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Abstract: Stem cells from apical papilla (SCAPs) are desirable sources of dentin regeneration.
Epigallocatechin-3-gallate (EGCG), a natural component of green tea, shows potential in promoting
the osteogenic differentiation of bone mesenchymal stem cells. However, whether EGCG regulates
the odontogenic differentiation of SCAPs and how this occurs remain unknown. SCAPs from im-
mature human third molars (16–20 years, n = 5) were treated with a medium containing different
concentrations of EGCG or bone morphogenic protein 2 (BMP2), with or without LDN193189 (an
inhibitor of the canonical BMP pathway). Cell proliferation and migration were analyzed using
a CCK-8 assay and wound-healing assay, respectively. Osteo-/odontogenic differentiation was
evaluated via alkaline phosphatase staining, alizarin red S staining, and the expression of osteo-
/odontogenic markers using qPCR and Western blotting. We found that EGCG (1 or 10 µM) promoted
the proliferation of SCAPs, increased alkaline phosphatase activity and mineral deposition, and
upregulated the expression of osteo-/odontogenic markers including dentin sialophosphoprotein
(Dspp), dentin matrix protein-1 (Dmp-1), bone sialoprotein (Bsp), and Type I collagen (Col1), along
with the elevated expression of BMP2 and phosphorylation level of Smad1/5/9 (p < 0.01). EGCG at
concentrations below 10 µM had no significant influence on cell migration. Moreover, EGCG-induced
osteo-/odontogenic differentiation was significantly attenuated via LDN193189 treatment (p < 0.01).
Furthermore, EGCG showed the ability to promote mineralization comparable with that of recombi-
nant BMP2. Our study demonstrated that EGCG promotes the osteo-/odontogenic differentiation of
SCAPs through the BMP–Smad signaling pathway.

Keywords: stem cells from apical papilla; epigallocatechin-3-gallate; osteo-/odontogenic differentia-
tion; proliferation; BMP–Smad signaling pathway

1. Introduction

Irreversible pulpitis and pulp necrosis in developing teeth usually lead to the for-
mation of nonvital pulp tissue and the ceasing of root development. The emergence of
regenerative endodontics provides a promising approach to treating these diseases [1–3].
Stem cells from apical papilla (SCAPs) are a population of cells existing in the root apex of
the immature tooth, contributing to root dentin formation and root elongation during root
maturation [4,5]. SCAPs exhibit great viability and potency of multipotent differentiation,
including odontogenic, osteogenic, neurogenic, and adipogenic differentiation [6–8]. Fur-
thermore, SCAPs, along with periodontal ligament stem cells (PDLSCs), can regenerate
a bio-root with periodontal ligament in vivo [6]. Therefore, SCAPs are considered to be
desirable cell sources in regenerative dentistry.

Green tea is one of the most commonly consumed drinks around the world. Epigallocatechin-
3-gallate (EGCG) is the major functional component and the most abundant catechin polyphenol
in green tea. EGCG has attracted great attention because it is easy to obtain and has potent
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biological effects, such as anti-inflammatory, antibacterial, antioxidative, and anticarcino-
genic activities [9]. Previous studies have reported that EGCG improves the osteogenic
differentiation of human bone mesenchymal stem cells (BMSCs) [10], human periodontal
ligament cells [11], and human adipose-derived stem cells [12] in vitro. EGCG modified
scaffolds enhance osteogenesis and improve bone healing in vivo [13,14]. A recent study
also revealed that EGCG enhances the odontogenic differentiation of dental pulp stem
cells (DPSCs) [15]. According to the abovementioned facts, EGCG seems to be a good
agent for promoting osteo-/odontogenic differentiation and mineralized tissue formation.
Additionally, EGCG exhibits a great ability to promote the proliferation of human bone
mesenchymal stem cells [16] as well as neural stem cells [17,18]. However, the effects of
EGCG on the proliferation and osteo-/odontogenic differentiation of SCAPs are unknown.

Odontoblast differentiation and tooth root formation are regulated by several signaling
pathways, such as the Wnt signaling pathway and the BMP–Smad signaling pathway [4].
Several BMPs, such as BMP2 and BMP7, are expressed during odontoblast differentia-
tion [19]. Moreover, the controlled release of BMP2 promotes dentin formation from SCAPs
in vivo [20]. However, it is unclear whether the BMP–Smad signaling pathway is required
for the osteo-/odontogenic differentiation of SCAPs during EGCG treatment.

In this study, we aimed to determine the effects of EGCG on SCAPs by detecting cell
proliferation, migration, and odontogenic differentiation, and investigated how EGCG
regulates the osteo-/odontogenic differentiation of SCAPs. The null hypothesis of our
study was EGCG influences the proliferation, migration, and odontogenic differentiation of
SCAPs, and EGCG affects the odontogenic differentiation of SCAPs through BMP signaling.
Our results revealed that EGCG can promote the proliferation and osteo-/odontogenic
differentiation of SCAPs by activating the BMP–Smad signaling pathway. Furthermore,
we found that EGCG showed odontogenic capacity similar to that of recombinant BMP2
in vitro. These findings indicate that EGCG can be a promising natural compound to
facilitate dentin regeneration.

2. Results
2.1. In Vitro Characterization of SCAPs

To obtain SCAPs, we obtained apical papilla from immature human third molars
indicated by radiograph (Figure 1A,B) and isolated SCAPs. The isolated cells exhibited
colony-like growth after 10 days of culture (Figure 1C,D). Cells expressed several cell sur-
face markers, such as CD44 (99.06%), CD90 (99.29%), CD146 (61.37%), and CD24 (12.97%)
(Figure 1E), whereas cells were negative for the hematopoietic linage markers CD34 and
CD45 (Figure 1E). Additionally, the cells positively expressed the neurogenic marker
Nestin, which indicated the SCAPs may be from a neural crest origin of mesenchymal stem
cells (MSCs) (Figure 1F). In addition, after induction in adipogenic or osteo-/odontogenic
culture medium, the isolated cells formed extensive mineral deposits or lipid clusters,
respectively (Figure 1G,H).

