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Aging is the most important risk factor for the development of major life-threatening
diseases such as cardiovascular disorders, cancer, and neurodegenerative disorders.
The aging process is characterized by the accumulation of damage to intracellular
macromolecules and it is concurrently shaped by genetic, environmental and nutritional
factors. These factors influence the functionality of mitochondria, which play a central
role in the aging process. Mitochondrial dysfunction is one of the hallmarks of aging
and is associated with increased fluxes of ROS leading to damage of mitochondrial
components, impaired metabolism of fatty acids, dysregulated glucose metabolism, and
damage of adjacent organelles. Interestingly, many of the environmental (e.g., pollutants
and other toxicants) and nutritional (e.g., flavonoids, carotenoids) factors influencing
aging and mitochondrial function also directly or indirectly affect the activity of a highly
conserved transcription factor, the Aryl hydrocarbon Receptor (AhR). Therefore, it is not
surprising that many studies have already indicated a role of this versatile transcription
factor in the aging process. We also recently found that the AhR promotes aging
phenotypes across species. In this manuscript, we systematically review the existing
literature on the contradictory studies indicating either pro- or anti-aging effects of
the AhR and try to reconcile the seemingly conflicting data considering a possible
dependency on the animal model, tissue, as well as level of AhR expression and
activation. Moreover, given the crucial role of mitochondria in the aging process,
we summarize the growing body of evidence pointing toward the influence of AhR on
mitochondria, which can be of potential relevance for aging.
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1. AGING HALLMARKS AND ASSOCIATED CHANGES

Aging is defined as the time-dependent biological deterioration of structural, cellular and tissue
components as well as physiological functions (e.g., stress resistance, immune system, ability
to sense and move, decline of organ functionality). It is accompanied by an increased risk for
the development of major life-threatening diseases such as cardiovascular disorders, cancer and
neurodegenerative disorders (Lopez-Otin et al., 2013; Kaeberlein, 2016). The interest in aging
research showed an increase in the past 60 years with a number of almost 7000 new PubMed entries
in 2018. 60 years of research have advanced our knowledge on the molecular mechanisms of aging
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and a number of theories of aging have been proposed (Harman,
1956; Hamilton, 1966; Kirkwood, 1977; Villeponteau, 1997).
These theories primarily fall into two categories (i) programmed
and (ii) non-programmed based theories. While programmed
theories of aging propose that mainly changes in the activity of
specific genes, hormones, or the immune system are accountable
for the aging process, non-programmed theories consider cellular
damage resulting from the interaction with toxicants from
the environment or by-products of metabolism the primary
factor contributing to aging (Jin, 2010). It seems however most
likely that the interaction between genetic and environmental
factors shapes the aging process (Kenyon, 2010; Dato et al.,
2017). Although aging is a very complex phenomenon and
a variety of factors can affect different cells/tissue/organs and
their interconnectivity at the same time, different evolutionarily
conserved aging hallmarks have been described: (1) genomic
instability, (2) telomere attrition, (3) epigenetic alterations,
(4) loss of proteostasis, (5) deregulated nutrient sensing, (6)
mitochondrial dysfunction, (7) cellular senescence, (8) stem cell
exhaustion, and (9) altered intercellular communication (Lopez-
Otin et al., 2013; Tigges et al., 2014). Indeed, apart from telomere
attrition, all mentioned hallmarks can be observed in vertebrate
as well as invertebrate model organisms (Kaeberlein, 2013).
Mitochondria clearly play a central role in the aging process and it
is interesting to note that while mitochondrial dysfunction itself is
one of the hallmarks of aging, severe mitochondrial dysfunction
can also promote most if not all other hallmarks of aging.

