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Interactions between fibroblastic reticular cells and
B cells promote mesenteric lymph node
lymphangiogenesis

Lalit Kumar Dubey@® !, Praneeth Karempudi', Sanjiv A. Luther?, Burkhard Ludewig® & Nicola L. Harris'

Lymphatic growth (lymphangiogenesis) within lymph nodes functions to promote dendritic
cell entry and effector lymphocyte egress in response to infection or inflammation. Here we
demonstrate a crucial role for lymphotoxin-beta receptor (LTBR) signaling to fibroblastic
reticular cells (FRCs) by lymphotoxin-expressing B cells in driving mesenteric lymph node
lymphangiogenesis following helminth infection. LTBR ligation on fibroblastic reticular cells
leads to the production of B-cell-activating factor (BAFF), which synergized with interleukin-4
(IL-4) to promote the production of the lymphangiogenic factors, vascular endothelial growth
factors (VEGF)-A and VEGF-C, by B cells. In addition, the BAFF-IL-4 synergy augments
expression of lymphotoxin by antigen-activated B cells, promoting further B cell-fibroblastic
reticular cell interactions. These results underlie the importance of lymphotoxin-dependent
B cell-FRC cross talk in driving the expansion of lymphatic networks that function to promote
and maintain immune responsiveness.
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ymphatic vessels play an important role in tissue fluid

homeostasis and promote the draina§e of fluids and cells

from tissues to the lymph node (LN)" 2. Although lymphatic
vessels develop during embryonic life, lymphangiogenesis
(defined as the formation of new vessels) can occur in adults
under various conditions, including wound healing, cancer,
and inflammation. Intranodal lymphangiogenesis is crucial for
promoting dendritic cell (DC) entry to® % and lymphocyte
egress from> 6, the draining LN. Emerging evidence suggests
lymphatic endothelial cells (LECs) can also directly regulate
immune responses’ by promoting T-cell tolerance against
self-antigens® ° and maintaining anti-viral T-cell responses
through the capture and archiving of viral antigens'’,
Thus, understanding how inflammation regulates intranodal
lymphangiogenesis is essential for our understanding of adaptive
immune responses.

Lymphangiogenesis occurs via a vascular endothelial growth
factors (VEGF)-dependent process that involves sprouting,
migration, proliferation, and tubule formation by LECs!'!. Lym-
phatic growth is well known to require VEGF-C interactions with
VEGFR-3%, and a role for VEGF-A in promoting inflammatory
lymphangiogenesis has also been reported™ '2, Althou§h the roles
of VEGF-A and VEFG-C are well established® 127!%, the con-
tribution of other cytokines, or of stromal vs. hematopoietic cells,
in regulating intranodal lymphangiogenesis remains unclear!”,
Recent studies have demonstrated an important function of
T cells in exerting an anti-lymphangiogenic role via IFN-y
secretion!® 17, whereas a pro-lymphangiogenic role of B cells has
been demonstrated, but is context dependent™ !> 13,

The mesenteric LN (mLN) maintains an active homeostasis
during steady state conditions but quickly enlarges in response to
infection with intestinal pathogens'®~2!, The factors governing
mLN lymphangiogenesis have not been characterized. We
addressed this question using the model murine helminth,
Heligmosomoides polygyrus (Hp), which has an infectious lifecycle
limited to the intestine?’. Hp infection elicits a strong type 2
immune response in the draining mLN?! and we have previously
reported that protective immunity requires lymphotoxin-
dependent stromal cell remodeling and the formation of new
B-cell follicles'?.

In this study we have used Hp as a tool to compare the
interactive behavior of stromal cells within organized lymphoid
tissue in which adaptive immune response develop. Using
immunofluorescence staining combined with deep tissue imaging
we now show that Hp infection results in extensive mLN lym-
phangiogenesis that correlates with enhanced DCs entry. mLN
lymphangiogenesis was driven by a complex interplay between
inflammatory cytokines, fibroblastic reticular cells (FRCs) and B
cells. Lymphotoxin-dependent activation of mLN FRCs promoted
the production of B-cell-activating factor (BAFF), which syner-
gized with the type 2-cytokine interleukin-4 (IL-4) to activate
VEGF production by B cells and to drive the proliferation of
LECs. Our findings provide a novel mechanistic view of mLN
lymphangiogenesis and demonstrate a previously unidentified
function for FRC-derived BAFF, which provides the necessary
signal for LEC expansion by programming B cells within the
secondary lymphoid organs.

Results

Intestinal helminth infection elicits extensive mLN
lymphangiogenesis. Hp is a enteric murine nematode that
exhibits pathogenic traits and serves as an excellent model for
studying Th2-driven immune responses®>. The helminth-infected
host requires B cells and CD4+T cells for the development of
sterilizing immunity and resistance'® 24, However, the impact of
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these macro intestinal pathogens on the draining lymphoid tis-
sues has not been studied in detail. Moreover the migration of
antigen-presenting cells from the intestine to the draining mLN
via the lymphatic vasculature is necessary for eliciting effective
intestinal immunity?°. To determine whether intestinal helminth
infection could promote mLN lymphangiogenesis we examined
the entire chain of the draining mLN of naive and Hp-infected
mice and then visualized the lymphatic vessels by staining
sections with an antibody against the LEC-specific marker, lym-
phatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1).
Deep tissue imaging of stained sections revealed that lymphatic
vessels in naive mLN formed a dense lymphatic network imme-
diately below the subcapsular sinus region (SCS) and within the
medullary sinuses, but not within the central paracortical regions
(Fig. 1a and Supplementary movie 1). Infection with Hp drove the
dramatic growth of new lymphatic vessels, which were apparent
by 6 days post infection (dpi), but which became more pro-
nounced by 12 and 21dpi (Fig. la-c and Supplementary
Fig. 1a-d and Supplementary movies 1 and 2). New lymphatic
vessels were observed to extend deep into the paracortical zone of
the mLN, as visualized in vibratome slices (ranging from 200 to
2000 pm) obtained from central part (Fig. 1b and Supplementary
Fig. 1e and Supplementary movie 3). Increased lymphangiogen-
esis in Hp-infected mice was also confirmed by an increased
expression of Prox-1 mRNA transcripts (Fig. 1d), together with
an increased expression of Vegf-a and Vegf-c mRNA transcripts
(Supplementary Fig. 1f, g) and protein levels (Supplementary
Fig. 1h, i) in the mLN. These data indicate that chronic
intestinal helminth infection is associated with extensive mLN
lymphangiogenesis.