2.2. The Effects of EGCG on Proliferation and Migration of SCAPs

To determine the effects of EGCG on the proliferation and migration of SCAPs, cells
were treated with EGCG at different concentrations. We found that EGCG at concentrations
of 0.1–100 µM showed no significant effect on the proliferation of SCAPs on day 1. EGCG
treatment at 1 or 10 µM increased the proliferation of SCAPs at days 3 and 5 when compared
with the control group. However, cells showed a significantly lower proliferation ability
when treated with 50 or 100 µM EGCG after three and five days of culture (Figure 2). We
also determined the effect of EGCG on the migration of SCAPs using a wound healing
assay. Although higher concentrations of EGCG (≥10 µM) significantly attenuated the
migration of SCAPs, low concentrations of EGCG (0.1 or 1 µM) did not affect the migration
of SCAPs after 24 h of incubation (Figure 3A,B). Based on these results, we used EGCG
concentrations no higher than 10 µM for the following experiments.
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Figure 1. In vitro characterization of stem cells from apical papilla (SCAPs). (A,B) The apical papilla tissue from an imma-
ture human tooth. (A) A representative radiograph indicating the third molar with the open apex; (B) apical papilla tissue. 
(C,D) The colony formation of SCAPs. (C) SCAPs exhibited a typical spindle shape, scale bar = 100 μm. (D) Isolated cells 
formed colony-like units, scale bar = 200 μm. (E) Flow cytometric analysis of SCAPs using several markers. Cells were 
positive for CD44, CD90, CD146, and CD24, and negative for CD34 and CD45. (F) Immunofluorescence staining showed 
nestin expression in SCAPs, scale bar = 20 μm. (G) SCAPs formed mineralized nodules after osteo-/odontogenic differen-
tiation, scale bar = 200 μm. (H) SCAPs were differentiated into adipocytes with Oil Red O-positive lipid clusters when 
cultured in adipogenic differentiation medium for four weeks, scale bar = 50 μm. 
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Figure 1. In vitro characterization of stem cells from apical papilla (SCAPs). (A,B) The apical papilla tissue from an
immature human tooth. (A) A representative radiograph indicating the third molar with the open apex; (B) apical papilla
tissue. (C,D) The colony formation of SCAPs. (C) SCAPs exhibited a typical spindle shape, scale bar = 100 µm. (D) Isolated
cells formed colony-like units, scale bar = 200 µm. (E) Flow cytometric analysis of SCAPs using several markers. Cells
were positive for CD44, CD90, CD146, and CD24, and negative for CD34 and CD45. (F) Immunofluorescence staining
showed nestin expression in SCAPs, scale bar = 20 µm. (G) SCAPs formed mineralized nodules after osteo-/odontogenic
differentiation, scale bar = 200 µm. (H) SCAPs were differentiated into adipocytes with Oil Red O-positive lipid clusters
when cultured in adipogenic differentiation medium for four weeks, scale bar = 50 µm.
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Figure 2. The effects of different concentrations of epigallocatechin-3-gallate (EGCG) on the proliferation of SCAPs. A 
graph depicting the proliferation of SCAPs treated with different doses of ECGC at days 1, 3, and 5 using a CCK-8 assay 
(n = 5). (** p < 0.01, *** p < 0.001). Error bars: mean± standard deviation. 

 
Figure 3. The migration of SCAPs treated with different doses of EGCG. (A) The representative images of the wound-
healing assay were obtained at 0 and 24 h after treatment with different concentrations of EGCG. (B) Migrated cells were 
counted in each group after 24 h. EGCG at low concentrations exhibited no significant effect compared with the control 
group, while over 10 μM of EGCG inhibited the migration of SCAPs. Scale bar = 200 μm. (* p < 0.05, *** p < 0.001). Error 
bars: mean± standard deviation. 

2.3. EGCG Promotes Osteo-/Odontogenic Differentiation and Mineralization of SCAPs 
To evaluate the effect of EGCG on the osteo-/odontogenic differentiation and miner-

alization of SCAPs, cells were cultured in induction medium containing 0, 0.1, 1, or 10 μM 

Figure 2. The effects of different concentrations of epigallocatechin-3-gallate (EGCG) on the pro-
liferation of SCAPs. A graph depicting the proliferation of SCAPs treated with different doses
of ECGC at days 1, 3, and 5 using a CCK-8 assay (n = 5). (** p < 0.01, *** p < 0.001). Error bars:
mean± standard deviation.
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Figure 3. The migration of SCAPs treated with different doses of EGCG. (A) The representative
images of the wound-healing assay were obtained at 0 and 24 h after treatment with different
concentrations of EGCG. (B) Migrated cells were counted in each group after 24 h. EGCG at low
concentrations exhibited no significant effect compared with the control group, while over 10 µM of
EGCG inhibited the migration of SCAPs. Scale bar = 200 µm. (* p < 0.05, *** p < 0.001). Error bars:
mean± standard deviation.

2.3. EGCG Promotes Osteo-/Odontogenic Differentiation and Mineralization of SCAPs

To evaluate the effect of EGCG on the osteo-/odontogenic differentiation and mineral-
ization of SCAPs, cells were cultured in induction medium containing 0, 0.1, 1, or 10 µM
EGCG for seven or 14 days. After seven days of induction, ALP staining and ALP activity
revealed that 1 or 10 µM EGCG enhanced the ALP level of SCAPs (Figure 4A,B).

Then, extracellular mineral deposits were determined by ARS staining (Figure 4C)
and semi-quantitative analysis (Figure 4D) after 14 days of induction. We determined that
treatment with 1 or 10 µM EGCG significantly promoted the formation of extracellular
mineral deposits, although cells treated with 0.1 µM EGCG exhibited comparable results
with the control group. Dentin sialophosphoprotein (Dspp), one of the critical odontogenic
markers, was significantly enhanced in EGCG-treated groups on day 14 compared with the
control group (Figure 4F). With the addition of EGCG, the mRNA level of dentin matrix
protein-1 (Dmp-1) and type I collagen (Col 1) was also elevated. EGCG treatment at 1 or
10 µM significantly enhanced the expression levels of bone sialoprotein (Bsp), although the
0.1 µM EGCG-treated group showed an effect on Bsp expression that was comparable with
the control group after 14 days of induction. Cells treated with 10 µM EGCG exhibited
the most remarkable increases in the expression levels of Dspp, Bsp, and Col 1 on day 14.
These changes were further confirmed by western blot analysis. As shown in Figure 4F,
the protein levels of osteo-/odontogenic markers DSPP and DMP-1 were significantly
enhanced via EGCG treatment. Collectively, these results indicated that 1 or 10 µM EGCG
promotes the osteo-/odontogenic differentiation and mineralization of SCAPs.
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Figure 4. The role of EGCG on the osteo/odontogenic differentiation of SCAPs. (A) ALP staining of SCAPs in each
group after seven days of osteo-/odontogenic induction. (B) ALPase activity results showed the upregulation of ALP in
EGCG-treated groups at day 7. (C) Alizarin red S staining indicated the formation of mineralized nodules after 14 days of
osteo-/odontogenic induction. (D) Semi-quantification of calcium deposits after 14 days of induction. (E) The expression
of Dspp, Dmp-1, Bsp, and Col1 was detected at 14 days (n = 3). (F) The protein expression and grayscale analysis of DSPP,
DMP-1, and BMP2 and the phosphorylation level of Smad1/5/9 at 14 days. Scale bar = 100 µm. (* p < 0.05, ** p < 0.01,
*** p < 0.001, ns: not statistically significant). Error bars: mean ± standard deviation. Dspp: dentin sialophosphoprotein;
Dmp-1: dentin matrix protein-1; Bsp: bone sialoprotein; Col1: Type I collagen.
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2.4. Suppression of the BMP–Smad Signaling Pathway Reverses EGCG-Induced
Osteo-/Odontogenic Differentiation of SCAPs

