positive sites

No. AvG. dN/dS P-value No. Codon site Avg. dN/dS P-value 

SLAC 511 0.116349 0.005–0.05 0 N.A. N.A. $0.05

FEL 1143 0.016 $0.05 1 680 Infinite 0.034

IFEL 843 0.00539 0.002–0.05 6 139, 614, 617, 680, 811, 1806 Infinite 0.008–0.05

MEME N.A. N.A. N.A. 22 3, 5, 95, 448, 617, 630, 667, 684, 733,  
789, 798, 811, 961, 985, 1008, 1010,  
1249, 1412, 1479, 1490, 1745, 1901

N.A. 0.001–0.05
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even the remotest possible event, recognized six potential 
recombination hot spots in the ORF of these viruses, and 
BRAV RS3X was involved in five of them. However, none 
of these were confirmed by more than four methods set 
up as cut-off, and hence we concluded that the possibility 

of inter-species recombination between different Aphtho
viruses analyzed herein is negligible.

We then analyzed different BRVs for potential recom-
bination events using RDP. As shown in Table  4, in con-
trast with inter-species recombination being insignificant 

3Dpol NJ tree (JTT)
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Figure 3. Neighbor-joining phylogeny trees of the P1 structural protein region (A) and 3Dpol non-structural protein (B) of family Picornaviridae including 
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within species, BRVs carry multiple recombination hot spots 
distributed throughout the ORF. No less than six of these 
were reproducible by multiple methods highlighting that these 
points are real recombination break points.

The findings of these algorithms (Tables  3 and 4) for 
the assessment of recombination potential are consistent with 
other published studies regarding the potential of Picornavirus 
genomes to undergo recombination events.34 We concluded 
based on these findings and what was previously described in 
the existing literature that the likelihood of detecting recom-
bination events between FMDV and BRV could be described 
as highly remote. We also inferred that given the absence of 
prior exchanges between the genomes with two different sam-
ple pools, the chance of future exchanges would be novel and 
highly unlikely.

Discussion
In this study, a novel strain RS3X of BRAV was sequenced to 
its near full-length. Annotation of features and comparison 
of sequence alignment of BRAV RS3X to related Aphthovi-
ruses and BRVs revealed several unique features in its genome. 
As one would expect, the BRAV RS3X sequence exhibits 
conserved features of the BRAV species. Major differences 
between the prototypic Aphthovirus FMDV and BRAV 
RS3X were observed in the architecture of capsid and non-
structural proteins 2B and 3A. Only the capsid protein VP1 of 
FMDV displays a cellular integrin-binding arginine-glycine-
aspertate (RGD) tri-peptide motif in its G–H loop.46–48 The 
remaining three Aphthoviruses (BRAV, BRBV, and ERAV) 
lack this essential cellular receptor-binding site as revealed 
by structural modeling and analysis of sequence alignment, 
suggesting a different mechanism of cell attachment for these 
viruses. In fact, the ERAV crystal structure revealed that it 
binds the cell surface via sialic acid.59 The 2B viroporin of 
BRAV RS3X is significantly smaller than FMDV, and lack 
of a C-terminal trans-membrane helix of the former indicates 
a diversion in its topology or function from FMDV. Surpris-
ingly, the modeled structure of the 2B protein from FMDV 
and BRBV suggest that the latter preserves the membrane 
pore-lining histidine residue, whereas FMDV 2B lacks this 
characteristic feature of a viroporin molecule.60 Conservation 
of active sites and other functionally critical residues in Lpro, 
2Apro, 3Cpro, 3Dpol, and membrane anchorage residue in the 
3A protein of BRAV RS3X when compared with Aphthovi-
ruses (FMDV, BRBV, and ERAV) and within BRV species 
reinforces the functional retention of the molecular biology of 
Aphthoviruses in BRAV RS3X.

Neighbor-joining phylogenetic trees constructed with 
the most diverse P1 region and most conserved 3Dpol region 
parallel each other, confirming the accuracy of phylogeny tree 
inference. In both analyses, RS3X clustered with BRAV iso-
lates, confirming its classification in that species. The close 
proximity of BRAV RS3X with isolates BSRI4 and SD-1 
suggests a closer evolutionary relationship between these  Ta
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t. isolates, thus confirming their classification in the BRAV-1 
serotype (formerly known as bovine rhinovirus type 1) to 
which it is antigenically related. Isolates H-1 and 140032-1 
form a distinct cluster which has been serologically classified 
as a second serotype, BRAV-2 (formerly known as bovine rhi-
novirus type 3).

Potential recombination breakpoints in the genomes 
were detected with sites identified flanking the P1 region 
containing the structural protein-coding sequences and 
others further downstream in a region containing the non-
structural protein-coding sequences. The evaluation of 
potential recombination breakpoints was performed using 
distinct sets of algorithms dependent upon which software 
package was employed. The similarity in results obtained 
using both algorithmic sets strengthens the final conclusion 
that recombination events are unlikely between the FMDV 
and BRV genomes within the regions encoding the struc-
tural proteins. Based on examination of the recombination 
analysis data of Aphthoviruses and BRVs, we conclude that 
the inter-species recombination events involving FMDV, 
BRAV, BRBV, and ERAV do not seem likely. However, 
within each of the two BRV species, the occurrence of 
multiple recombination breakpoints confirms an underly-
ing phenomenon of homologous recombination-mediated 
generation of diversity in Picornaviridae.61–63 Despite being 
the earliest discovered animal virus, there is no report of 
FMDV recombining with any other virus. On the other 
hand, there is a significant probability for intra-species 
recombination within each of the two BRV species. In fact, 
multiple studies have shown intra-species recombination in 
the prototypic Aphthovirus FMDV.58,64–67

Selection pressure analysis is a significant methodology 
for depicting a common lineage for rapidly evolving organ-
isms, and has been employed extensively in inferring the 
evolutionary information of viral populations.32,58,68–71 Given 
that multiple analytical methods were employed in this study, 
there is a high degree of confidence added to the interpreta-
tion that positive selection is not operating between BRV and 
other Aphthoviruses. The observed higher number of posi-
tive selection breakpoints among BRVs is not a surprise and 
reinforces their common ancestry. As expected, negligible evi-
dence of single-point positive selection sites proves a parallel 
but distinct lineage of the different Aphthoviruses included in 
this study.

In conclusion, the data from this study provide valuable 
information on Aphthoviruses and, more precisely, BRAV to 
serve as the genetic basis for future studies. Detailed knowl-
edge of the evolution and divergence of Aphthoviruses at the 
molecular level could aid in the design of BRV-based mole
cular diagnostic tools and new bio-therapeutics.
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