Lymphatic vessels form close contacts with B cells and FRCs.
We next examined the location of LECs relative to the newly
developed B-cell follicles that we previously reported formed
following Hp infection'®. The extensive network of lymphatic
vessels observed next to the SCS of mLNs from naive mice were
observed to surround B-cell follicles found in this region (Fig. le).
Following Hp infection this network expanded to additionally
surround the newly formed B-cell follicles located in the para-
cortical region (Fig. 1f and Supplementary movie 4 and 5). For
both naive and infected mLNs, LECs formed a “cup”-shaped
structure that encapsulated, and possibly supported, the B-cell
follicle (Fig. le, f and Supplementary movie 5 and 6). As FRCs of
infected mice typically form close interactions with B cells we also
performed a co-staining of LECs and FRCs. FRCs and LECs share
common surface markers such as Podoplanin (PDPN), whereas
LYVE-1 expression is largely restricted to LECs. We therefore
utilized a common marker together with LYVE-1 to distinguish
between FRCs and LECs within the mLN. These stains revealed
that these two stromal cell types were always present within close
vicinity of one another, both in naive and infected mice
(Fig. 2a, b). By staining thick (>40 pm) vibratome sections with
PDPN and LYVE-1 we could identify a mix of both sprouting and
quiescent lymphatic vessels. Both PDPN and LYVE-1 expression
was enriched on quiescent lymphatic vessels (Fig. 2b, green
arrows), while the sprouting vessels showed a lower PDPN and
LYVE-1 expression (Fig. 2b, white arrows and Supplementary
movie 6). Furthermore, we analyzed FRCs (using a FRC specific
maker ER-TR7*) and LECs (using LYVE-1*) location within
interfollicular regions and observed a similarly close association
between these two stromal populations (Fig. 2c). Finally we used a
widely employed protocol utilizing PDPN and CD31 makers to
distinguish FRCs (PDPN*CD317) and LECs (PDPN*CD31%) by
flow cytometry®® 27, This analysis supported our histological data
and showed increased numbers of both FRCs and LECs following
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Hp infection (Supplementary Fig. 2a—c). For both populations of
cells, increases in number were driven, at least in part, by cell
proliferation as determined using the proliferation marker Ki-67
(Supplementary Fig. 2a-c).

Taken together these data show that lymphatic vessel growth
occurs in close association with the expansion of FRCs and raises
the possibility that cross talk between LECs and FRCs may be
occurring which in turn can govern the B-cell follicle
organization.

Lymphotoxin signaling to FRCs promotes lymphangiogenesis.
VEGF-A and VEGF-C promote lymphangiogenesis, and
lymphotoxin-beta receptor (LTPR) signaling can elicit VEGF
production by mesenchymal cells during LN anlagen formation?®.
FRCs have been reported to produce VEGF-A in naive LNs of

mature mice?® leading us to hypothesize that activation of FRCs
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by LTPBR ligands may elicit VEGF-A and/or VEGF-C production
and lymphatic cell growth. To address this hypothesis we crossed
Ccl197"¢ mice with LTSR™" mice generating animals in which
LTPR was selectively lost on Ccl19-expressing FRCs*®. We
utilized the same Ccl197¢ mice and crossed these to a line
expressing enhanced yellow fluorescent protein (eYFP) from the
Rosa26 locus (Rosa26-eYFP) to confirm that Cre activity was
restricted to FRCs. Analysis of mLNs from Ccl19~"® x Rosa26~¢YFP
mice confirmed expression of the Ccl19~"* transgene by FRCs,
but not by LECs, BECs or on high endothelial venules (Supple-
mentary Fig. 3a-d). In keeping with our hypothesis Ccl197“*x
LTARV mice (LTPRMM) exhibited reduced lymphan/giogenesis
compared to control Ccl197"¢ x LTSR*/* mice (LTSR*'*) at both
12 and 21 dpi (Fig. 3a, b).

Lymphangiogenesis is also critical for promoting DCs entry
to the draining LNs> . Staining of mLNs from LTSRY! and
LTBR*"* mice for CD11c* DCs revealed that LEC expansion
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Fig. 1 Intestinal helminth infection triggers mLN lymphangiogenesis. C57BL/6 J mice were infected with Hp and the entire chain of the mLN collected at the
indicated time-points. a, b LYVE-1" lymphatic networks in the mLN of naive and 21 dpi infected mice were visualized by deep tissue imaging. Temporal
color profiles are used to indicate the LYVE-1* lymphatic network in relation to cortical and paracortical regions. SCS; subcapsular sinus (red), PCR
paracortical region (blue). € Quantitation of the mLN area occupied by lymphatics (LYVE-1" LECs) in C57BL/6 mice following Hp infection. Data are pooled
from two independent experiments and represent mean + SEM. Each dot represents an individual animal. d Relative expression of mRNA encoding Prox-1
in whole mLN over the indicated time course. Data is from a single experiment and is representative of >3 independent experiments. e, f Vibratome
sections of mMLNs showing 2D and 3D views of combined immunofluorescence staining for B-cell follicles (B220; green) and lymphatics (LYVE-1; red). Scale
bar =50 pm. Images are taken from a single mouse and are representative of three independent experiments. For all data shown, each independent
experiment included n > 2-3 mice/group/time-point. See also Supplementary Movies 1-2 and Supplementary movies 4-5
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correlated with an increased number of DCs within the mLN of
LTBR** mice, while mLNs from LTBR™' mice harbored
significantly fewer DCs (Fig. 3¢, d). Overall these data reveal a
crucial role for LTPR expression by FRCs in promoting infection-
induced lymphangiogenesis and DCs accumulation in the mLN.