Several studies have reported that BMP–Smad signaling is critically involved in the
regulation of the differentiation of MSCs [21,22]. Canonical BMP–Smad signaling leads to
the induction of downstream transcription factors and odontogenic differentiation during
root initiation and elongation [22,23]. Interestingly, in our study, the expression of BMP-2 as
well as p-Smad1/5/9, which are two vital molecules in the BMP–Smad signaling pathway,
were upregulated when EGCG was added, suggesting the potential role of the BMP–Smad
signaling pathway in EGCG-mediated differentiation of SCAPs (Figure 4F).

Therefore, in order to determine whether the BMP–Smad signaling pathway was
affected by EGCG treatment, SCAPs were treated with EGCG for 0.25, 0.5, 1, 2, 6, 12, or
24 h, respectively. p-Smad1/5/9, the important effector of BMP–Smad signaling, was
significantly upregulated in SCAPs after EGCG treatment for at least 0.5 h (Figure 5A).
These findings indicate that the BMP–Smad signaling pathway may be the downstream
mechanism involved in the EGCG-induced osteo-/odontogenic differentiation of SCAPs.

To confirm whether BMP–Smad signaling is involved in the EGCG-induced osteo-
/odontogenic differentiation of SCAPs, we employed LDN193189, an inhibitor of type
I BMP receptor, to suppress BMP–Smad signaling. As shown in Figure 5B, LDN193189
(500 nM) treatment significantly suppressed the elevated phosphorylation level of Smad1/5/9
caused by EGCG stimulation. Notably, immunofluorescence staining identified the translo-
cation of p-Smad1/5/9 from the cytoplasm into the nucleus with the stimulation of EGCG.
However, the nuclear localization of p-Smad1/5/9 was decreased in the EGCG+LDN193189
group compared with the EGCG group (Figure 5C). Furthermore, LDN193189 significantly
abrogated the effects of EGCG on the osteo-/odontogenic differentiation of SCAPs. Af-
ter 14 days of osteo-/odontogenic differentiation, LDN 193,189 reversed EGCG-induced
mineralized nodule formation, as indicated by ARS staining (Figure 5D,E). The expression
levels of Dspp, Dmp-1, and Col 1 were remarkably decreased in the EGCG+LDN193189
group compared with the EGCG group (Figure 5F). In addition, the protein levels of DSPP
and DMP-1 showed a similar tendency to gene expression levels in SCAPs treated with
LDN193189 (Figure 5G). Based on these results, we determined that BMP–Smad signaling
is required for the EGCG-induced osteo-/odontogenic differentiation of SCAPs.

2.5. EGCG Shows the Comparable Ability to Promote Mineralization with Recombinant BMP2

BMP2 has shown a strong and reliable effect in promoting the osteo-/odontogenic
differentiation of several kinds of stem cells, both in vitro and in vivo [20]. To facilitate a
comprehensive understanding of the ability of EGCG to promote odontogenic differen-
tiation, we compared the effective level of EGCG in osteo-/odontogenic differentiation
and mineralization of SCAPs with that of BMP2 in vitro. Cells were treated with EGCG
(1 µM) or recombinant BMP2 (10, 50 ng/mL). ARS staining indicated the mineralization
of the EGCG-treated group had a comparable result with the 50 ng/mL BMP-treated
group after 14 days of induction (Figure 6A,B). The RNA levels of Dspp showed expression
levels comparable with the 50 ng/mL BMP-treated group, while Dmp-1 exhibited a similar
change between the EGCG-treated group and 10 ng/mL BMP-treated group (Figure 6C).
These results suggested the EGCG might possess an ability to promote mineralization
comparable with that of BMP2.
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Figure 5. The BMP–Smad signaling pathway is involved in EGCG-stimulated osteo-/odontogenic differentiation. (A) The
phosphorylation level of Smad1/5/9 in SCAPs treated with EGCG at different time points and the quantitative analysis.
(B) Western blot analysis showing the increased phosphorylation of Smad1/5/9 was reversed by LDN193189. (C) Im-
munofluorescence staining indicating EGCG increased the translocation of p-Smad1/5/9 from the cytoplasm into the
nucleus, but LDN193189 inhibited this transference. Scale bar = 20 µm. (D) ARS staining in the control (0 µM) group, EGCG
(1µM) group, and EGCG+LDN193189 group after 14 days of induction. (E) Semi-quantification of calcium deposits. (F) The
gene expression levels of Dspp, Dmp-1, Bsp, and Col1 in inhibitor group (EGCG+LDN193189) were suppressed compared
with in the EGCG group (n = 3). (G) The protein levels and quantitative analysis of DSPP and DMP-1 at 14 days. Error bars:
mean ± standard deviation. (* p < 0.05, ** p < 0.01, *** p < 0.001, ns: not statistically significant).
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Figure 6. EGCG showed the ability to promote mineralization comparable with that of BMP2. (A) After 14 days
of induction, the EGCG (1 µM) group generated amounts of calcified nodules similar to the 50 ng/mL BMP2 group.
(B) Semi-quantification of mineralized deposits. (C) RNA expression of Dspp and Dmp-1 at 14 days (n = 3). Error bars:
mean ± standard deviation. (* p < 0.05, ** p < 0.01, *** p < 0.001, ns: not statistically significant).