1.1 Mitochondria and Aging
Mitochondria are highly interconnected organelles and are
composed of two specialized membranes, an intermembrane
space and a matrix containing a circular DNA, which reminds
us of their bacterial origin. Mitochondria play a central role in
cell and organismal homeostasis and beside their major role in
energy metabolism, they also control additional crucial cellular
functions ranging from iron and calcium homeostasis to cell
death and survival pathways. Given the central importance of
mitochondria, cells developed a variety of protective mechanisms
to cope with, prevent and repair their damage and alterations
thus ensuring cells with the appropriate amount of functional
mitochondria in physiological as well as stressful conditions. The
“Mitochondrial Free Radical Theory of Aging,” MFRTA, which
has taken central stage for several decades (Harman, 1956) in the
aging field, states that during life reactive oxygen species (ROS)
produced during mitochondria respiration gradually induce
irreversible molecular and cellular damages with consequent
functional decline ultimately playing a causal role in the aging
process. It is therefore not surprising that failure of mitochondrial
quality control pathways or severe, non-repairable mitochondrial
damage, lead to a plethora of disorders and accelerate the aging
process. More surprisingly, yet interestingly, is instead that the
MFRTA theory has been recently questioned by the growing body
of evidence showing that mild (as opposed to severe) increase in
ROS and mild mitochondrial stress can actually promote healthy
aging in an evolutionarily conserved manner (Ristow and Zarse,
2010; Ristow and Schmeisser, 2011; Munkacsy and Rea, 2014;
Schiavi and Ventura, 2014). This provocative finding (in the field

referred to as threshold effect or mitohormesis) has completely
changed our classical view of the role of mitochondria in the
aging process and stimulated the investigation of novel strategies
to promote healthy aging. Taken MFRTA and mitohormesis
together it is envisioned that mitochondria play a pivotal role in
cell homeostasis and therefore in the aging process.

Dato et al. (2017) estimated that genetic factors only
account for one quarter, while environmental and epigenetic
factors account for three-quarters of age-associated changes.
Considering the high influence of environmental factors on
aging, we have recently investigated the role of a central
environmental sensor, the highly conserved transcription factor
Aryl-hydrocarbon Receptor (AhR) in the aging process (Eckers
et al., 2016). Here, we will first review the conflicting evidence
pointing to both pro- and anti-aging roles for AhR in aging. We
will then try to reconcile these findings based on possible age-,
tissue- or dose-dependent activation, and finally discuss pieces of
evidence indicating a possible interaction between the AhR and
mitochondria, which could be of relevance for the aging process.

2. AhR AND AGING

The AhR was discovered in 1976 by Poland et al. (1976) as
a dioxin-binding protein. The activity of this highly conserved
transcription factor is historically dependent on the binding of
ligands to its ligand binding domain (LBD). The functionality
of this transcription factor is shaped by its functional domains:
a basic helix-loop-helix domain (bHLH), two Per-ARNT-Sim
(PAS) domains and a transcriptional activation domain (TAD).
The N-terminal bHLH domain is involved in DNA binding,
binding of heat shock protein 90 (Hsp90), and dimerization with
AhR nuclear translocator (Arnt) (Ashida et al., 2008; Abel and
Haarmann-Stemmann, 2010). The PAS A domain is required for
binding to the Arnt, while the PAS B domain carries the LBD and
thus is relevant for ligand binding but also interaction with the
AhR-interacting protein [Aip (also XAP2)] and Hsp90. Carboxy-
terminal of the AhR is a TAD (Ashida et al., 2008; Abel and
Haarmann-Stemmann, 2010). In the absence of ligands, the AhR
resides in the cytoplasm bound to Hsp90, Aip, and p23 (Ikuta
et al., 1998; Ashida et al., 2008). These co-factors stabilize the
ligand-affine state of the AhR and prevent its degradation (Ma
and Whitlock, 1997; Meyer and Perdew, 1999). The functions
of these co-factors are crucial and AhR is degraded in the
absence of Aip or Hsp90 (Hwang et al., 2016). Binding of a
ligand causes conformational changes resulting in the exposure
of the nuclear localization signal (NLS) and the dissociation
from Hsp90, Aip, and p23. In this state, AhR can shuttle
to the nucleus, where it dimerizes with Arnt. The AhR-Arnt
heterodimer then binds to the xenobiotic responsive elements
(XREs) (core sequence 5′-GCGTG-3′) of AhR target genes. These
target genes include phase-I detoxification genes like cytochrome
P450 (cyp) monooxygenase genes (e.g., cyp1A1 or cyp1B1),
phase-II detoxification genes like UDP glycosyltransferases (ugts)
(e.g., ugt1A1 or ugt1A6), and glutathione S-transferases (gsts)
(e.g., gstA1 or gstA2) (Yueh et al., 2003; Ashida et al., 2008;
Xue et al., 2017). To avoid the constant activation of the AhR,
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negative feedback loops regulate the AhR cascade pathway
(Mulero-Navarro and Fernandez-Salguero, 2016; Xue et al.,
2017). It is interesting to note that different AhR target
genes (e.g., enzymes involved in glutathione synthesis and
modulation) as well as genes regulating or regulated by AhR
(e.g., Sirt1, p53, Hif1, p300, and HSP90) are involved in the
aging process (Henry and Gasiewicz, 1993; Marlowe et al.,
2004; Koizumi et al., 2014; Li et al., 2014; Ming et al., 2015;
Panchanathan et al., 2015; Ajami et al., 2017; Janssens et al., 2019;
Sutter et al., 2019).