To determine which cell type was responsible for delivering the
necessary lymphotoxin signals to FRCs we created mixed bone

marrow chimeras mice (BMCs) in which B cells (Jht™/~+
LTp/~—WT) or T cells (TCRBS™/~+LTS~/~—WT) failed to
express lymphotoxin. Mixed BMCs using wildtype (WT) donors
were also generated as controls (]ht_/ “+WT—>WT and TCRﬂé_/ -
+WT—-WT). WT mice were used as recipients to ensure that the
mice had a proper lymphoid structure, and normal stromal cell
populations, prior to the irradiation. Naive mLNs of all chimeric
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Fig. 2 LECs and FRCs form intimate contacts in the area surrounding B-cell follicles. C57BL/6 J wild-type mice were infected with Hp and the entire chain of
the mLN collected at 21 dpi. a 8 um thick mLN cryosections showing combined immunofluorescence staining for FRCs (PDPN*; blue) and LECs (LYVE-1*;
red) of Hp-infected mice are shown at various magnifications. Scale bar 50 pm. b Vibratome sections of >100 pm thick mLN showing 2D and 3D views of
paracortical LECs (red; PDPN*LYVE-1*) and FRCs (gray; PDPN*LYVE-17) lying in close vicinity of one another and surrounding a centrally located B-cell
follicle. Insets (x, y, z) show higher magnification of FRCs and LECs. Green and white arrows highlight quiescent and sprouting lymphatic vessels
respectively. ¢ Vibratome sections of thick mLN section showing the mLN interfollicular region and highlighting associations between FRCs and LECs.
All images are taken from a single mouse and are representative of two or more independent experiments, each including n > 2 mice/group/time-point.

See also Supplementary movie 6
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Fig. 3 LTPR expression by Ccl19"¢-positive stromal cells is required for mLN lymphangiogenesis. Ccl197"¢ x LT,BRﬂ/ﬂ (LT/iRﬂ/ﬂ) and wild-type littermate
control Ccl197"e x LTBRY/* (LTBR*/*) mice were infected with Hp and the entire chain of the mLN collected at the indicated time-points. a mLN serial
cryosections showing lymphatics in naive mice or at 12 and 21 dpi (blue; DAPI, red; LYVE-1). Scale bar = 2000 pm. Images are from single mice and are
representative of two independent experiments each including n > 2-3 mice/group/time point. b Quantitation of the mLN area occupied by LYVE-1* LECs
in naive and Hp-infected animals. Data represents mean + SEM and are pooled from two independent experiments with each dot representing an individual
mouse. ¢ mLN serial cryosections showing LYVE-1" stromal cell organization and DC distribution within the mLN at 21 dpi (Cyan; CD11c and red;
LYVE-1*). Scale bar =2000 pm. d Quantitation of the mLN area occupied by DCs (CD11c*) in infected LT/jR"/Jr and LT/iRﬂ/ﬂ mice. Data represents
mean + SEM and are pooled from two independent experiments with each dot representing an individual mouse. Statistical analyses were performed using
ANOVA, Bonferroni's multiple comparison test and significance donated as *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001

mice showed a normal lymphatic network that was restricted to
the area below the SCS and the medullary regions (Supplemen-
tary Fig. 4a-d). The absence of lymphotoxin on B cells but not
T cells, resulted in reduced LN swelling and lymphangiogenesis
in response to Hp infection (Fig. 4a, d). Of note, naive CCLI19¢ x
LTSR /M mice and Jht™ ~+LTS~/~—WT BMCs exhibited normal

18:367

numbers of B-cell follicles in the naive state, but failed to develop
de novo B-cell follicles in response to infection!®. This indicates
the possible existence of an LTPR-dependent positive feedback
loop between B cells and FRCs that promotes the expansion of
both cell types, and which further supports the proliferation of
LECs.
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Fig. 4 B cells provide the lymphotoxin required to drive mLN lymphangiogenesis. Mixed bone marrow chimeras were generated as described in Methods
section. Chimeras lacking lymphotoxin expression exclusively on B cells (Jht”~+LTA~ ) or T cells (TCRSp~~+LTB~~) were compared to control mice
receiving B-cell or T-cell deficient bone marrow mixed with WT cells (Jht ~+WT and TCR&/)"/‘+WT). All mice were infected with Hp and the entire
chain of the mLN collected at day O (naive) and 21 dpi. a, b mLN cryosections from infected chimeric mice lacking lymphotoxin on B cells (Jat~~+LTp~")
and their respective controls (Jht™~+WT) showing immunofluorescence images staining for LYVE-1* (red) LECs network. ¢, d mLN cryosections from
mixed BMC infected mice lacking lymphotoxin on T cells (TCR58~~+LT~~) and respective controls TCR58~~+WT) showing immunofluorescence

images staining for LYVE-1" (red) LECs network. Scale bar=2000 pm

B cell-FRC cross talk promote VEGF-A and VEGEF-C production.
We next assessed whether activated FRCs produced increased
VEGF-A and/or VEGF-C to promote lymphangiogenesis in
Hp-infected mice. To our surprise examination of Vegf-a
and Vegf-c mRNA expression in stromal vs. hematopoietic
compartments of the mLN revealed that increased transcripts
could only be detected within the hematopoietic compartment
(Supplementary Fig. 5a). FACS analysis confirmed the CD45"
hematopoietic compartment as the major source of VEGF-A and
VEGEF-C producing cells following helminth infection (Supple-
mentary Fig. 5b, ¢, blue histograms). FACS analysis revealed that
B cells were the main source of both VEGF-A and VEGF-C
(Supplementary Fig. 6a-d). Both naive (IgD") and antigen-
activated (IgD™) B cells produced VEGF-A and VEGF-C in
response to helminth infection, however, production was strongly
enriched within the antigen-activated B cells (Supplementary
Fig. 6¢, d). Of interest, activated B cells also represented the
main source of increased lymphotoxin expression following
helminth infection (Supplementary Fig. 6e). These data indicated
that activated B cells, but not FRCs, were responsible for
increased VEGF production following Hp infection despite the