3. Discussion

In our study, we found that EGCG promotes the proliferation of SCAPs while showing
no significant influence on cell migration at concentrations below 10 µM. Meanwhile, treat-
ment with 1 or 10 µM EGCG enhances the osteo-/odontogenic differentiation of SCAPs as
indicated by ALP activity, mineral deposition, and the expression of osteo-/odontogenic
related markers. We further determined that EGCG promotes osteo-/odontogenic dif-
ferentiation by activating the BMP–Smad signaling pathway in vitro. Finally, we found
that EGCG shows an ability to promote mineralization comparable to that of recombinant
BMP2. Our findings indicated that EGCG is an efficient natural chemical promoting the
osteo-/odontogenic differentiation and mineralization of SCAPs and may be used for
regenerative dentistry.

Dental tissue engineering requires stem/progenitor cells. Among the mesenchymal
stem cells identified from dental tissues, SCAPs derived from the apex of an immature
tooth may be a superior source for dentin regeneration due to their origin. In our study,
we isolated and characterized human SCAPs, as the cells showed colony formation ability,
multilineage differentiation potential, and the expression of mesenchymal stem cell markers
(e.g., CD44, CD90, and CD146). Meanwhile, CD24, which might be a specific marker of
SCAPs [6], can also be detected in the cells we isolated. However, the percentage of cells
expressing CD24 shows a wide range [6,24]. This may be related with the donors or the
cell condition, etc. SCAPs show significantly higher telomerase activity and express greater
abundance of survivin than DPSCs [6]. This indicates that SCAPs might be more naive cells.
Additionally, it has been documented that SCAPs express more DMP-1 than stem cells from
human exfoliated deciduous teeth (SHED) under differentiation conditions, and genome-
wide gene expression profiles show that SCAPs are precursors for primary odontoblasts,
whereas SHED differentiate into replacement odontoblasts [25]. Meanwhile, SCAPs have a
higher population doubling capacity along with higher proliferation and migration capacity
when compared with DPSCs [6,26]. SCAPs also show higher mineralization potential and
dentin regeneration capacity than DPSCs in vitro [26] and in vivo [6]. These important
advantages make SCAPs a promising source for dental tissue regeneration.
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In order to promote the efficiency of tissue regeneration, various molecules are used.
In our study, we determined the dual effect of EGCG on the proliferation of SCAPs, that is,
low concentrations of EGCG promote cell proliferation, while high concentrations of EGCG
show an inhibited effect. Several studies have demonstrated that EGCG could promote
the proliferation of cells such as PDLCs and human BMSCs in vitro at concentrations
below 20 µM [11,12], which is consistent with our results. Differences in cell types, culture
conditions, or detection methods may be accountable for the discrepancies in concentrations
of EGCG. Nevertheless, previous studies have shown that higher concentrations of EGCG
significantly suppress cell proliferation in cancer cells [27,28] and adult stem cells [16],
similarly to our results. The inhibitive effect of EGCG at high concentrations may be related
to apoptotic cell death via DNA damage and reduction of DNA synthesis [29]. On the
other hand, cell migration has also been shown to be important in regenerative dentistry.
High concentrations (25 and 50 µM) of EGCG may reduce the migration of human alveolar
bone cells [30]. Therefore, a combination of molecules that promote migration like SDF-1α
might be an option when we use higher concentrations of EGCG. Collectively, our findings
showed that EGCG can promote the proliferation of SCAPs, and low concentrations (0.1 or
1 µM) of EGCG do not have a significant influence on cell migration. Therefore, 1–10 µM
of EGCG may be the recommended concentration for future applications.

The regeneration of dentin involves the odontogenic differentiation of stem cells and
the formation of mineralized tissues. Our results revealed that EGCG enhances the expres-
sion of osteo-/odontogenic markers including BSP and Col 1 in SCAPs. Previous research
reported that EGCG increases the expression of Col1 and osterix (Osx) and promotes ex-
tracellular matrix mineralization in PDLCs [11]. Furthermore, several studies have found
EGCG can enhance ALP activity, the expression of osteogenic markers like Runx2 and OCN,
and the formation of mineralized nodules [10,11,31]. However, the effective concentrations
for osteogenic differentiation varied among studies, which might be related to the cell types.
Moreover, DMP-1 and DSPP, the two major phosphoproteins of non-collagenous proteins,
can regulate dentin mineralization. In our study, these two representative odontogenic
markers were also upregulated when EGCG was added. In accordance with previous stud-
ies, our findings indicate that EGCG can promote the osteo-/odontogenic differentiation
and mineralization of SCAPs.

Although BMPs show a potent capacity to promote odontogenic differentiation and
dentin regeneration, the large dose requirement and high cost are obstacles for clinical
applications. It has been reported that an increase in BMP-2 has been identified in the
EGCG-induced osteogenic differentiation of BMSCs [10]. In our study, we determined that
EGCG increases the expression of BMP2 and the phosphorylation level of Smad1/5/9,
and the suppression of BMP–Smad signaling using LDN193189 significantly attenuates
the EGCG-induced osteo-/odontogenic differentiation of SCAPs. Moreover, we compared
the effects of BMP2 and EGCG on the osteo-/odontogenic differentiation of SCAPs and
determined the concentrations of BMP2 and EGCG, which, to some extent, exhibited
similar capacities. Furthermore, recent studies reported that an EGCG-modified scaffold
exhibited desirable morphological and mechanical characteristics, as well as having an
anti-inflammatory effect, and could modulate the recruitment of cells [32–34]. EGCG is,
therefore, a potential therapeutic molecule for tissue regeneration when incorporated with
a scaffold or other agents. Further work using such an EGCG-modified scaffold with
SCAPs in an animal model is still needed.

4. Materials and Methods
4.1. Cell Culture

For the harvesting of SCAPs, healthy immature human third molars were collected
from patients aged 16–20 years (n = 5) according to the previous studies [6]. All protocols
in the present work were approved by the Ethics Committee of the School of Stomatology,
Wuhan University, China. In brief, apical papilla tissues were gently separated from teeth,
thoroughly rinsed with phosphate buffered saline (PBS, Hyclone, Logan, UT), minced,
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and digested with 3 mg/mL type I collagenase (Biosharp, Hefei, China) and 4 mg/mL
dispase (Roche, Mannheim, Germany) at 37 ◦C for 40 min. The digested mixtures were
passed through a 70 µm cell strainer to get single-cell suspensions. SCAPs were cultured
in the α-MEM (Hyclone) containing 10% fetal bovine serum (FBS, Gibco, Thornton, NSW,
Australia) and 100 U/mL penicillin–streptomycin (Hyclone). Cells were incubated at 37 ◦C
in an atmosphere with 5% CO2. SCAPs at passages 2 to 5 were used in this study.