Various compounds influence the activity of the AhR, but
not all of them are direct ligands. In fact, for some of the
compounds modulating the activity of the AhR the direct
mechanism is not known. Other compounds modulate AhR
activity through an indirect mechanism. For this reason, in
this review, we will refer to AhR modulators rather than
ligands unless their direct binding to the LBD has been verified.
A very well studied group of AhR modulators are xenobiotics.
Particularly 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) is a
planar molecule that has been shown to bind to the binding
pocket of the LBD of mammalian AhR (Poland et al., 1976).
Other modulators of the AhR are polyphenols, which can be
found in a variety of different fruits and vegetables (Amakura
et al., 2003), but whether they really bind to the AhR or affect
its activity through other mechanisms is largely elusive (see
Xue et al., 2017 for a detailed review). Epigallocatechin gallate,
for example, binds to HSP90 and by doing so inhibits AhR
signaling (Palermo et al., 2005). Curcumin instead can directly
bind the AhR (Ciolino et al., 1998) and inhibits its downstream
signaling through inhibition of AhR phosphorylation by the
protein kinase C (PKC) (Nishiumi et al., 2007). An in silico
analysis of the interactions between quercetin and the LBD of
human AhR showed that quercetin can bind to specific residues
in the AhR binding pocket (Jin et al., 2018). Interestingly,
many of the polyphenols modulating AhR activity also affect
mitochondria (Sandoval-Acuna et al., 2014). Besides these
exogenous modulators, endogenous compounds affect AhR
activity as well. These endogenous modulators are mainly,
but not solely tryptophan derivatives, like the high-affinity
ligand 6-formylindolo[3,2-b]carbazole (FICZ), a photoproduct
of tryptophan, which is produced in response to UVB light
(Rannug et al., 1987; Fritsche et al., 2007). Another endogenous
but low-affinity AhR modulator is kynurenine (Opitz et al., 2011).
More recently, compounds produced by the microbiota have
been identified as AhR modulators. These are, similarly to the
endogenous AhR modulators, mostly derivatives of tryptophan
such as indole, indoxyl-3-sulfate, indole-3-propionic acid, indole-
3-aldehyde, indole-3-acetate, and tryptamine (Jin et al., 2014;
Rothhammer et al., 2016).

It is interesting to note that many of these AhR modulators
may affect aging or age-associated diseases. Dioxin exposure,
for example, can cause cancer, and cardiovascular diseases
(Mandal, 2005; Marinkovic et al., 2010). Exposure to the
xenobiotic and AhR ligand benzo[a]pyrene, which directly
binds to the AhR (Okey et al., 1984) and causes its nuclear
localization, shortens the lifespan in mice (Sakakibara et al.,
2005), and promotes neurodegeneration as well as Alzheimer’s

disease and Parkinson’s disease-like phenotypes in zebrafish
(Gao et al., 2015). However, the actual involvement of the AhR
in these processes was not investigated in these studies. Instead,
in another study, benzo[a]pyrene was shown to cause cancer in
an AhR-dependent manner (Shimizu et al., 2000) and similarly,
the endogenous AhR modulator kynurenine promotes tumor
formation through the AhR (Opitz et al., 2011). Moreover,
another work showed that mice carrying a low-affinity AhR allele
are more susceptible to benzo[a]pyrene-induced lethality than
mice with a high-affinity AhR allele, suggesting the importance
of the degree of AhR activation (Kerley-Hamilton et al., 2012).
Many of the plant-derived dietary AhR modulators, on the
other hand, have life- and health-extending effects across species.
Curcumin, for example, shows protective effects on age-related
neurodegenerative diseases in different species (Lim et al.,
2001; Alavez et al., 2011; Caesar et al., 2012). Also, the AhR
modulator quercetin extends lifespan in Caenorhabditis elegans
(C. elegans) (Kampkotter et al., 2008; Pietsch et al., 2009),
Drosophila melanogaster (Drosophila) (Proshkina et al., 2016)
and mice (Xu et al., 2018). Interestingly, indole produced by
commensal Escherichia coli was found to extend the lifespan of
C. elegans, Drosophila and mice in an AhR-dependent manner
(Sonowal et al., 2017) but in all other studies it has not been
investigated whether the compounds mediate healthspan in an
AhR dependent manner. While all of these studies focus on
the effect of specific compounds on aging, there are only a
few studies directly linking AhR and aging. In fact, a search
on the MEDLINE/PubMed database with the Medical Subject
Headings (MeSH) terms “ah receptor” and “aging” gave only
29 results. Here, we want to review the current state of
research on the role of the AhR in aging in different model
organisms as well as humans. We have however deliberately
decided not to describe the large body of association studies
correlating AhR activity/expression to age-associated diseases
in human, which, although very interesting, would require a
separate review.

