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Abstract: Oxylipins (also called eicosanoids) are enzymatically or nonenzymatically generated by
oxidation of arachidonic acid (ARA) and are major mediators of ARA effects in the body. Previous
studies demonstrated the importance of ARA in infant growth, brain development, immune response,
and health. With the developments in lipidomic methodologies, it is important for exploring more
ARA-deprived oxylipins to better understand the physiological functions of ARA. The concentrations
of oxylipins in feces were determined from days 3 to 21 postnatally of suckling piglets in vivo.
Feces were collected at two critical time points of the suckling piglets (3d and 21d after birth)
and about 48 oxylipins were analyzed by using a target metabolomics approach based on Liquid
Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Here, 21 oxylipins were derived from
ARA, and 11 differential oxylipins (Log2|fold change| ≥ 1.0) at birth 3d and 21d were identified.
Particularly, 12-HETE was more abundant in feces at birth 3 days rather than 21 days. Considering
that 12-HETE was a racemic mixture of stereoisomers containing the S and R enantiomers, we further
detected the concentrations of 12(S)-HETE and 12(R)-HETE between the two time points by chiral
LC-MS/MS analysis. There was no significant difference in the concentrations of 12(S)-HETE and
12(R)-HETE. It was showed that ARA - derived oxylipins might be related to the physiological changes
of piglets during growing. Our results provided new information for describing the physiological
changes of the piglets over the suckling period.

Keywords: arachidonic acid; oxylipins; LC-MS/MS; 12-HETE; chiral analysis; suckling piglets

1. Introduction

Oxylipins are mainly the oxidation products of n-3 and n-6 long chain polyunsaturated
fatty acids (LCPUFA) and found throughout the body in all tissues, urine, and blood. It is
well known that oxylipins are eicosanoids produced from the n-6 PUFA, arachidonic acid
(ARA) (20:4n-6). ARA is normally present in membrane phospholipids. The exposure
to different physiological and pathological stimuli triggered the release of ARA from cell
phospholipids through the activity of phospholipase A2 (PLA2). Free ARA can be catalyzed
to form oxylipins via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450
(CYP450) enzymes pathways [1,2]. COX enzymes are comprised of two different isomers
of COX, namely, COX-1 and COX-2, and have dioxygenase activity. COX enzymes can
provide two oxygen molecules to the fatty acid substrate to produce a 5-carbon ring
structure at the 8 to 12 carbon positions of 20-carbon fatty acids, producing prostanoids
(PGs) and thromboxanes (TXs) [3]. Similarly, LOX can also donate two coxygen molecules
to ARA, resulting in the formation of hydroxy derivatives, including leukotrienes (LTs),
hydroperoxyeicosatetraenoic acids (HPETEs), hydroxyeicosatetraenoic acids (HETEs), and
lipoxins (LXs). CYP enzymes metabolized ARA to produce HETEs, epoxy-eicosatrienoic
acids (EETs), and dihydroxy-eicosatetraenoic acids (DHETs) [4].
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Oxylipins were not only formed by these three major enzymatic pathways, but also by
non-enzymatic oxidation autoxidation. They can be formed by microsomal prostaglandin
E synthase (mPGES) or soluble epoxide hydrolase (sEH) in ARA cascade [2]. Isoprostanes
(IsoPs), lipid peroxidation products produced through the free radical-mediated oxidation
of ARA are usually used as biomarkers of oxidative stress in vivo [5]. Moreover, it has been
recognized that HETEs are generated by peroxidase (POX) activity [6].

It was reported that ARA is critical for infant growth, immune response and health,
and it has been added to infant formulas for more than two decades [7]. Importantly, these
functions of ARA are mainly mediated by oxylipins. Additionally, a growing number of
studies have confirmed that oxylipins are involved in regulating intestinal innate immu-
nity [8], inflammation [9], injury and disease [10]. Oxylipins are media to understand the
effects of ARA as they act as metabolites of ARA. With the developments in lipidomic
methodologies, it is important for exploring more ARA-deprived oxylipins.

The suckling period is a critical part of piglets that is characterized by rapid morpho-
logical and physiological modifications, which include the development of the intestine
and immune system, significant muscle protein deposition, and the beginning of fat depo-
sition, subsequently, affecting the performances of the weaned animals [11]. A previous
study described that the dietary intake of ARA affected plasma oxylipins levels in suckling
piglets [12]. Oxylipins have enormous heterogeneity associated with a number of oxidation
pathways, and the molecules structure of many oxylipins is similar. It is important to
quantify the profile of oxylipins. Studies on oxylipins have primarily concentrated on
milk or serum of mice and humans in health or disease, but the level of oxylipins has not
previously been explored in piglets, especially growing piglets.