4.2. Colony-Forming Assay

To characterize SCAPs, single-cell suspensions of SCAPs were seeded in a 10 cm dish.
Cells were cultured in the culture medium for 10 days. After fixation in 4% paraformalde-
hyde (PFA), cells were immersed in crystal violet staining solution for 10 min (Beyotime,
Shanghai, China). Clusters with more than 50 cells were considered as colonies.

4.3. Flow Cytometric Analysis

SCAP aliquots (1 × 106 cells) were used to detect the immunophenotype according to
a previously developed protocol [35]. The following anti-human monoclonal antibodies
were used: CD45/FITC (Cat#304005, BioLegend, San Diego, CA, USA), CD34/FITC (Cat#
343603, BioLegend), CD90/FITC (Cat#328107, BioLegend), CD146/FITC (Cat#361011,
BioLegend), CD44/FITC (Cat#338803, BioLegend), and CD24/PE (Cat#311105, BioLegend).
Non-specific IgG/FITC (Cat#400107, BioLegend) or IgG/PE (Cat#400211, BioLegend) was
used to be the isotype control. The data were analyzed using a FACS Calibur flow cytometer
(Becton Dickinson, Franklin Lakes, NJ, USA).

4.4. Immunofluorescence Staining

For immunofluorescent analyses, cells were seeded on coverslips. After washing and
fixation, cells at passage 2 were incubated with anti-Nestin (1:100, Santa Cruz Biotech-
nology, Santa Cruz, CA, USA), and cells treated with EGCG alone or EGCG combined
with LDN193189 were incubated with anti-p-Smad1/5/9 (1:500, Cell Signaling Technol-
ogy, Beverly, MA, USA) overnight. After one hour of incubation with Cy3-conjugated
secondary antibodies (Jackson ImmunoResearch, West Grove, PE, USA), samples were
counterstained with 4,6-diamidino-2-phenylindole (DAPI). Then, cells were photographed
under a fluorescence microscope (Leica, Wetzlar, Germany).

4.5. Multiple Lineage Differentiation

For osteo-/odontogenic differentiation, SCAPs were cultured in six-well plates. The
osteo-/odontogenic differentiation induction medium was supplied for three weeks. The in-
duction medium contained α-MEM with 10% FBS, 50 mg/mL ascorbic acid, 10 mM sodium
β-glycerophosphate, and 10 nM dexamethasone (Sigma-Aldrich, St. Louis, MI, USA) [36].
Cells were fixed with 95% ethanol, and then washed and stained with 1% Alizarin Red S
(Sigma-Aldrich; pH = 4.2) in order to detect the formation of mineral deposits.

For adipogenic differentiation, cells were cultured in adipogenic medium (Cyagen
Biosciences Inc, Sunnyvale, CA, USA) according to the manufacturer’s instructions. After
four weeks, cells were fixed in 4% PFA. Next, Oil Red O reagent (Cyagen) was used to stain
cells for 15 min to observe lipid droplets.

4.6. CCK-8 Assay

For the CCK-8 assay, 5 × 103 SCAPs per well were seeded in 96-well plates and
incubated with culture medium containing 0, 0.1, 1, 10, 20, 50, or 100 µM EGCG (Sigma-
Aldrich, #E4143). The culture medium was renewed every other day. The proliferation of
the SCAPs was measured with a CCK-8 assay kit (Dojindo, Kumamoto, Japan) after one,
three, or five days of culture following the manufacturer’s instructions.
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4.7. Wound Healing Assay

Wound healing assay was performed to assess the role of EGCG on the motility
of SCAPs in vitro [8]. SCAPs were seeded in six-well plates, and the monolayers were
scratched using a 200 µL pipette tip. PBS washed twice to remove cell debris. Cells
were maintained in α-MEM containing 1% FBS and different concentrations of EGCG
(0, 0.1, 1, 10, 20, or 50 µM). Images were captured immediately after scratching under a
phase contrast microscope (Olympus, Tokyo, Japan). After 24 h, cells were fixed with 4%
PFA. Then, cells were incubated with 0.1 mg/mL acridine orange and visualized under a
fluorescent microscope (Olympus). Cells from five random areas were used to calculate
the average amount of migrating cells in each group.

4.8. Alkaline Phosphatase (ALP) Staining and Alizarin Red S (ARS) Staining

Cells were cultured in 12-well plates supplied with osteo-/odontogenic differentiation
induction medium. In different groups, EGCG was added into the medium at concentra-
tions of 0, 0.1, 1, or 10 µM. The medium was renewed every three days. For ALP staining,
after seven days of osteo-/odontogenic induction, cells from each group were fixed with 4%
PFA. Then, cells were stained with CIP/NBT Alkaline Phosphatase Color Development Kit
(Beyotime). The quantitation of ALP activity was detected using an Alkaline Phosphatase
Assay Kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) according to the
manufacturer’s instructions. The quantitative values were measured at 520 nm absorbance.
The values of ALP activity were calculated in U/gprot.

For ARS staining, cells were stained with 1% Alizarin Red S after 14 days of osteo-
/odontogenic induction. For semi-quantification of ARS staining, 10% (w/v) cetylpyri-
dinium chloride was added to the plates to destain the samples. The absorbance was
determined at 562 nm using a microplate reader.

4.9. Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) Analysis

The mRNA expression levels of Dspp, Dmp-1, Bsp, and Col1 were determined via qRT-
PCR. Briefly, total RNAs were isolated from SCAPs with the HP Total RNA Kit (Omega
bio-tech, Norcross, GA, USA) after seven or 14 days of osteo-/odontogenic induction. Then,
a Revert Aid First Strand cDNA Synthesis Kit (ThermoFisher Scientific, Rockford, IL, USA)
was used to synthesize cDNA. The cDNA was then used for qRT-PCR in a CFX Connect
Real-Time System (Bio-rad, Hercules, CA, USA) with SYBR Green Master (Roche). The
expression levels of the target genes were normalized to GAPDH using the 2−∆∆Ct method.
The primers for qRT-PCR are listed in Table 1.