2.1 AhR and Aging in Invertebrates
When studying aging, invertebrate model organisms offer some
advantages over vertebrates: they are small, easy to cultivate,
cheap in maintenance and most importantly have a short
lifespan. These characteristics allow the performance of aging
studies with a large number of individuals in a short time.
Moreover, the conservation of the major aging pathways, as well
as aging features, have made invertebrates like the nematode
C. elegans, and the fruit fly Drosophila melanogaster elected
model organisms of aging research (Kenyon, 2010; Kaeberlein,
2013). The homologs of the AhR are ahr-1 (Powell-Coffman
et al., 1998) and spineless (Duncan et al., 1998) in C. elegans
and Drosophila, respectively. AhR in C. elegans and Drosophila
differ from mammalian AhR in their structure and their ligand
binding ability. In fact, the classical AhR ligand dioxin does not
bind AHR-1 (Powell-Coffman et al., 1998) and most likely neither
Spineless (Duncan et al., 1998). Additionally, no direct binding of
a ligand has ever been shown in C. elegans or Drosophila. In vitro
studies showed that the Drosophila AhR is constitutively active
which might result in the inability of ligand-dependent activation
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(Kudo et al., 2009). Recent studies show however that indoles
from commensal bacteria extend the lifespan of C. elegans and
Drosophila in an AhR-dependent manner (Sonowal et al., 2017).
This might suggest that microbiota-derived small molecules
could act as evolutionarily conserved AhR modulators. For a
long time, the main focus of AhR research has been on the
response to xenobiotics and the inability of invertebrate AhR
to bind dioxin might be one of the reasons why few is known
about the function of invertebrate AhRs. However, a conserved
function of the AhR in the regulation of developmental processes
has been shown in C. elegans and Drosophila: C. elegans ahr-
1 mutants develop slightly slower than wild type (Aarnio et al.,
2010) and have defects in neuronal development (Huang et al.,
2004; Qin and Powell-Coffman, 2004; Qin et al., 2006; Smith et al.,
2013). Similarly, Drosophila spineless mutants have defects in the
development of antenna (Burgess and Duncan, 1990) and sensory
neurons (Kim et al., 2006). Another conserved function of the
AhR might be the regulation of fertility. C. elegans ahr-1 mutants
have a slightly reduced egg number and an increased embryonic
lethality (Aarnio et al., 2010). Although no such function is
described in Drosophila, reproduction is affected by AhR in mice
(Baba et al., 2008). These studies suggest that the physiological
functions of the AhR might be conserved during evolution. Most
importantly, AhR has as well an evolutionarily conserved role in
the regulation of aging (Eckers et al., 2016). In contrast to the
detrimental effects of loss of AhR function in early life, during
aging a decreased AhR expression is beneficial: in a cross-species
study, we showed that the AhR promotes aging phenotypes in
human, mice and C. elegans (Eckers et al., 2016) and thus present
an evolutionarily conserved role of the AhR in the aging process.
More specifically, C. elegans carrying a loss of function allele
of ahr-1 had a longer lifespan and an increase in physiological
functions (e.g., motility and pharyngeal pumping) and stress
resistance during aging (Eckers et al., 2016). Moreover, a higher
spontaneous movement activity of C. elegans, D. melanogaster
and humanized mice with reduced AhR expression or activity
is reported (Williams et al., 2014). Although this is not a direct
phenomenon in aging, a decreased movement can be considered
a parameter for aging. A potential over-activation of the AhR
during the aging process is further supported in C. elegans by the
observation of increased ahr-1 mRNA expression during aging
(Sonowal et al., 2017).