In this study, we monitored the comprehensive lipid profiles of feces in piglets by
applying a targeted metabolomic approach based on mass spectrometric. We had detected
about 48 oxylipins to disclose the metabolic changes that could describe the biological
developments of suckling pigs in two different stages. Of the 48 oxylipins, 21 oxylipins
derived from ARA and quantitative analysis of the difference multiple changes of oxylipins
showed that some oxylipins from ARA were different in feces in two different stages.
Specifically, 12-HETE was the highest content of ARA-derived oxylipins at 3 days after
birth, and we further indicated that there was no significant difference between S and R
enantiomers in feces of suckling piglets.

2. Results
2.1. Oxylipins Profile in Feces of Suckling Piglets

Previous studies have reported that LC-MS/MS method has high sensitivity and is
used to analyze lipid or their mediators, and allows the identification of oxylipins with
structural similarity [13]. In the present study, we profiled the changes of lipidomics in
feces of piglets at 3 and 21 days after birth. Our LC-MS/MS method, employing multiple
reaction monitoring (MRM), evaluated oxylipins in feces (Figure 1). We were able to
detect 48 oxylipins through the targeted quantitation method in feces (Figure 2a). These
oxylipins were grouped into eight major classes, including ARA, eicosapentaenoic acid
(EPA), docosahexaenoic acid (DHA), Linoleic Acid (LA), α-Linolenic Acid (ALA), Dihomo-
γ-Linolenic Acid (DGLA), γ-Linolenic Acid (LA), and mead acid (MA). Overall, the number
of oxylipins derived from ARA was the largest and contained 21 oxylipins, followed by
EPA and DHA, which had seven oxylipins, respectively. Very few metabolites belonged to
the classes of Dihomo-γ-Linolenic Acid (DGLA), γ-Linolenic Acid (LA), and mead acid
(MA) (Table 1). Moreover, we observed that metabolic data from the early postnatal period
(3d) was clearly separated from those from before weaning (21d) (Figure 2a). Based on the
PCA, a clear separation between the two different time points could be observed by the
PC1. Furthermore, the PC2 distinctly distinguished the feces of piglets at 3 and 21 days
after birth. These results, depicting 59.10 variations with PC1 (41.91%) and PC2 (17.19%),
also verified the reliability of the metabolome dataset (Figure 2b).
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Figure 1. LC-MS/MS chromatogram of 48 oxylipins performed on a triple quadrupole employing
dynamic MRM (n = 10). MRM metabolite detection multipeak diagram showed the substances
that could be detected in the sample, with the mass spectrum peak of each color representing one
metabolite detected.

Table 1. Oxylipins detected in feces of suckling piglets from 3d to 21d after birth.

Class Number of Compounds

Arachidonic acid 21

Eicosapentaenoic acid 7

Docosahexaenoic acid 7

Linoleic acid 6

α-Linolenic acid 3

Dihomo-γ-Linolenic acid 2

γ-Linolenic acid 1

Mead acid 1
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Figure 2. Oxylipins were detected in feces of suckling piglets at birth day 3 and day 21 (n = 10).
(a) Heat map hierarchical clustering of detected all metabolites in this study. Hierarchical trees were
drawn based on detected metabolites in feces of suckling piglets at birth day 3 and day 21. The
columns correspond to feces at 3d and 21d postnatally, while the rows represent different metabolites.
(b) Principal component analysis for metabolites identified in feces.

2.2. Differential Oxylipins in Feces of Suckling Piglets

In order to understand the changes of oxylipins in feces of piglets at different devel-
opmental stages, we compared oxylipins in feces at 3 and 21 days of age. Our profiling
experiments revealed 21 differential oxylipins (Log2|fold change| ≥ 1.0) (Figure 3a).
Of these 21 oxylipins, 20 oxylipins were significantly downregulated at 21 days of age
comparing to 3 days of age. However, only one oxylipin was upregulated (Figure 3b).
Furthermore, quantitative analysis of the difference multiple changes of oxylipins showed
that the highest degree of down-regulation (Log2FC = −6.47) was (±)17-HDHA, followed
by 14(S)-HDHA, LTB4 and (±)12-HETE (Figure 3c). This suggested that some oxylipins
were more abundant during the early life of piglets, and decreased with age.
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Figure 3. Differential oxylipins were analyzed in feces between 3d and 21d postnatally (n = 10).
(a) Heatmap analysis of detected 21oxylipins in this study. (b) Violin plot analysis of 21 differential
21oxylipins in this study. The x axis indicates the name of the groups, and the y axis indicates the
expression quantity. (c) The bar plot of top 20 up-regulated and down-regulated oxylipins.