Table 1. Primers for qRT-PCR.

Genes Forward Primer (5′-3′) Reverse Primer (5′-3′)

Gapdh TCATGGGTGTGAACCATGAGAA GGCATGGACTGTGGTCATGAG
Dspp TGCTGGAGCCACAAAC AAACCCTATGCAACCTTC

Dmp-1 ACAGGCAAATGAAGACCC TTCACTGGCTTGTATGG
Bsp CGAAGCAGAAGTGGATGAAA TGCCTCTGTGCTGTTGGTACTG
Col1 GCGGCTCCCCATTTTTATACC GCTCTCCTCCCATGTTAAATAGCAC

Gapdh: glyceraldehyde-3-phosphate dehydrogenase; Dspp: dentin sialophosphoprotein; Dmp-1: dentin matrix protein-1; Bsp: bone
sialoprotein; Col1: Type I collagen.

4.10. Western Blotting

SCAPs treated with EGCG, LDN193189 (Sigma-Aldrich), or recombinant human BMP2
(PeproTech, Rocky Hill, NJ) at different time points were lysed in lysis buffer (Beyotime),
and the protease inhibitor cocktail (MCE, Shanghai, China) was added. After centrifuging
at 12,000 rpm for 10 min at 4 ◦C, total protein was collected from the lytic cells. The
concentrations of proteins were measured using a BCA Kit (Thermo). Equal amounts of
proteins were loaded onto 10% SDS-polyacrylamide gel. The samples were separated by
electrophoresis and then transferred onto PVDF membranes (Roche Diagnostics GmbH,
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Germany). The following primary antibodies were used: DSPP (Novus, Centennial,
Colorado; Cat#NBP1-91612, 1:1000), DMP-1 (Abcam, Cambridge, UK; Cat#103203, 1:1000),
p-Smad1/5/9 (Cell Signaling Technology; Cat#13820, 1:1000), β-actin (MBL, Tokyo, Japan;
Cat#PM053-7, 1:6000), and BMP2 (Abcam; Cat#6285, 1:1000). The target bands were
quantified using Image J and normalized to β-actin.

4.11. Statistical Analysis

The results shown in mean± standard deviation were representative of three indepen-
dent experiments. The equal variance between individual groups showed no significant dif-
ference. The data in the study were analyzed using one-way analysis of variance (ANOVA),
followed by Tukey’s multiple post hoc tests using GraphPad Prism 7.0 (GraphPad Software,
La Jolla, CA, USA). p < 0.05 was considered statistically significant.

5. Conclusions

Based on the findings of our study, we found that EGCG promotes the prolifera-
tion of SCAPs, and low doses (0.1 or 1 µM) of EGCG do not influence the migration of
SCAPs. EGCG increases the osteo-/odontogenic differentiation of SCAPs by activating
the BMP–Smad signaling pathway. EGCG may possess a comparable ability to promote
mineralization with recombinant BMP2 in vitro. Our results suggest EGCG can be used as
an effective natural compound in dentin regeneration.

Author Contributions: Conceptualization: Z.L., J.Y., and Z.C.; methodology: Z.L. and Y.L.; formal
analysis: Z.L., Y.L., and X.F.; resources: Z.L. and X.F.; funding acquisition: J.Y and Z.C.; writing—
original draft preparation: Z.L.; writing—review and editing: J.Y and Z.C.; supervision: J.Y and Z.C.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by grants from National Natural Science Foundation of China
(No. 81771066) and Young Scientists Fund of National Natural Science Foundation of China
(No. 31500788).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of School of Stomatology, Wuhan
University, China.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available included in the article.

Acknowledgments: The author thanks the Wuhan University School and Hospital of stomatology
for its support to the experimental conditions.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Not available.

References
1. Xuan, K.; Li, B.; Guo, H.; Sun, W.; Kou, X.; He, X.; Zhang, Y.; Sun, J.; Liu, A.; Liao, L.; et al. Deciduous autologous tooth stem cells

regenerate dental pulp after implantation into injured teeth. Sci. Transl. Med. 2018, 10. [CrossRef] [PubMed]
2. Palma, P.J.; Ramos, J.C.; Martins, J.B.; Diogenes, A.; Figueiredo, M.H.; Ferreira, P.; Viegas, C.; Santos, J.M. Histologic Evaluation

of Regenerative Endodontic Procedures with the Use of Chitosan Scaffolds in Immature Dog Teeth with Apical Periodontitis.
J. Endod. 2017, 43, 1279–1287. [CrossRef] [PubMed]

3. Palma, P.J.M.J.; Diogo, P.; Sequeira, D.; Ramos, J.C.; Diogenes, A.; Santos, J.M. Does Apical Papilla Survive and Develop in Apical
Periodontitis Presence after Regenerative Endodontic Procedures? Appl. Sci. 2019, 9, 3942. [CrossRef]

4. Li, J.; Parada, C.; Chai, Y. Cellular and molecular mechanisms of tooth root development. Development 2017, 144, 374–384.
[CrossRef]

5. Huang, G.T.; Sonoyama, W.; Liu, Y.; Liu, H.; Wang, S.; Shi, S. The hidden treasure in apical papilla: The potential role in
pulp/dentin regeneration and bioroot engineering. J. Endod. 2008, 34, 645–651. [CrossRef]

6. Sonoyama, W.; Liu, Y.; Fang, D.; Yamaza, T.; Seo, B.M.; Zhang, C.; Liu, H.; Gronthos, S.; Wang, C.Y.; Wang, S.; et al. Mesenchymal
stem cell-mediated functional tooth regeneration in swine. PLoS ONE 2006, 1, e79. [CrossRef]

http://doi.org/10.1126/scitranslmed.aaf3227
http://www.ncbi.nlm.nih.gov/pubmed/30135248
http://doi.org/10.1016/j.joen.2017.03.005
http://www.ncbi.nlm.nih.gov/pubmed/28577961
http://doi.org/10.3390/app9193942
http://doi.org/10.1242/dev.137216
http://doi.org/10.1016/j.joen.2008.03.001
http://doi.org/10.1371/journal.pone.0000079


Molecules 2021, 26, 1580 13 of 14

7. Dong, R.; Yao, R.; Du, J.; Wang, S.; Fan, Z. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic
differentiation potentials of stem cells from apical papilla. Exp. Cell Res. 2013, 319, 2874–2882. [CrossRef]