2.2 AhR and Aging in Mice
Currently, four different strains of mice with a complete
AhR deficiency (AhR−/−) exist, which have been generated
by different laboratories. In two of these strains, the coding
part of exon 1 of the AhR gene was replaced with either a
neomycin resistance cassette (Fernandez-Salguero et al., 1995)
or the bacterial β-galactosidase gene fused to a NLS (Mimura
et al., 1997) (thereby deleting the translation start codon as
well as a stretch of basic amino acids that may play a role
in DNA binding. The third line was generated by deletion of
exon 2, which encodes the bHLH domain. Deletion of this exon
leads to out of frame splicing from exon 1 into exon 3 and
translation termination in codon 24, such that no functional
AhR is produced (Schmidt et al., 1996). The AhR-deficiency

does not result in lethality during in utero development, as
the pups in all lines show a Mendelian distribution of the
different genotypes (AhR+/+, AhR+/−, AhR−/−). Recently,
a fourth AhR knockout mouse model (C57BL/6-AhrTM1.2Arte)
was created by Taconic1. These mice carry a deletion in exon
3, resulting in an out of frame splicing of exons 2 to exon 4.
For simplicity, in this review the four different mice strains will
be designated as AhR11neo/11neo (Fernandez-Salguero et al.,
1995) AhR11gal/11gal (Mimura et al., 1997), AhR12/12 (Schmidt
et al., 1996) and AhR13/13 (Taconic), respectively. These mouse
strains show different phenotypes. On the one hand they
exhibit common features like alterations in hepatic development,
reproductive health, and retarded growth during the first 4 weeks
compared to wild type mice. On the other hand, they show
differences in immune system and reaction and susceptibility to
infection, which is possibly due, at least in part, to differences in
the genetic background (Fernandez-Salguero et al., 1995; Schmidt
et al., 1996; Fernandez-Salguero et al., 1997; Lahvis et al., 2005;
Baba et al., 2008; Esser, 2009; Butler et al., 2012).

Given that the AhR is heavily involved in detoxification it
is not surprising that AhR deficiency has a profound effect
on the hepatic system. All four AhR-deficient mice have
reduced liver size, portal fibrosis, and a persistent intrahepatic
porto-systemic shunt. Furthermore AhR−/− mice display an
increased susceptibility to hepatocarcinogenesis and developed
larger tumors (Moreno-Marin et al., 2017). In contrast, the
AhR11neo/11neo improved the regenerative potential of the lung
in response to the deleterious effects of acute toxin exposure
(Morales-Hernandez et al., 2017).

AhR is not only involved in xenobiotic metabolism, but also in
regulation of inflammation like macrophage M1/M2 polarization
and cytokine secretion. It is discussed that AhR activation induces
oxidative stress as a result of excessive generation of ROS. Recent
studies indicate that AhR also affects several age-associated
processes, such as vascular function or cellular senescence and
age-associated macular degeneration (Hu et al., 2013; Singh et al.,
2014; Eckers et al., 2016; Bravo-Ferrer et al., 2019). The recently
generated AhR13/13 mice showed a premature aging phenotype
resulting in a reduced life span. Those mice display functionality
decline in several organs (Fernandez-Salguero et al., 1995; Bravo-
Ferrer et al., 2019). In contrast, the AhR12/12 mice show a
similar survival rate as wild type mice until 15 months of age and
do not display a premature aging phenotype (Singh et al., 2014).

Atherosclerosis is assumed as an age-related, chronic
inflammatory disease. Several studies have demonstrated that
activation of AhR by dioxin or benzo[a]pyrene promotes
atherosclerosis (Schmidt et al., 1996; Curfs et al., 2005; Wu et al.,
2011). AhR overexpressing mice, which display a 10-fold higher
affinity to benzo[a]pyrene, were crossed to apolipoprotein E
deficient mice. Those mice display larger hearts under basal
conditions. Moreover, mice showed increased numbers of
atherosclerotic plaques in response to benzo[a]pyrene compared
to a congenic mouse strain expressing an AhR with lower affinity
(Kerley-Hamilton et al., 2012). We demonstrated the impact
of AhR in the vascular system. By using the AhR12/12 mice,

1https://www.taconic.com/mouse-model/ahr-knockout-mouse
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TABLE 1 | Age-related phenotypes in different species and tissues.