6
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requirement for lymphotoxin-dependent activation of FRCs
in promoting lymphangiogenesis. We therefore reasoned that
LTPR expressing FRCs likely promote lymphangiogenesis by
providing signals to interacting lymphotoxin-expressing B cells,
that in turn function to elicit VEGF-A and VEGEF-C production
by these cells.

To dissect the molecular cues responsible for FRC-B cell cross
talk we assessed the production of factors by lymphotoxin-
activated FRCs that may result in altered production of VEGF-A
and VEGF-C by activated B cells. FRCs located in the B-cell
follicle mantle have previously been shown to produce B-cell-
activating factor (BAFF) to promote B-cell survival®!. Examina-
tion of Hp-infected mLNs revealed increased BAFF expression
by ER-TR7*laminin* FRCs located within in the follicle mantle of
both naive and infected mLN, but not within the follicular DC
rich B-cell follicle (Fig. 5a-c and Supplementary Fig. 7a, b).
Importantly an increased number and density of BAFF expressing
FRCs could be observed in the mLN of Hp-infected mice,
a finding that was supported by the observation that Hp infection
increased BAFF mRNA expression in the stromal, but not the
hematopoietic, compartment of the mLN (Supplementary Fig. 7a).
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Fig. 5 Intestinal helminth infection activates FRCs surrounding B-cell follicles to produce BAFF in a LTBR-dependent manner. C57BL/6 J wild-type mice
were infected with Hp and the entire chain of the mLN collected at the indicated time-points and processed for histological staining. a Naive, b 12 dpi and
¢ 21 dpi Hp mLNs showing BAFF (stained with anti-BAFF antibody) expression by FRCs (ER-TR7* laminin™). BAFF expression in mLN FRCs in Hp-infected
Cel19e x L TRV and Ccl19e x LTBR*/*+ mice at d 12 dpi and e 21 dpi Hp infection. Scale bar 100 pm and 20 pm. The magenta inset in the overlay panel is
amplified and shown for BAFF alone (red) or for ERTR-7* FRCs (red+green) expressing BAFF
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Fig. 6 BAFF and IL-4 stimulation of B cells promotes lymphotoxin and VEGFs production. a-€ mLN B cells were cultured with anti-lgM with or without
IL-4+BAFF and the culture supernatant collected at a 72 h or b 18 h post stimulation for quantitation of VEGF-A and VEGF-C by ELISA. ¢ Splenic B cells
were stimulated as in (a) and the culture supernatant collected at 72 h for quantitation of VEGF-A and VEGF-C by ELISA. Data represent mean + SEM, and
are representative of pooled data from three independent experiments a or are representative of two independent experiments b, c¢. d Naive mLN B cells
were cultured with or without IL-4+BAFF for 18 h then B-cell lymphotoxin expression determined by staining with LTPR-Fc. Data represent mean + SEM
and representative of three independent experiments. @ mLN cryosections from mixed BMC-lacking lymphotoxin on B or T cells and infected with Hp for
21 days were stained for BAFF* (red) and FRCs (ER-TR7*Laminin*). Scale bar =100 um. Statistical analyses were performed using ANOVA, Bonferroni's
multiple comparison test and significance donated as *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; NS not significant and ND not detectable

FRCs required activation via LTPR to produce BAFF, as BAFF
protein expression was ablated in Hp-infected LTSR™? mice at
both 12 and 21 dpi (Fig. 5d, e).

BAFF is a known survival factor for B cells and can additionally
enhance B-cell chemotaxis towards CXCL-13%> 33, However,
a role for BAFF in promoting lymphangiogenesis has not been
reported. To determine whether BAFF could impact on activated
B cells to elicit VEGF production we stimulated naive mLN
B cells in vitro with anti-IgM antibodies together with IL-4 or
BAFF plus IL-4. BAFF synergized with IL-4 to promote VEGF-A

8
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and VEGF-C production by B cells stimulated with anti-IgM for
72 h (Fig. 6a). Importantly this effect was not due to altered B-cell
survival as the ability of BAFF, in combination with IL-4, to elicit
VEGF production was also apparent by 18 h after stimulation,
a timepoint at which no impact of BAFF on B-cell viability could
be observed (Fig. 6b). It was also not limited to B cells isolated
from the mLN as BAFF and IL-4 also stimulated VEGF-A
and VEGF-C production by activated splenic B cells (Fig. 6c).
Of note addition of BAFF and IL-4 to anti-IgM-activated B cells
also resulted in the upregulation of lymphotoxin by these cells
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was neutralized using the anti-BAFF mAb, (Sandy-2)**. Animals
were treated with 2 mg/kg of the Sandy-2 or istoype control mAb
by intraperitoneal injection just prior to and 5 days following Hp
infection (Fig. 7a). To ensure that BAFF blockade was achieved
we analyzed B-cell populations in the inguinal LN (iLN) of naive
animals treated with the anti-BAFF mAb. As expected based on

(Fig. 6d), and activation of FRCs by lymphotoxin-expressing B
cells is required for BAFF expression (Fig. 6e).