2.3. Arachidonic Acid-Derived Oxylipins in Feces

These differential oxylipins were further classified and presented in Table 2. Most of
the differential oxylipins were derived from ARA, and we then focused on ARA-derived
oxylipins. We further compared changes in ARA and its oxylipins in feces by statistical
analysis. There was a change in concentration of ARA in feces of suckling piglets through
comparing two developmental stages (at birth 3d and 21d) (Figure 4a). The quantitative
contents of 11 ARA-derived oxylipins in feces were shown in Figure 4b. Overall, these
oxylipins from ARA were higher in feces of 3d compared with that of 21d. Moreover, of
these 11 oxylipins, 12-HETE was the highest level of ARA-derived oxylipins in feces at early
age. The KEGG pathway analysis of ARA metabolism further provided a possible reason
for the changes of oxylipins at 3 and 21 days after birth (Figure 4c). The KEGG analysis
indicated that oxylipins from ARA were primarily produced by LOX and CYP450 pathway.
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Figure 4. The quantitative content of ARA derived differential oxylipins in feces (n = 10). (a) the
quantitative content of ARA in feces of suckling piglets at birth day 3 and day 21. (b) the absolute
levels of ARA derived differential oxylipins. (c) KEGG pathway analysis of the ARA derived
differential oxylipins in feces at 3 and 21 days after birth. Blue indicates that substances were detected
but had no significantly change compared to these of 21d, and green indicates that the content of
oxylipins was significantly down-regulated in feces from 21 days after birth.

Table 2. Differential oxylipins in feces at 3d and 21d postnatally.

Oxylipins Class Fold Change Log2FC VIP

(±)5-HETE ARA 0.16747 −2.57804 1.12796

(±)15-HETE ARA 0.10813 −3.2092 1.12241

(±)12-HETE ARA 0.05080 −4.29915 1.12629

11(S)-HETE ARA 0.07390 −3.75832 1.19574

(±)9-HETE ARA 0.09101 −3.45781 1.14467

11,12-EET ARA 0.43841 −1.18963 1.09487

8,9-EET ARA 0.38334 −1.38329 1.13316

LTB4 ARA 0.04309 −4.53647 1.12884

5-oxoETE ARA 0.36316 −1.46131 1.09839

15-oxoETE ARA 0.12029 −3.05542 1.17088

5,6-DiHETrE ARA 0.40526 −1.30309 1.07919

DHA DHA 0.34762 −1.52444 1.07157

(±)4-HDHA DHA 0.13570 −2.88148 1.33369
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Table 2. Cont.