Species Observation AhR regulation∗ References

C. elegans ahr-1(ju145) Increased lifespan, movement, heat stress resistance and
Pharyngeal pumping

Promotes aging Eckers et al., 2016

C. elegans and Drosophila melanogaster Increased movement Promotes aging Williams et al., 2014

C. elegans ahr-1(ju145) & ahr-1(ia03) Increased lifespan Promotes aging Sonowal et al., 2017

Drosophila melanogaster Increased heat stress survival Promotes aging Sonowal et al., 2017

Mus musculus B6.129AhR11/11G Cardiac hypertrophy; macular degeneration; Pyloric
hyperplasia; hepatocellular tumors; skin lesions

Prevents aging Fernandez-Salguero et al., 1995;
Fernandez-Salguero et al., 1997

Mus musculus B6.129AhR12/12 Similar survival rate as wild type mice until 15 months of age No aging phenotype Singh et al., 2014

Mus musculus B6.129AhR11/11F Bladder cancer in older mice; regress of seminal vesicles Prevents aging Baba et al., 2008; Butler et al., 2012

Mus musculus AhR13/13 Cardiac hypertrophy, liver fibrosis; kyphosis Prevents aging Bravo-Ferrer et al., 2019

Mus musculus and Human Positive correlation between macular degeneration and
AhR expression

Prevents aging Hu et al., 2013

Mus musculus and Human Positive correlation between AhR expression and vessel
stiffness in the cardiovascular system

Promotes aging Eckers et al., 2016

Human Positive correlation between coronary arterial disease and
AhR in the cardiovascular system

Promotes aging Huang et al., 2015

∗Prevents aging: AhR expression/activity prevents aging. Promotes aging: down-regulation of AhR expression/activity promotes aging.

which display no phenotype in adulthood, we showed a decrease
in vascular stiffness, which was accompanied by increased
eNOS-activity and NO-bioavailability (Eckers et al., 2016). On
the other hand, AhR11neo/11neo mice demonstrated cardiac
hypertrophy, thickening of the arterial media and increased
numbers of vascular smooth muscle cells in the arterial wall
(Sauzeau et al., 2011).

In summary, the four AhR-deficient mice show different
phenotypes with respect to aging (Table 1). However, since
the AhR is needed during development and as a response to
environmental, one has to consider that an early embryonic
defect could result in a different outcome in adulthood.
Therefore, it is maybe difficult to use mice, which are total AhR
knockouts. One should rather use AhR conditional knockout
mice to induce AhR deficiency in adulthood.

2.3 AhR and Aging in Humans
Evidence for the role of AhR in aging in human subjects or
human cell culture systems is rare. Most of these studies focus
on the effect of certain AhR modulators on aging or associated
parameters. A recent study showed for example that activation of
the AhR by airborne polycyclic aromatic hydrocarbons induced
cell aging and the expression of aging-related genes in human
skin cells (Qiao et al., 2017). Interestingly, the expression
of aging-related genes was inhibited by the presence of an
AhR antagonist (Qiao et al., 2017). While studies using AhR
ligands/modulators are very valuable for finding treatments for
the prevention of pollution-induced aging or disease phenotypes,
the direct effect of AhR in these processes is elusive since even
high-affinity ligands like dioxin also affect cells in an AhR-
independent manner (Hossain et al., 1998). There are only very
few studies on the role of AhR on aging in the absence of
modulators. A study from 2013 shows that AhR activity decreases
during aging in human retinal pigment epithelial cells (Hu
et al., 2013). Moreover, AhR protein levels were lower in cells
from old donors compared to young donors, while AhR mRNA

levels remained unaltered (Hu et al., 2013). They verified their
findings in a mouse model and associated decreased activity
of the AhR to age-related macular degeneration-like pathology
(Hu et al., 2013). In 2016 we found that AhR expression is
positively correlated to cardiovascular aging in humans (Eckers
et al., 2016). Pulse wave velocity as the up to now best marker for
vascular aging is increased with age and is positively correlated
with AhR mRNA levels. Thus, increased AhR expression seems
to be associated with old age in humans, thus we propose that
AhR expression level is an indicator for vessel functionality
(Eckers et al., 2016). Along the same lines, AhR expression has
been linked to the incidence of coronary arterial disease in an
epidemiological study on a Chinese population (Huang et al.,
2015). They found increased AhR mRNA expression in coronary
arterial disease patients compared to controls and suggested
AhR as a diagnostic biomarker for coronary arterial disease
(Huang et al., 2015).