Neutralizing anti-BAFF mAb attenuates mLN lymphangiogenesis.
To further validate the role of BAFF in promoting mLN lym-
phangiogenesis we performed in vivo experiments in which BAFF
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previous publications®* the iLN of mice treated with anti-BAFF
mAb harbored significantly decreased numbers of B cells
(Supplementary Fig. 8a). Treatment of Hp-infected mice resulted
in a significant reduction in the weight, cellularity, and B-cell
number (Fig. 7b-d, Supplementary Fig. 8b). There was also a
significant reduction of lymphotoxin-expressing B cells, and an
associated reduction in the total number and proliferation of
FRCs (Fig. 7e, f, Supplementary Fig. 8c—e). Finally, we observed
reduced lymphangiogenesis (Fig. 7g) and reduced production of
both VEGF-A and VEGF-C (Fig. 7g-i) along with reduced total
and proliferating LECs (Fig. 7j, k) in the mLN of mice treated
with anti-BAFF mAb. These data confirm a role for BAFF in
promoting VEGF production and lymphatic growth in response
to helminth infection.

In summary, our data indicates that BAFF provides a feed-
forward loop in which B-cell-mediated FRC activation results in
the upregulation of lymphotoxin by B cells, thereby licensing
these cells to provide further stimulatory signals to FRCs and to
promote increased BAFF production (Fig. 8). These data likely
explain the requirement for B cell-FRC cross talk in eliciting
increased VEGF production and promoting mLN lymphangio-
genesis following Hp infection (Fig. 8).

Discussion

During inflammatory responses the draining LNs swell to allow
the recruitment and accumulation of increased numbers of
lymphocytes, thereby increasing the probability of antigen-
specific T and B cells meeting their cognate antigen. Stromal
cells also expand to accommodate incoming lymphocytes, with
FRCs and vascular cells (lymphatic and blood endothelial cells)

typically exhibiting a tightly coordinated process of growth!® 3% 36,
Increased blood flow allows a continuous delivery of blood-borne
lymphocytes, oxygen and nutrients, while an expanded network
of lymphatic vessels promotes the delivery of antigens and
stimulatory DCs from infected tissues.

In the current study we demonstrated that intestinal helminth
infection, which elicits a strong type 2 response, drives the pro-
found growth of lymphatic vessels within the draining mLN. We
further investigated the cellular mechanisms underlying mLN
lymphangiogenesis in helminth-infected mice and report a pre-
viously unrecognized role for lymphotoxin-dependent FRC-B cell
interactions in promoting mLN LEC expansion. Ligation of LTfR
on FRCs by antigen-activated, lymphotoxin-positive, B cells
promoted BAFF production by FRCs. BAFF in turn acted on B
cells to elicit the production of the lymphangiogenic factors
VEGF-A and VEGF-C, and to further upregulate lymphotoxin
expression. These data unveil a complex interplay between FRCs,
LECs and B cells that regulates the coordinated growth of a dense
FRC-LEC network surrounding B-cell follicles. It is likely that
this stromal cell network functions both to “physically” support
the B-cell follicle in addition to providing signals, such as BAFF,
that support B-cell survival. Previous studies have shown that
FRCs are capable of producing VEGF?*> %6, We also observed
VEGF production by stromal cells in naive mice; however, B cells
not stromal cells were found to represent the major source of
increased VEGF production following helminth infection. Thus
the presence or absence of inflammation, and also the exact
nature of the inflammatory signal, likely determines which lym-
phoid cells represent the major source of VEGF. Interestingly,
FRCs were shown to be sensitive to lymph flow?’, and
inflammation-induced increases in lymph flow from peripheral

Graphical summary

Lymphatic
endothelial cells
(LECs)

Lymphangiogenesis

Fig. 8 Schematic of FRC-B cell interactions resulting in mLN lymphangiogenesis following Hp infection. Lymphotoxin expression by IL-4- and antigen-
activated B cells (1) signals to LTPR expressed by FRCs (2) to promote the expression of BAFF (3). BAFF then synergizes with IL-4 to further upregulate
lymphotoxin expression on antigen-activated B cells in a feed-forward manner that acts to amplify total BAFF levels (4). BAFF and IL-4 then synergize to
promote VEGF production by B cells (5) which drives helminth-induced lymphangiogenesis and continued DC accumulation within the mLN (6).
FRC-derived BAFF also stimulates lymphotoxin expression by interacting B cells creating a feed-forward loop that furhter promotes FRC activation (7)

Fig. 7 In vivo BAFF inhibition attenuates helminth-induced lymphangiogenesis. a C57BL/6 J wild-type mice were treated with isotype control or anti-BAFF
mAb (Sandy-2) and infected with Hp. The entire chain of the mLN was collected at 12 dpi and processed for flow cytometry or histological staining. b Total
weight of mLN, c total cell count, d total number of B cells, e absolute number of lymphotoxin-expressing B cells, and f total FRCs (PDPN*MadCAM1~CD317)
present within the mLN as determined using flow cytometry. g mLN serial cryosections showing lymphatic organization after treatment with isotype
control or anti-BAFF mAbs in naive or at 12 dpi mice (blue; DAPI, grays; LYVE-1" LECs). Scale bar = 2000 um. Images are from a single mouse and are
representative of two independent experiments each including n > 2 mice/group/time point. h VEGF-A and i VEGF-C in mLN tissue homogenates as
determined by ELISA. j, k total LECs (PDPN*CD-31") and proliferating LECs (PDPN*CD-31%Ki-67") in the mLN of naive and 12 dpi mice treated with isotype
control or anti-BAFF mAbs were determined using flow cytometry. Data represent mean + SEM and representative of two independent experiments with
n = 3mice/group/time-point. Statistical analyses were performed using ANOVA, Bonferroni's multiple comparison test and significance donated as

*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001
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tissues to the draining lymphoid organs have been shown to
influence VEGF production by FRCs>®. Thus it is plausible that
the small increase in VEGF-A production and LEC numbers
observed in mice treated with anti-BAFF mAb may result from
increased lymph flow elicited by helminth infection®. It is also
possible that the FRC-LEC network surrounding B-cell follicles
supports B-cell functions in other ways that are yet to be deter-
mined. In this regard it is already known that BAFF promotes
efficient germinal center responses and isotype class switching®*
38 This is in keeping with our previous observations that
Hp-infected LTBRY! mice exhibit reduced antibody production,
and harbor increased adult worms'®. Thus it would be interesting
to investigate the impact of FRC-derived BAFF on fostering B-cell
follicle formation, germinal center reactions, and antibody
production in response to Hp infection.

