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A B S T R A C T

Background and purpose: Deep-learning-based automatic segmentation is widely used in radiation oncology to 
delineate organs-at-risk. Dual-energy CT (DECT) allows the reconstruction of enhanced contrast images that 
could help with manual and auto-delineation. This paper presents a performance evaluation of a commercial 
auto-segmentation software on image series generated by a DECT.
Material and methods: Different types of DECT images from seventy four head-and-neck (HN) patients were 
retrieved, including polyenergetic images at different voltages [80 kV reconstructed with a kernel corresponding 
to the commercial algorithm DirectDensity™ (PEI80-DD), 80 kV (PEI80), 120 kV-mixed (PEI120)] and a virtual- 
monoenergetic image at 40 keV (VMI40). Delineations used for treatment planning were considered as ground 
truth (GT) and were compared with the auto-segmentations performed on the 4 DECT images. A blinded qual
itative evaluation of 3 structures (thyroid, left parotid, left nodes level II) was carried out. Performance metrics 
were calculated for thirteen HN structures to evaluate the auto-contours including dice similarity coefficient 
(DSC), 95th percentile Hausdorff distance (95HD) and mean surface distance (MSD).
Results: We observed a high rate of low scores for PEI80-DD and VMI40 auto-segmentations on the thyroid and 
for GT and VMI40 contours on the nodes level II. All images received excellent scores for the parotid glands. The 
metrics comparison between GT and auto-segmented contours revealed that PEI80-DD had the highest DSC 
scores, significantly outperforming other reconstructed images for all organs (p < 0.05).
Conclusions: The results indicate that the auto-contouring system cannot generalize to images derived from DECT 
acquisition. It is therefore crucial to identify which organs benefit from these acquisitions to adapt the training 
datasets accordingly.

1. Introduction

Most head-and-neck cancer (HNC) patients are treated with radio
therapy (RT). Following the treatment, the patient can be subject to 
locoregional recurrences [1] but also several side effects that can affect 
their quality of life [2]. To prevent those complications, ongoing efforts 
are being made to define organs at risk (OAR) and target volumes more 
precisely [3]. However, this stage is a time-consuming task, subjected to 
high intra and inter-observer variability [4]. Variation in delineation 
can have many origins, in particular difficulties in interpretation due to 
the limited contrast of conventional CT acquisitions [5], generating 
disagreement about the disease extensions [6]. To address this 

variability, different guidelines for HNC delineation exist [7] but dif
ferences in clinical practices still remain. Intra and inter-observer vari
ability can be evaluated with metrics like the dice similarity coefficient 
(DSC). According to Van der Veen et al. (2021) [8], results in DSC can 
vary considerably between physicians (n = 22) even for structures with 
good mean agreement such as submandibular glands [median DSC = 0.8 
(0.5–0.9)]. For target volumes, several recent studies have attempted to 
measure this variability [9,10,11] with a comparison of the clinical 
target volumes delineations and the same conclusion can be drawn, 
highlighting the need to use complementary imaging modalities (Mag
netic Resonance Imaging, Positron Emission Tomography) and to refine 
the guidelines. However, the use of a complementary imaging modality 
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introduces additional uncertainties due to multi-modal image 
registration.

Dual-energy CT (DECT) has already been used in diagnostic radi
ology since the mid-2000 s and is now subject to a growing interest in RT 
[12–14]. By acquiring images at 2 complementary voltages, this tech
nology makes it possible to reconstruct different types of images such as 
polyenergetic images, mixed images, or virtual-monoenergetic images 
(VMI) [15]. A mixed image corresponds to a linear combination of the 
two acquired image stacks, making it possible to recover 120 kVp 
standard CT. VMI of low energies have an increased contrast for iodine, 
soft tissue and nodes while VMI of higher energies reduce artifacts 
around bones or high density materials at the expense of the contrast 
[16]. Usually, VMI at 40–65 keV are presented as the images with the 
most optimal contrast for the visualization of structures such as lymph 
nodes (LN), vessels and tumors [17,18].

The clinical implementation of this technology could facilitate and 
harmonize manual segmentation [19], but also opens up new prospects 
for auto-segmentation [20]. Nowadays, deep-learning (DL) based auto- 
segmentation is broadly implemented in clinics for OARs [21]. However, 
such tools were mainly trained on single energy CT (SECT) images [22], 
with limited soft tissue contrast [23]. As an example, in the study by 
Heilemann et al. (2023) [24], three auto-segmentation tools were tested 
in all OARs and compared to physicians’ segmentation. The mean DSC 
for all organs were above 0.74 for each tool but small or thin structures 
like chiasm, cochlea and optic nerves had a DSC below the acceptance 
level (0.7). This shows that auto-segmentation still has room for 
improvement especially with the prospect of target volumes delineation 
[25].