In summary, the few studies on the role of AhR in human
aging, similar to mice studies, display a complex role of the
AhR. It has to be noted that one should clearly separate the
effects of AhR in the development and in the aging process from
invertebrates to vertebrates. However, it could be possible that the
effect of the AhR on aging is tissue-dependent (Table 1) as well as
environment dependent. Thus, more research in adult and aged
invertebrates, vertebrates and humans is needed to understand
the pathophysiological role of AhR in aging in different tissues,
organs, as well as in the whole organism.

3. AhR-MITOCHONDRIA CROSSTALK

Mitochondria play a central role in the aging process, are
targeted by environmental pollutants and represent a central
hub in nutrient metabolism. Interestingly, both environmental
pollutants and dietary factors, such as polyphenols, can
influence the transcriptional activity of the AhR. We, therefore,
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envisioned a possible crosstalk between AhR and mitochondria.
Surprisingly, while mitochondria are extensively studied (more
than 150,000 publications on PubMed) and, there are many
studies investigating the influence of different AhR modulators
on mitochondria, there are only 32 publications directly linking
mitochondria to the AhR.

The effects of polyphenols on AhR and mitochondria are
complex (reviewed in Sandoval-Acuna et al., 2014; Xue et al.,
2017). On the one hand natural polyphenols are ROS scavengers
and thereby influence mitochondria, which are targeted by
ROS, but also mitochondrial down-stream signaling through the
scavenging of mitochondrial ROS. This ROS scavenging function
might be as well important for the influence of polyphenols
on AhR activity. ROS can activate AhR through the conversion
of tryptophan to FICZ (Smirnova et al., 2016) and thus the
ROS-scavenging properties of polyphenols might prevent this
activation and connect AhR with mitochondria. On the other
hand, additional ROS-scavenging independent functions of
polyphenols are reported on mitochondria like regulation of
mitochondrial biogenesis, mitochondrial membrane potential,
and mitochondrial electron transport chain activity (Sandoval-
Acuna et al., 2014). Given the central role of Sirt1 in the
aging process, a very interesting ROS-scavenging independent
mode of action of polyphenols on mitochondria is the induction
of mitochondrial biogenesis through Sirt1. Several polyphenols
indeed were shown to activate Sirt1 (reviewed in Ajami
et al., 2017). Considering the interaction between AhR and
Sirt1 (Koizumi et al., 2014; Ming et al., 2015; Sutter et al.,
2019), the notion that ROS activates AhR (Smirnova et al.,
2016), and the multiple roles polyphenols may exert on
mitochondria, these findings provide indirect evidence for a
possible crosstalk between AhR, Sirt1 and mitochondria of
relevance for the aging process.

The first direct evidence of a link between mitochondria
and the AhR was published in 2002 (Senft et al., 2002). In
this study, Senft and co-workers investigated the role of AhR
signaling in the increase of mitochondrial ROS upon dioxin
treatment in the liver of mice. Specifically, they found that
dioxin treatment induced mitochondrial ROS in wild type but
not in AhR−/− mice (Senft et al., 2002). Interestingly, they
noticed that the basal mitochondrial ROS levels were lower
in AhR−/− mice (Senft et al., 2002), which might suggest
that AhR has an impact on the mitochondria not only in
the presence of ligands but also under normal conditions.
Dioxin exposure was also shown to decrease mitochondrial
membrane potential in spermatozoa of mice in an AhR-
dependent manner (Fisher et al., 2005). Similarly, embryonic