LECs can also express LTBR?”> 3% 40 and so may communicate
directly with lymphotoxin-expressing B cells. However, the dra-
matic loss of lymphatic growth in mice lacking LTPR specifically
on FRCs indicates that a possible contribution of B cell-LEC
cross talk to lymphangiogenesis must be secondary to B cell-FRC
communication. Interestingly Furtado et al.!, reported that
lymphotoxin fails to elicit the proliferation of LECs in vitro, but
does promote LEC tube formation. Thus, while lymphotoxin-
dependent B cell-FRC interactions function to promote VEGF
production and drive LEC proliferation, B cell-LEC interactions
may function to ensure proper tube formation.

IL-4 is a cytokine with pleiotropic activity in the immune
system and serves as an important factor for driving protective
immune response against helminth infection?®. Recent studies
have shown a ne§ative regulatory role for IL-4Ra signaling in
lymphatic growth!” 42, likely through a direct action of IL-4/IL-
13 on LECs. Paradoxically, type 2 driven inflammation associated
with allergic disease is typically associated with increased lym-
phatic growth, and inflammatory lymphangiogenesis was repor-
ted within the dermis of mice expressing IL-4 under the control of
a keratinocyte-specific promoter*’. Zhang et al.** also reported
that activation of human RAW264.7 macrophages with IL-4, but
not by IFN-y+LPS, elicited VEGF production and promoted LEC
growth and tube formation both in vitro and in vivo in a mouse
model of Lewis lung carcinoma. Thus, IL-4-IL-4Ra signaling may
play a dual function in lymphangiogenesis, on the one hand
promoting lymphangiogenesis by upregulating lymphotoxin and
VEGF production on macrophages and B cells, and on the other
hand by acting directly on LECs to limit proliferation. Future
studies with IL-4Ra deficient animals will be needed to determine
whether the action of type 2 cytokines on lymphatic vessels
differs in distinct tissues or during acute vs. chronic type 2
inflammation.

A role for B cells in providing VEGF-A to support inflam-
matory lymphangiogenesis has been reported following LPS
delivery!'® or vaccination of mice with the model antigen keyhole
limpet hemocyanin emulsified in complete Freund’s adjuvant®.
Thus, it will be interesting to determine whether B cell-FRC
interactions are also important in supporting lymphatic vessel
growth in this, or other inflammatory settings. It is also clear that
other forms of inflammation can elicit lymphoid lymphangio-
genesis and further exploration of the role of other inflammatory
cytokines or stimuli in regulating B cell-FRC cross talk is
warranted. In the context of viral and bacterial infections the
impact of pathogen-associated molecular patterns might be of
particular relevance.

Lastly, it would be interesting to explore the impact of intra-
nodal lymphangiogenesis on functions beyond promoting DC
entry. Another important function may be to promote the exit of
effector T cells and plasmablasts from the LN*>. This step is
crucial for the subsequent entry of effector T cells into the

18:367

inflamed intestinal lamina propria or for plasmablasts into the
bone marrow. In the context of Hp infection, antibody produc-
tion is particularly important for protecting the host against
repeated infections, thus the impact of intranodal lymphangio-
genesis on the migration of plasmablasts to the bone marrow and
on long-lived antibody responses would be particularly relevant.
In this regard the remodeling of stromal networks so that lym-
phatic vessels arise adjacent to the newly developed B-cell follicles
present in Hp-infected mice makes sense in that this would
reduce the distance necessary for plasmablasts exiting the germ-
inal center and migrating to the bone marrow*®.

In summary we have unveiled a critical role for lymphotoxin-
dependent B cell-FRC cross talk in regulating lymphatic growth
and DC entry into the inflamed mLN following helminth infec-
tion. These data highlight the complexity of cellular interactions
within the inflamed LN and provide new insight into how the
regulation of intranodal lymphangiogenesis occurs.

Methods

Ethics statement. All animal experiments were approved by the Service de la
consommation et des affaires vétérinaires (1066 Epalinges, Canton of Vaud,
Switzerland) with the authorization numbers VD 2238.1 and VD 3001.

Mice strains and parasites and treatments. C57BL/6 ] (WT) mice were obtained
from Charles River and randomly distributed by animal caretaker before start of
any experiment. Ccl197 x LTBR*"* (LTR*/*) and Ccl19~"¢ x LTBRV (LTpRU)
were provided by Kantonsspital St. Gallen and were maintained on the C57BL/6]
background under specific pathogen-free (SPF) conditions at Ecole Polytechnique
Fédérale de Lausanne (EPFL), Switzerland. LT- —ﬂ’/ ~and TCRﬂzS’/ ~ mice (C57BL/6
J background) were maintained at Epalinges animal facility, University of

Lausanne, Switzerland. During the course of study all the mice were infected orally
with 200 L3 stage Hp and mice sacrificed at indicated time-points post infection.