This study was conducted to test, in a single-center setting, the per
formance of a commercial auto-segmentation software on images 
derived from a DECT scanner. The aim of this work is to evaluate the 
ability of auto-segmentation tools trained on conventional polyenergetic 
images to adapt to DECT images.

2. Material and methods

2.1. Patient cohort and DECT image series description

A retrospective cohort of seventy four HNC patients with squamous 

cell lesions treated in the RT department of Gustave Roussy (Villejuif, 
France) between October and December 2023 was gathered (Table 1). 
All patients benefited from a DECT acquisition with the Siemens 
SOMATOM go.Sim® CT scanner (Siemens Healthineers, Forcheim, 
Germany). The go.Sim® is a single source CT on which the acquisition is 
performed in 2 consecutive passages: 80 kVp and 140 kVp with a tin 
filter for spectral separation. All acquisitions were performed in treat
ment position. A 90 mL biphasic contrast medium injection of 320 mg 
Iodine/mL (Visipaque, GE Healthcare, Velizy, France) was used for 87.8 
% of the patients. First, 40 mL at 1.5 mL/s was injected followed by a 3 
min break, then the remaining 50 mL of injection was administered at 
1.5 mL/s. The DECT acquisition started 5 s before the end of the second 
injection. Acquisition pitch and rotation time were 0.8 and 0.5 s 
respectively. For all reconstructions, slice thickness and increment were 
set to 2 mm, and iMAR® option was applied for metal dental implant 
artifact correction.

Overall, 4 series per patient were retrieved for the study 
(Supplementary Fig. S1): 

• a polyenergetic image at 80 kV with Sm36 kernel corresponding to 
the Direct-Density (DD) algorithm® (PEI80-DD). This algorithm 
transforms Hounsfield units (HU) to get a unique HU-to-mass density 
lookup table that is independent of the acquisition kV. DD kernel 
reduces contrast of high density materials so the image resembles a 
non-contrast enhanced image. The field-of-view (FOV) was set to 
600 mm to include external body contours and immobilization 
devices.

• a polyenergetic series at 80 kV with Br36 kernel (PEI80): the Br36 
(Body regular) filter restores the iodine contrasting effects. In clinics, 
this series is used by physicians to see vessels and should enable the 
doctors to check and correct auto-segmentation. The FOV was set to 
500 mm.

• a VMI at 40 keV with Qr40 kernel (VMI40): this spectral image series 
is reconstructed with a Quantitative regular kernel; it was selected 
because of its high contrast potential for soft tissues, especially to 
visualize the gross tumor volumes (GTV) [17].

• a mixed image equivalent to a SECT image at 120 kV with Qr40 
(PEI120); we chose to include this series in our study as 120 kV is 
broadly used in RT for delineation and treatment planning.

The utilization of the retrospective cohort was performed under the 
General Data Protection Regulation (GDPR) and approved by the Insti
tutional Review Board (n◦ IRB2023-278 Gustave Roussy cancer 
campus).

2.2. Organs at risk delineation

OARs were delineated with the help of ART-Plan® Annotate™ 
(TheraPanacea, France), a CE-marked solution for automatic annotation 
of OARs in RT. In this study, ART-Plan v1.11.5 was used. According to 
the information provided by the manufacturer, the training set (>300 
patients per structure) included high-voltage scanners (100–140 kVp) 
performed with and without injection of contrast medium for organs 
located in the HN region.

In the clinical workflow, OARs auto-segmentation was performed on 
PEI80-DD series then imported into our treatment planning software, 
RayStation V2023B (RaySearch, Stockholm, Sweden). A resident veri
fied and corrected the contours when necessary using PEI80 and VMI40 
according to atlases such as Gregoire et al. (2014) [26]. Then, a senior 
physician double checked the contours. The final contours obtained, 
attached to PEI80-DD, served for dose calculation and are referred to as 
GT (Ground Truth) in this paper. A total of 5 residents and 5 seniors were 
involved in the contouring process.

Table 1 
Description of the patient cohort.