8. Sequeira, D.B.; Seabra, C.M.; Palma, P.J.; Cardoso, A.L.; Peça, J.; Santos, J.M. Effects of a New Bioceramic Material on Human
Apical Papilla Cells. J. Funct. Biomater. 2018, 9, 74. [CrossRef]

9. Chowdhury, A.; Sarkar, J.; Chakraborti, T.; Pramanik, P.K.; Chakraborti, S. Protective role of epigallocatechin-3-gallate in health
and disease: A perspective. Biomed. Pharmacother. 2016, 78, 50–59. [CrossRef] [PubMed]

10. Lin, S.Y.; Kang, L.; Wang, C.Z.; Huang, H.H.; Cheng, T.L.; Huang, H.T.; Lee, M.J.; Lin, Y.S.; Ho, M.L.; Wang, G.J.; et al. (-)-
Epigallocatechin-3-Gallate (EGCG) Enhances Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells.
Molecules 2018, 23, 3221. [CrossRef] [PubMed]

11. Liu, J.; Lu, Y.; Liu, J.; Jin, C.; Meng, Y.; Pei, D. Influence of epigallocatechin-3-gallate in promoting proliferation and osteogenic
differentiation of human periodontal ligament cells. BMC Oral Health 2019, 19, 73. [CrossRef]

12. Zhang, J.; Wu, K.; Xu, T.; Wu, J.; Li, P.; Wang, H.; Wu, H.; Wu, G. Epigallocatechin-3-gallate enhances the osteoblastogenic
differentiation of human adipose-derived stem cells. Drug Des. Dev. Ther. 2019, 13, 1311–1321. [CrossRef] [PubMed]

13. Sasayama, S.; Hara, T.; Tanaka, T.; Honda, Y.; Baba, S. Osteogenesis of Multipotent Progenitor Cells using the Epigallocatechin
Gallate-Modified Gelatin Sponge Scaffold in the Rat Congenital Cleft-Jaw Model. Int. J. Mol. Sci. 2018, 19, 3803. [CrossRef]

14. Shin, Y.S.; Seo, J.Y.; Oh, S.H.; Kim, J.H.; Kim, S.T.; Park, Y.B.; Moon, H.S. The effects of ErhBMP-2-/EGCG-coated BCP bone
substitute on dehiscence around dental implants in dogs. Oral Dis. 2014, 20, 281–287. [CrossRef] [PubMed]

15. Kwon, Y.S.; Kim, H.J.; Hwang, Y.C.; Rosa, V.; Yu, M.K.; Min, K.S. Effects of Epigallocatechin Gallate, an Antibacterial Cross-linking
Agent, on Proliferation and Differentiation of Human Dental Pulp Cells Cultured in Collagen Scaffolds. J. Endod. 2017, 43, 289–296.
[CrossRef]

16. Wang, D.; Wang, Y.; Xu, S.; Wang, F.; Wang, B.; Han, K.; Sun, D.; Li, L. Epigallocatechin-3-gallate Protects against Hydrogen
Peroxide-Induced Inhibition of Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells
Int. 2016, 2016, 7532798. [CrossRef]

17. Zhang, Y.; He, Q.; Dong, J.; Jia, Z.; Hao, F.; Shan, C. Effects of epigallocatechin-3-gallate on proliferation and differentiation of
mouse cochlear neural stem cells: Involvement of PI3K/Akt signaling pathway. Eur. J. Pharm Sci. 2016, 88, 267–273. [CrossRef]

18. Wang, Y.; Li, M.; Xu, X.; Song, M.; Tao, H.; Bai, Y. Green tea epigallocatechin-3-gallate (EGCG) promotes neural progenitor
cell proliferation and sonic hedgehog pathway activation during adult hippocampal neurogenesis. Mol. Nutr. Food Res. 2012,
56, 1292–1303. [CrossRef]

19. Yamashiro, T.; Tummers, M.; Thesleff, I. Expression of bone morphogenetic proteins and Msx genes during root formation.
J. Dent. Res. 2003, 82, 172–176. [CrossRef] [PubMed]

20. Wang, W.; Dang, M.; Zhang, Z.; Hu, J.; Eyster, T.W.; Ni, L.; Ma, P.X. Dentin regeneration by stem cells of apical papilla on injectable
nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater. 2016, 36, 63–72. [CrossRef]

21. Qin, W.; Yang, F.; Deng, R.; Li, D.; Song, Z.; Tian, Y.; Wang, R.; Ling, J.; Lin, Z. Smad 1/5 is involved in bone morphogenetic
protein-2-induced odontoblastic differentiation in human dental pulp cells. J. Endod. 2012, 38, 66–71. [CrossRef] [PubMed]

22. Feng, J.; Jing, J.; Li, J.; Zhao, H.; Punj, V.; Zhang, T.; Xu, J.; Chai, Y. BMP signaling orchestrates a transcriptional network to control
the fate of mesenchymal stem cells in mice. Development 2017, 144, 2560–2569. [CrossRef]

23. Malik, Z.; Alexiou, M.; Hallgrimsson, B.; Economides, A.N.; Luder, H.U.; Graf, D. Bone Morphogenetic Protein 2 Coordinates
Early Tooth Mineralization. J. Dent. Res. 2018, 97, 835–843. [CrossRef]

24. Aguilar, P.; Lertchirakarn, V. Comparison of stem cell behaviors between indigenous high and low-CD24 percentage expressing
cells of stem cells from apical papilla (SCAPs). Tissue Cell 2016, 48, 397–406. [CrossRef]

25. Gosau, M.; Götz, W.; Felthaus, O.; Ettl, T.; Jäger, A.; Morsczeck, C. Comparison of the differentiation potential of neural crest
derived progenitor cells from apical papilla (dNC-PCs) and stem cells from exfoliated deciduous teeth (SHED) into mineralising
cells. Arch. Oral Biol. 2013, 58, 699–706. [CrossRef] [PubMed]

26. Bakopoulou, A.; Leyhausen, G.; Volk, J.; Tsiftsoglou, A.; Garefis, P.; Koidis, P.; Geurtsen, W. Comparative analysis of in vitro
osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla
(SCAP). Arch. Oral Biol. 2011, 56, 709–721. [CrossRef] [PubMed]

27. Gan, R.Y.; Li, H.B.; Sui, Z.Q.; Corke, H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin
gallate (EGCG): An updated review. Crit. Rev. Food Sci. Nutr. 2018, 58, 924–941. [CrossRef]