Flow cytometry and antibodies. At given experimental time point, mice were
killed and mLN were isolated for flow cytometry. Single-cell suspensions were
prepared using enzyme mixture comprised of RPMI-1640 medium containing
0.8 mg/ml Dispase, 0.2 mg/ml Collagenase P (both from Roche), and 0.1 mg/ml
DNase I (Invitrogen). mLN were incubated at 37 °C and gently mixed using a
pipette at 5 to 15 min intervals to ensure the proper dissociation. After complete
dissociation mLN cells were filtered through a 40-pm cell strainer, counted, and
used for surface staining. For lymphocyte staining mLN single-cell suspensions
were gently dispersed, cells filtered through 40-pm-cell strainer, counted and used
for FACS surface staining. For stromal cell staining mLN were subjected to
enzymatic digestion using a digestion mixture comprised of RPMI-1640 containing
Dispase and Collagenase P (both from Roche), and 0.1 mg/ml DNase I (Invitro-
gen). Then cells were resuspended in FACS buffer (PBS containing 2% FBS and
5mM EDTA). For staining, cells were incubated for 30 min with antibodies against
the indicated markers and the samples acquired on BD-LSRII machine and data
were analyzed using FlowJo (v10.0.6). The CD45-negative fractions that were
positive for podoplanin (PDPN) and CD31 were identified as LECs, PDPN™, and
CD31~ were FRCs?® ?7. The proliferating populations were identified as CD45~
PDPN*CD317Ki-67* as LECs and PDPN*CD317Ki-67* were FRCs. For detection
of VEGFs expression in CD45" and CD45~ cells, surface staining were first
performed using rat anti-mouse CD45 antibody (BioLegend) followed by intra-
cellular staining using transcription factor staining buffer set (eBiosciences, Cat.
No. 00-5523-00). For VEGF-A and VEGEF-C, cells were permeabilize, and stained
using rabbit anti-mouse-VEGF-A or C antibody and revealed with anti rabbit
secondary antibody coupled to alexa-568. A rabbit IgG control antibody (R&D
systems) was used as an isotype control. The samples were acquired on BD-LSRII
machine and data were analyzed using FlowJo (v10.0.6). Lymphotoxin-expressing
B cells were identified using LTPR-Fc staining as described bellow. A detailed list of
antibodies used for flow cytometry is provided in Supplementary table 1.

Histology and immunofluorescence microscopy. The entire length of the mLN
chain was carefully dissected, weighed, imaged, and embedded in Tissue-Tek
optimum-cutting temperature compound (Thermo Scientific), then frozen in an
iso-pentane dry ice bath. Serial cryostat sections (8 pm in thickness) were collected
over a span of 400 pm depth on Superfrost/Plus glass slides (Fisher Scientific),
air-dried and fixed for 10-15 min in ice-cold acetone. Air-dried cryosections were
then rehydrated in PBS and were blocked with 1% (wt/vol) BSA supplemented with
normal mouse (1%) and donkey serum (4%). Indirect immunofluorescence
staining was performed using various antibodies (listed in Supplementary table 2)
diluted in PBS containing 1% (wt/vol) BSA and 1% (vol/vol) normal mouse serum.
Cryosections were incubated with primary antibodies overnight at 4 °C. After
overnight incubation cryosections were washed three times in PBS and primary
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antibodies were detected by incubating sections with fluorescently labeled sec-
ondary antibodies, and nuclei counter-stained with DAPI prior to mounting of the
sections using ProLong anti-fade reagents (Life technologies). Stained cryosections
were then imaged after 24 h. A detailed list of antibodies used is provided in
Supplementary table 2.

Vibratome sections. Isolated mLN were fixed overnight at 4 °C in freshly
prepared 1-2% paraformaldehyde in PBS, washed, and embedded in 2% (w/v)
low-melting agarose (Sigma-Aldrich) in PBS. 200 to 500-pm thick sections were cut
with a vibratome (Microm HM 650 V) and were used for staining. These thick
sections were blocked with blocking buffer (as described above) overnight and
stained for at 2 to 5 days with the primary antibodies followed by extensive
washing in PBS (total 5x/ 1 h each) before incubation with fluorescently labeled
secondary antibodies. After staining, samples were cleared described previously!®.
After clearing, vibratome sections were imaged using light sheet microscope (Zeiss)
with 20xobjective in a 80.2% fructose solution. The 3D reconstruction and movies
were made using IMARIS (Bitplane). In separate set of experiments, the whole
mLN was cleared using X-CLARITY Electrophoretic Tissue Clearing System
(Logos) and then processed for sectioning and immunofluorescence staining for 5
to 10 days before imaging on a light sheet microscope. The 3D reconstruction and
movies were made using IMARIS.

Image acquisition and processing. Images were acquired on an Olympus
VS120-SL full slide scanner using a 20x/0.75 air objective and an OlympusXM10
B/W camera or LSM710 laser scanning confocal microscope or with light sheet
microscope (Zeiss) with 20x objective. For images that were acquired using
Olympus VS120-SL full slide scanner or with LSM710 laser scanning confocal
microscope, each image was acquired using the indicated fluorescent channels and
the same exposure time employed across different samples. The images were down
sampled when extracted using the VSI reader action bar developed by the EPFL
Biolmaging & Optics Platform (BIOP) and were then subjected to the analysis
pipeline available through ImageJ/Fiji. For generation of the final images com-
paring different samples (i.e., naive vs. infected mLN), each fluorescent channel was
set to the same brightness and contrast, the mLN chain outlined using Fiji, then
assembled such that the final image represented the individual and overlay of all
channels. Alternatively, images were directly processed using Olympus slide
scanner software (OlyVIA v.2.6) after adjusting the brightness and contrast settings
so that they remained the same across all samples compared. For quantitative
measurements, immunofluorescence images from naive and infected mice mLN
were acquired and segmented using ImageJ software and the number of pixels
specific for given marker against DAPI was measured using an automated macro
and expressed as the percentage of total pixels in each area occupied by given
marker.