Characteristics Cohort (n ¼ 74)

Tumor Location
Oral cavity 10 (13.5 %)
Oropharynx 34 (45.9 %)
Larynx 8 (10.8 %)
Hypopharynx 4 (5.4 %)
Nasopharynx 6 (8.1 %)
Salivary glands 3 (4.1 %)
Other 9 (12.2 %)

TNM Stage
Stage I 2 (2.7 %)
Stage II 1 (1.4 %)
Stage III 16 (21.6 %)
Stage IVA 37 (50.0 %)
Stage IVB 10 (13.5 %)
NA 8 (10.8 %)

Surgery
Yes 32 (43.2 %)
No 42 (56.8 %)

CT with injected contrast
Yes 65 (87.8 %)
No 9 (12.2 %)
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2.3. Structures of interest

A list of thirteen structures of interest for the study was derived from 
discussions with the physicians: 10 left and right LN areas (I, II, III, IV 
and V), the parotid glands and the thyroid. The parotid glands were 
considered as reference volumes, given the good performance of auto- 
contouring software reported in the literature [27]. LN areas are often 
poorly segmented by automatic segmentation tools, and are therefore 
almost always corrected by doctors [28]. The same goes for the thyroid 
which can be wrongly auto-segmented due to its proximity with blood 
vessels.

2.4. Qualitative assessment

First, we established a blinded evaluation to qualitatively assess the 
contours. We evaluated clinical contours and those resulting from auto- 
segmentation on PEI80-DD, PEI80, PEI120, and VMI40 (i.e., 5 contours 
per organ) for 3 OARs (thyroid, left parotid, and left LN II). Thirty pa
tients from the 74 included in the cohort were selected for this analysis, 
resulting in the evaluation of one hundred fifty contours. Two doctors 
(NS referred as doctor 1: 4 years of expertise; RS referred as doctor 2: 3 
years of expertise) were asked to grade the contours (A = no correction 
needed, B = minor corrections, C = major corrections needed). They had 
access to the 4 DECT series without knowing on which series the con
tours had been auto-segmented and were allowed to choose the CT series 
on which they would evaluate the contours.

2.5. Metrics for quantitative performance evaluation

To assess the segmentation results, 3 metrics were analyzed: the DSC 
[29], the 95th percentile Hausdorff distance (HD95) [30] and the mean 
surface distance (MSD) [31]. All the metrics were computed using the 
deepmind Python library [32].

2.6. Statistical analysis

For each OAR, the distribution of DSC, 95HD and MSD of the 4 image 
series were compared using a Wilcoxon signed-rank test [33] with a 
level of significance set to 0.05.

3. Results

3.1. Qualitative assessment of the automatic delineation of OARs by 
doctors

Doctor 1 chose to work on both PEI80 and VMI40 to evaluate the 5 
contour sets while doctor 2 preferred PEI80. Scores resulting from the 
blinded evaluation of all the contours are reported in Fig. 1. There was a 
difference in marks between doctor 1 (Fig. 1a) and 2 (Fig. 1b), with more 
B marks for doctor 1 in general. C scores attributed by the 2 doctors were 
close (±2) except for GT and VMI40 node contours. For the thyroid, the 
auto-contour based on PEI80-DD presented the most C scores (doctor 1 
and 2: 12), followed by VMI40 (doctor 1: 10, doctor 2: 8); and PEI80 the 
most A-score (doctor 1: 9, doctor 2: 12) beside the GT (doctor 1 and 2: 
13). GT contours were categorized as C in 7 and 5 cases by doctor 1 and 
doctor 2 respectively. The left parotid had 1 to 3 C-scores for each 
contour. Concerning the left LN area II, GT got the most C (doctor 1: 10, 
doctor 2: 6), closely followed by the auto-contours of VMI40 (doctor 1: 
9, doctor 2: 6).

3.2. Performance metrics and statistical analysis

Four percent of auto-contoured structures had a DSC ≥ 0.99 and 
95HD and an MSD ≤ 0.01 mm on the PEI80-DD series, suggesting that 
they were not corrected by the doctors.

The auto-segmentation results summarized in Fig. 2 show box plots 
of DSC (a), 95HD (b) and MSD (c) from the seventy four patients per 
structure. This comparison reveals that GT vs PEI80-DD had the highest 
scores in terms of median DSC ranging from 0.68 for IV R to 0.91 for 
parotid R (Supplementary Table S2). The statistical analysis (Fig. 3) 
confirms that GT vs PEI80-DD DSC results were significantly different 
from all the other DSC distributions for all organs (p < 0.05). The second 
series which had the closest contours to the GT in terms of DSC was 
PEI80 with median scores varying from 0.64 for structure IV R to 0.87 
for parotid R. However, GT vs PEI80 DSC distribution cannot be 
considered significantly different from PEI120 and VMI40 for LN areas 
(p > 0.05).