stem cells and beating cardiomyocytes from AhR−/− mice are
protected against the dioxin-induced increase in markers of
mitochondrial stress and of mtDNA damage (Wang et al., 2016).
Together, these studies suggest that AhR mediates mitochondrial
dysfunction in response to dioxin. Moreover, benzo[a]pyrene was
shown to increase mitochondrial dysfunction and decrease the
mitochondrial membrane potential, resulting in the depletion
of ATP levels along with inhibition of the oxygen consumption
rate in the human keratinocyte cell line (HACAT). In this study,
it was shown that the removal of damaged mitochondria by
mitophagy is reduced in AhR and CYP1B1 (an AhR target
gene) knockdown but a direct link between AhR and mitophagy
was not established (Das et al., 2017). In another study genetic
ablation of the AhR resulted in reduced expression of Superoxide
Dismutases (SODs) in fibroblasts. Thus, those fibroblasts are
more sensitive to cigarette smoke resulting in increased cell death
and reduced proliferation, which is accompanied by decreased
mitochondrial membrane potential (Rico De Souza et al., 2011).
The detrimental effect of loss of AhR function is further
supported by studies in embryonic hearts of mice, where the
disruption of AhR signaling leads to mitochondrial dysfunction
(Carreira et al., 2015b). Similarly, female, but not male mice
exposed to dioxin as embryos showed altered expression in genes
of the canonical mitochondrial pathway and a higher number
of mitochondria in the heart (Carreira et al., 2015a). In adult
AhR−/− mice those changes were not observed (Carreira et al.,
2015a). In both studies the effect of dioxin treatment was not
investigated in AhR−/−mice.

AhR does not only influence mitochondrial function
but two studies have recently suggested that the AhR is
also localized within the mitochondria. Tappenden et al.
(2011) were the first to identify an interaction between
the AhR and the ATP5α1 subunit of the ATP synthase
complex in different cell lines. Further analysis of the exact
localization of the mitochondrial AhR in murine hepatoma
cells showed that it localizes inside the intermembrane
space (Hwang et al., 2016). Interestingly, when treated
with dioxin, mitochondrial localization of the AhR and
interaction with ATP5α1 were lost (Tappenden et al.,
2011; Hwang et al., 2016), suggesting that AhR only
localizes inside the mitochondria in the absence of ligands.
Considering that AhR is bound by AIP in the absence
of ligands and that AIP has been found to interact with
the Mitochondrial import receptor subunit TOMM20 and
to mediate preprotein transport in mitochondria (Yano
et al., 2003), AIP could be the critical mediator of AhR
localization into mitochondria. Indeed, siRNA against TOMM20

TABLE 2 | Tissue- and age-specific effects of AhR expression on mitochondrial function in mice.

Tissue/cells Age Observation Effect of AhR−/− References

Liver Dioxin exposure increases mitochondrial ROS Protective to dioxin exposure Senft et al., 2002

Spermatozoa Dioxin exposure decreases the mitochondrial membrane potential Protective to dioxin exposure Fisher et al., 2005

Fibroblasts Reduced expression of SODs in AhR deficient cells Detrimental to cigarette smoke Rico De Souza et al., 2011

Heart Embryo AhR−/− induce mitochondrial dysfunction Detrimental Carreira et al., 2015b

Adult Dioxin treatment of embryos induces mitochondrial dysfunction in adults No effect Carreira et al., 2015a
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reduces mitochondrial AhR, but not cytoplasmatic or nuclear
AhR by 70% (Hwang et al., 2016). Thus, Hwang et al. proposed
that AIP and HSP90 contribute to the mitochondrial localization
of AhR by interacting with TOMM20, which imports AhR into
the intermembrane space (Hwang et al., 2016).

Taken together, these studies strongly suggest that the effects
of AhR on mitochondrial function are likely tissue-, age-, and
maybe even sex-dependent (Table 2). Additionally, the presence
of dioxin seems to have a strong impact on the outcome of
the study. Nonetheless, these are mainly in vitro studies and
causal-effect, as well as mechanistic studies in primary cells
and model organisms in more physiological conditions, are
required to clearly establish a possible crosstalk between AhR
and mitochondria. Interestingly, in C. elegans, animals with
reduced mitochondrial function and ahr-1 mutants share some
phenotypic features like slower larval development, alterations
in fat metabolism and sensory neurons and most importantly
lifespan extension (Rea et al., 2007; Aarnio et al., 2010; Schiavi
et al., 2013; Smith et al., 2013; Maglioni et al., 2014; Eckers
et al., 2016). Moreover, long-lived mitochondrial mutants have
increased levels of cyps, ugts, and gsts (Cristina et al., 2009;
Liu et al., 2014; Mao et al., 2019), which, at least in mammals
are known target genes of the AhR. Investigating the potential
AhR-mitochondrial crosstalk in appropriate in vivo model
systems will certainly help revealing its potential causal role

in different pathophysiological contexts including aging and
associated pathologies.
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