28. Irimie, A.I.; Braicu, C.; Zanoaga, O.; Pileczki, V.; Gherman, C.; Berindan-Neagoe, I.; Campian, R.S. Epigallocatechin-3-gallate
suppresses cell proliferation and promotes apoptosis and autophagy in oral cancer SSC-4 cells. Onco Targets Ther. 2015, 8, 461–470.
[CrossRef]

29. Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and
clinical applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [CrossRef]

30. Mah, Y.J.; Song, J.S.; Kim, S.O.; Lee, J.H.; Jeon, M.; Jung, U.W.; Moon, S.J.; Kim, J.H.; Choi, H.J. The effect of epigallocatechin-3-
gallate (EGCG) on human alveolar bone cells both in vitro and in vivo. Arch. Oral Biol. 2014, 59, 539–549. [CrossRef] [PubMed]

31. Vali, B.; Rao, L.G.; El-Sohemy, A. Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human
osteoblast-like cells. J. Nutr. Biochem. 2007, 18, 341–347. [CrossRef] [PubMed]

32. Chu, C.; Liu, L.; Wang, Y.; Yang, R.; Hu, C.; Rung, S.; Man, Y.; Qu, Y. Evaluation of epigallocatechin-3-gallate (EGCG)-modified
scaffold determines macrophage recruitment. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 505–513. [CrossRef] [PubMed]

http://doi.org/10.1016/j.yexcr.2013.07.008
http://doi.org/10.3390/jfb9040074
http://doi.org/10.1016/j.biopha.2015.12.013
http://www.ncbi.nlm.nih.gov/pubmed/26898424
http://doi.org/10.3390/molecules23123221
http://www.ncbi.nlm.nih.gov/pubmed/30563251
http://doi.org/10.1186/s12903-019-0768-7
http://doi.org/10.2147/DDDT.S192683
http://www.ncbi.nlm.nih.gov/pubmed/31114166
http://doi.org/10.3390/ijms19123803
http://doi.org/10.1111/odi.12109
http://www.ncbi.nlm.nih.gov/pubmed/23651333
http://doi.org/10.1016/j.joen.2016.10.017
http://doi.org/10.1155/2016/7532798
http://doi.org/10.1016/j.ejps.2016.03.017
http://doi.org/10.1002/mnfr.201200035
http://doi.org/10.1177/154405910308200305
http://www.ncbi.nlm.nih.gov/pubmed/12598544
http://doi.org/10.1016/j.actbio.2016.03.015
http://doi.org/10.1016/j.joen.2011.09.025
http://www.ncbi.nlm.nih.gov/pubmed/22152623
http://doi.org/10.1242/dev.150136
http://doi.org/10.1177/0022034518758044
http://doi.org/10.1016/j.tice.2016.08.008
http://doi.org/10.1016/j.archoralbio.2012.11.004
http://www.ncbi.nlm.nih.gov/pubmed/23261253
http://doi.org/10.1016/j.archoralbio.2010.12.008
http://www.ncbi.nlm.nih.gov/pubmed/21227403
http://doi.org/10.1080/10408398.2016.1231168
http://doi.org/10.2147/ott.S78358
http://doi.org/10.1016/j.bcp.2011.07.093
http://doi.org/10.1016/j.archoralbio.2014.02.011
http://www.ncbi.nlm.nih.gov/pubmed/24637009
http://doi.org/10.1016/j.jnutbio.2006.06.005
http://www.ncbi.nlm.nih.gov/pubmed/16963251
http://doi.org/10.1016/j.msec.2019.03.007
http://www.ncbi.nlm.nih.gov/pubmed/30948087


Molecules 2021, 26, 1580 14 of 14

33. Castillo-Ortega, M.M.; Montaño-Figueroa, A.G.; Rodríguez-Félix, D.E.; Prado-Villegas, G.; Pino-Ocaño, K.P.; Valencia-Córdova, M.J.;
Quiroz-Castillo, J.M.; Herrera-Franco, P.J. Preparation by coaxial electrospinning and characterization of membranes releasing (-)
epicatechin as scaffold for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 46, 184–189. [CrossRef]

34. Chu, C.; Deng, J.; Xiang, L.; Wu, Y.; Wei, X.; Qu, Y.; Man, Y. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen
membranes and concerns on osteoblasts. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 67, 386–394. [CrossRef] [PubMed]

35. Yang, J.W.; Zhang, Y.F.; Wan, C.Y.; Sun, Z.Y.; Nie, S.; Jian, S.J.; Zhang, L.; Song, G.T.; Chen, Z. Autophagy in SDF-1alpha-mediated
DPSC migration and pulp regeneration. Biomaterials 2015, 44, 11–23. [CrossRef]

36. Li, S.; Lin, C.; Zhang, J.; Tao, H.; Liu, H.; Yuan, G.; Chen, Z. Quaking promotes the odontoblastic differentiation of human dental
pulp stem cells. J. Cell Physiol. 2018, 233, 7292–7304. [CrossRef] [PubMed]

http://doi.org/10.1016/j.msec.2014.10.031
http://doi.org/10.1016/j.msec.2016.05.021
http://www.ncbi.nlm.nih.gov/pubmed/27287135
http://doi.org/10.1016/j.biomaterials.2014.12.006
http://doi.org/10.1002/jcp.26561
http://www.ncbi.nlm.nih.gov/pubmed/29663385

	Introduction 
	Results 
	In Vitro Characterization of SCAPs 
	The Effects of EGCG on Proliferation and Migration of SCAPs 
	EGCG Promotes Osteo-/Odontogenic Differentiation and Mineralization of SCAPs 
	Suppression of the BMP–Smad Signaling Pathway Reverses EGCG-Induced Osteo-/Odontogenic Differentiation of SCAPs 
	EGCG Shows the Comparable Ability to Promote Mineralization with Recombinant BMP2 

	Discussion 
	Materials and Methods 
	Cell Culture 
	Colony-Forming Assay 
	Flow Cytometric Analysis 
	Immunofluorescence Staining 
	Multiple Lineage Differentiation 
	CCK-8 Assay 
	Wound Healing Assay 
	Alkaline Phosphatase (ALP) Staining and Alizarin Red S (ARS) Staining 
	Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) Analysis 
	Western Blotting 
	Statistical Analysis 

	Conclusions 
	References