Fig. 2(b) and (c) show 95HD and MSD results without the outliers 
(95HD > 45 mm and MSD > 20 mm). GT vs PEI-80DD holds the shortest 
median 95HD for majority of the structures ranging from 2.3 to 9.1 mm 
respectively for parotid R and IV R LN areas. The results could not be 

Fig. 1. Results of blinded qualitative assessment of automatic contours as obtained by ART-PLAN® and GT contours on the thyroid, parotid L and II L (L: Left) lymph 
node area by doctor 1 (a) and doctor 2 (b) – data from thirty patients were analyzed in this study.

A.T. Lê et al.                                                                                                                                                                                                                                     Physics and Imaging in Radiation Oncology 32 (2024) 100654 

3 



Fig. 2. Performance results of automatic segmentations on the series set from 13 different structures in terms of DSC, 95HD and MSD metrics, respectively shown in 
sub-figures (a), (b) and (c) (L: Left, R: Right).
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considered significantly different (p > 0.05) for most LN areas and 
thyroid between GT vs PEI-80DD and GT vs the other images (Fig. 3). In 
terms of MSD, the difference in performance between GT vs PEI80-DD 
and the other series set seemed similar to DSC results for all the struc
tures except LN III, IV and V for which PEI80-DD was not significantly 
different from the others (p > 0.05): its median ranged between 1.1–1.5 
mm for the nodes level I, II and III and was <0.8 mm for the parotids and 
thyroid.

Fig. 4 shows illustrative cases with the greatest positive and negative 
difference of DSC between GT vs PEI80-DD and GT vs the other series, 

and an unmodified case (DSC = 0.99) for the thyroid. In Fig. 4(a), cor
responding to the best DSC case for PEI80-DD (DSC = 0.89), the auto- 
segmentation on the other images shows underestimated volumes. 
Fig. 4(b) illustrates one of the cases where auto-segmentation performed 
poorly on PEI80-DD (DSC = 0.66) on the thyroid compared to the other 
series (DSC = 0.81–0.87). PEI80 auto-segmentation included the carotid 
artery. In Fig. 4(c), being the unmodified PEI80-DD contour case (DSC =
0.99), the thyroid is not enhanced in any of the series. The algorithm had 
also included the carotid artery in the segmentation for PEI80-DD, PEI80 
and PEI120 that was not corrected by the physician. In the present case, 

Fig. 3. P-values (Dark blue: p < 0.05, light blue p > 0.05) resulting from the Wilcoxon test on all distribution metrics (DSC, 95HD and MSD) for all 13 structures.

Fig. 4. Samples of ground truth (= clinical) segmentation (red) and segmentation output from ART-PLAN® Annotate™ (blue) on PEI80-DD, PEI80, PEI120, VMI40 
and their metrics scores depicting respectively different patients for whom ART-PLAN Annotate auto-segmentation obtained the best (a), the worst (b) and close to 1 
(c) DSC scores for PEI80-DD compared to the other series for the thyroid (Contrast window width/level: 400/100 PEI80-DD, 600/100 PEI80, 500/100 PEI120 and 
800/100 VMI40).
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automatic contouring based on VMI40 series performed poorly, 
returning a fragmented structure (DSC = 0.54).

4. Discussion

This study used a retrospective cohort of seventy four patients to 
assess the ability of a DL-based commercial solution to generalize to non- 
conventional CT images. The performance of ART-PLAN® Annotate™ 
was tested by analyzing thirteen structures for head-and-neck RT on 4 
different DECT images.

In the qualitative study, the analysis revealed that there are more B- 
scores from doctor 1 than doctor 2 demonstrating the inter-observer 
variability between doctors. Additionally, the blind examination of the 
GT contours for retrospective cases raised concerns regarding the ac
curacy of LN delineation: doctor 1 assigned a C-grade to 10 patients, and 
doctor 2 to 6 patients, which highlights the inherent difficulty of the 
delineation task. Concerning the thyroid, the performance of auto- 
contouring on PEI80-DD was found poor by both doctors. As illus
trated on Fig. 4(b), the auto-segmentation of the thyroid on PEI80-DD 
wrongly included the carotid artery and needed correction while the 
auto-segmentation on PEI80, PEI120 and VMI40 were equivalent. DD 
may be the cause for the lack of contrast for those structures. Both 
statements suggest that PEI-80DD might not be the best series for seg
menting structures close to blood vessels like the thyroid.