Bone marrow chimeras. All mice were maintained in specific pathogen-free
conditions. For the generation of B cells or T cells lacking lymphotoxin expression
(B-Ltp~ = or T-Ltp~'~) C57BL/6 ] recipients were reconstituted with 80% Jht/~
or 80% TCRS5™~ bone marrow plus 20% Lt~ ~bone marrow. Controls were
generated in which C57BL/6 ] (WT) recipients were reconstituted with 80% JhT '~
or 80% TCRf35™/~ bone marrow plus 20% WT bone marrow, respectively. All
recipient mice received the antibiotic “Baytril 10%” (1/1000) in the drinking water
for 4 to 8 weeks following bone marrow reconstitution and where subjected to
infection at 8 weeks following reconstitution.

In vitro B-cell culture and LTPR-Fc staining. Single-cell suspensions from the
naive C57BL6/] mice mLN or spleen were prepared in complete RPMI-1640
medium (RPMI+10%FCS+penicillin/streptomycin+glutamine+HEPES). B cells
were separated by negative selection on a magnetic column, according to the
manufacturer’s instructions (Miltenyi Biotech). Freshly purified mLN B cells were
then cultured in complete RPMI-1640 medium overnight before stimulation. After
overnight resting cells were stimulated in the presence of recombinant mouse
BAFF (R&D systems, 2106-BF-010/CF) with and with out rIL-4 (PeproTech). After
the indicated time point, cultured cells were washed twice with PBS and stained for
surface LTBR-Fc as described previously'® #7. In brief, Single-cell suspensions were
prepared from the mLN and were subjected to surface blocking using FACS buffer
(PBS+5 mM EDTA+0.1% azide+2%FCS) containing anti-CD16/32; 2.4.G2+0.5%
normal mouse serum and normal rat serum. After 20 min, 25 pl of LTPR-Fc
(Biogen 1 mg/ml; diluted 1:50) were added on top in FACS buffer. After 30 min of
incubation, cells were washed thrice with FACS buffer and 25 pl of biotinylated
goat anti human IgG antibody (diluted 1:400, pre-absorbed for 30 min on ice with
4% mouse and 4% rat serum) was added. After 30 min cells were washed thrice
with FACS buffer and stained using antibody cocktail containing fluorescent-
coupled streptavidin as well as antibody to other surface marker. After 30 min cells
were washed again and resuspended in 200 pl of FACS buffer and analyzed using
flow cytometer.

Analysis of VEGF secretion by B cells. Purified B cells were stimulated with sIgM
(AffiniPure F(ab’), fragment goat anti-mouse IgM, Jackson ImmunoResearch) with
or without additional BAFF (100 ng/ml) and rIL-4 and culture supernatants
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collected at indicated time point and stored at >-20 °C until used for VEGF-A
or C protein analysis. In a separate set of experiments, 1 mg of mice mLN

were homogenized in 1 ml of lysis buffer supplemented with complete protease
inhibitors (Roche) and stored at —80 °C until assayed for VEGFs level using ELISA
kits. VEGF-A levels in the culture supernatant or in tissue homogenates were
determined using mouse VEGF quantikine ELISA kit (R&D system, Cat No.
MMV00), where as VEGEF-C levels were determined using mouse VEGF-C ELISA
kit (CUSABIO, CSB-E07361m) according to the manufacturer’s instructions. In
another set of experiments, mice were sacrificed at indicated time point post
infection and intracellular VEGFs expressing B cells were measured as described

previously with out any further manipulations>°.

In vivo BAFF inhibition. For in vivo BAFF inhibition experiments anti-mBAFF
monoclonal antibody (Sandy-2) (Adipogen, AG-20B-0063PF) or an isotype control
antibody (BioXCell) was administered i.p. to 8 weeks old female C57BL6/j (WT)
mice at 2 mg/kg on days —1 and 5 (Fig. 7a). During the course of study all the mice
were either infected orally with 200 L3 stage Hp or left as naive control. Mice were
sacrificed at indicated time-points post infection for the analysis of mLN. iLN were
also collected and analyzed for B-cell and T-cell population to confirm the antibody
effect as described previously>*.

RNA isolation and qRT-PCR analysis. The complete length of mLN were col-
lected into trizol and stored at —80 °C until used. Stromal and cellular fraction were
separated as described previously?’. Briefly, mLN were mashed through a 40 um
cell strainer filter using a 5-ml syringe plunger, with the filtered cells representing
the soluble cellular part and the remaining white matter left on strainer repre-
senting the stromal fraction. RNA was extracted with a Direct-zol RNA MiniPrep
kit (Zymo Research) and reverse transcribed using RevertAid cDNA synthesis
reagents (Thermo Scientific) for QPCR analysis. QPCR was performed using SYBR
Green I Master Mix (Eurogentec) on an Applied Biosystems 7900HT System.
Following primers were used to detect lymphangiogenic factors. Vegf-a forward:
5’- GCT GTA CCT CCA CCA TGC CAA G -3/, Vegf-a reverse: 5'- CGC ACT
CCA GGG CTT CAT CG -3, Vegf-c forward: 5'- GTG AGG TGT GTA TAG ATG
TGG GG -3/, Vegf-c reverse: 5'- GTC TTG CTG AGG TAA CCT GTG -3

Statistical analysis. Statistical analyses were performed using a non-parametric
Mann-Whitney Student’s ¢ test, one-way or two-way ANOVA as indicated and
with post-tests as appropriate. P-values indicated as P <0.05 (*), P <0.01 (**),

P <0.001 (***), P<0.0001 (***) or ns (statistically not significant). Graph
generation and statistical analyses were performed using Prism version 6 software
(Graph pad, La Jolla, CA).

Data availability. All relevant data supporting the findings of this study are
available within the paper or in Supplementary Files.
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