In a rather contradictory way, quantitative results (Fig. 2) showed 
the closest results to the GT on PEI80-DD auto-segmentation followed by 
PEI80 while VMI40 seems to have the most different results to the GT. At 
the time, we integrated the VMI40 to our clinical protocol based on 
literature about contrast enhancement for the target volume, which 
leans towards VMI of lower energies (40–65 keV) [17,18,34]. Wang 
et al. (2019) [35] investigated the optimal energy leading to the best 
contrast-noise-ratio (CNR) in head-and-neck, for 4 OARs including the 
parotid. They used VMI ranging from 40 to 190 keV with 5 keV incre
ment and obtained the maximum CNR for the VMI of 80 keV. Hence, it is 
possible that VMI40 is not optimal for OAR segmentation of HNC and 
that a higher energy could be used as a supplement with the purpose of 
improving OAR delineation [36]. Also, and most importantly, ART- 
PLAN® Annotate™ segmentation algorithm is not trained with any type 
of contrast-enhanced images derived from a DECT. Indeed, ART-PLAN® 
Annotate™ training dataset is solely composed of conventional CT from 
100 to 140 kVp which could explain the suboptimal response to the VMI. 
It is possible that VMI image quality might be out-of-distribution data for 
the DL-algorithm. Monoenergetic images could still reveal great poten
tial for segmentation if the gain in contrast could be effectively used in a 
DL algorithm.

Our study has several limitations. As our physicians focus their 
corrections around the PTV and are less demanding with structures afar, 
the use of the clinical contours as GT can constitute a bias. Moreover, 
variability in scores for the GT in the qualitative results (Fig. 1) already 
suggests that the physicians are not completely confident with the 
clinical contour of certain structures. This raises doubts about the con
tours acceptability which needs to be evaluated according to the treat
ment planning objectives. For each patient, 2 physicians inspected the 
results of the auto-segmentation and corrected them, with a total of 10 
physicians for the whole cohort. The use of a Simultaneous Truth and 
Performance Level Estimation [37] as the ground-truth for each organ 
could have made the study more robust. Moreover, doctors may use a set 
of images for segmentation but they delineate structures on PEI80-DD in 
the clinical workflow, which also constitute a bias. In this context, DSC 
comparing PEI80-DD to GT reflects the amount of modification made by 
the physicians on each OAR. Since the implementation of the DECT 
protocol in our RT department, PEI80 has been praised by physicians for 
its image quality for enhancing soft tissue contrast. It is possible to 
imagine a segmentation performed on PEI80 instead of PEI80-DD. 
However, a risk analysis needs to be conducted as for all RT protocols 
we use a unique DD LUT for dose calculation. If a structure needs 

correction, the physician would most likely use PEI80 and rarely move 
on to VMI40 by habit as the previous protocol only used PEI80 as a help 
for segmentation. Also, the contrast in VMI40 can be really strong 
especially near bone structures which can be disruptive for the physi
cian. At the moment, doctors have not changed their practices and only 
use the VMI40 series as a last resort to delimit the target volume when 
complementary imaging modalities are not satisfactory. This type of 
image needs specific contrast window adjustments based on HU of the 
structure of interest and its surroundings. This raises a question about 
the need of training physicians to be more familiar with the use of DECT 
images in the clinical workflow. Finally, our study did not allow to 
determine with confidence which image would best help the doctor in 
his delineation task. However, we highlighted the performance limita
tions of a commercial software auto-segmentation for non-conventional 
CT images. The next step would be to identify which DECT images for 
which organ could improve the performance of the industrial tools.

In conclusion, our results have highlighted that not only auto- 
segmentation is influenced by image quality, but radiation oncologists 
are influenced by the image series that is used for treatment planning on 
which they validate their contours. DECT scanners allow the recon
struction of a large choice of images at different energies. It is therefore 
important to identify the structures that would benefit from these non- 
routine images and to discuss with manufacturers so that they re-train 
their DL algorithms on the image qualities best suited for the organ 
concerned. Finally, there is an urgent need for editors of treatment 
planning systems to facilitate the use of several series of CT images 
different from the series used to calculate the dose.
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