Oxylipins Class Fold Change Log2FC VIP

(±)7-HDHA DHA 0.05934 −4.07489 1.38459

14(S)-HDHA DHA 0.02108 −5.56816 1.39682

(±)17-HDHA DHA 0.01129 −6.46862 1.46415

PDX DHA 0.23765 −2.07306 1.45008

16(17)-EpDPE DHA 0.17971 −2.47626 1.14812

(±)5-HEPE EPA 0.24632 −2.02137 1.05805

PGF3α EPA 2.70297 −1.43454 1.17604

13-oxoODE LA 0.16795 −2.57390 1.10934

2.4. Chiral Analysis the S and R Enantiomers of 12-HETE in Feces

12-LOXs, which are enantiomer enzymes, can convert ARA to 12-HETE, resulting
in a racemic mixture of stereoisomers containing the S and R enantiomers (Figure 5a).
In addition, CYP450s can also generate12-HETEs, and it was reported that human CYP450s
synthesize predominantly R-HETEs in vitro [14]. We further detected the concentration of
12(S)-HETE and 12(R)-HETE in feces by chiral LC-MS/MS. The chiral LC-MS/MS method
achieved excellent resolution of the enantiomers of S and R enantiomers (Figure 5b). The
S enantiomer eluted at 2.42 min, while the R enantiomer eluted at 1.89 min, and 12(S)-
HETE-d8 eluted at 2.41 min. The absolute levels of 12(S)-HETE and 12(R)-HETE in feces of
suckling piglets were showed in Figure 5c and Table 3. There was no significant difference
in 12(S)-HETE and 12(R)-HETE concentration at the same developmental stage; however,
the level of 12(S)-HETE or 12(R)-HETE in feces of 3d was higher than that of before weaning.
The results indicated that 12(S)-HETE or 12(R)-HETE generally presented at the higher
levels in the feces at early stage of sucking piglets, and the contribution of the LOX pathway
was equivalent to CYP450.
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piglets, and ARA is the most abundant n-6 PUFA in milk [17]. Mean values of ARA re-
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Figure 5. Chiral LC-MS/MS analysis of 12-HETE in feces of suckling piglets (n = 10). (a) Chemical
structure diagram of 12(S)-HETE and 12(R)-HETE. (b) Selected reaction monitoring (SRM) chro-
matograms demonstrating the resolution of 12(S)- and 12(R)-HETE in feces of suckling piglets at
birth day 3 and day 21 (n = 9). (c) the quantitative content of 12(S)- and 12(R)-HETE in feces at 3d and
21d postnatally, values are the mean ± SD, n = 10. Statistical analysis was performed by Tukey tests,
* p < 0.05, ** p < 0.01.
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Table 3. Chiral LC-MS/MS analysis of 12(S) and 12(R)-HETE enantiomers during suckling period.

Compound Retention Time (Min) [M-H]− (m/z)

12-(S)-HETE 2.40 319.3 > 179.2

12-(S)-HETE-d8 2.39 327.3 > 184.3

12-(R)-HETE 1.87 319.3 > 179.2

3. Discussion

The objective of our study was to investigate the profiling of oxylipins from ARA
in the feces of suckling piglets. To our knowledge, this is the first study to assess on
the concentrations of ARA derived oxylipins and the S and R enantiomers in feces of
suckling piglets. The use of quantitative metabolomics technology in this study allowed
us to characterize the detectable suckling piglets oxylipins metabolome even though the
structure of these oxylipins was similarly. The results showed that the oxylipins in feces of
piglets varied at different developmental stages, and quantitative analysis of the difference
multiple changes of oxylipins showed that some oxylipins from ARA were different in
feces during early postnatal development compared with pre-weaning piglets.

Our study provided foundational data concerning the change of oxylipins profile in
feces during the suckling period of piglets by quantitative LC-MS/MS. A total of 48 oxylip-
ins were quantifiable in this study, and nearly half of the oxylipins were derived from ARA,
which was similarly with the oxylipins feature of previous studies [15,16]. In addition, we
found that some ARA- derived oxylipins generally present at the higher levels at day 3
after birth. Colostrum and milk are the earliest nutrient sources for the newborn piglets,
and ARA is the most abundant n-6 PUFA in milk [17]. Mean values of ARA reported in sow
milk are 0.7% of total fatty acids [18]. It was absorbed into the intestine after intaking ARA,
and the remaining ARA is excreted by the body with feces. Moreover, the intestinal func-
tion of newborn piglets is not completely developed, which may contribute to the higher
abundance of some oxylipins from ARA at early of life. However, there was no significant
difference in the levels of ARA in our study. Noteworthily, large inter-individual differences
may be the reason for it. In addition, free ARA can be catalyzed to form oxylipins via
three major enzymatic pathways including COX, LOX, and CYP450 and non-enzymatic
autoxidation. The ways produced oxylipins may account for 11 differential oxylipins from
ARA at two time points, although there were no changes in ARA concentration.

It is a major finding that 12-HETE was the most abundant oxylipins formed ARA
at 3 days after birth via targeted analysis in our study. Similarly, young rat lens had the
capacity to synthesize12-HETE from exogenous ARA, and 12-HETE synthetic capacity in
the 4 day old rat lens was more than that in the 15 day old rat lens [19]. 12-HETE is the
LOX- and CYP450-derived ARA metabolite; however, the expression of metabolic enzymes
in tissues of newborn animals has not been confirmed.

12-HETE is a racemic mixture of 12(S)- and 12(R)-enantiomers. Corey was the orig-
inal pioneering synthesis of 12(S)-HETE in 1978 [20], 12(S)-HETE was produced by the
12(S)-LOX pathway, and 12(R)-HETE was a product of either 12(R)-LOX or CYP450 [21].
Moreover, 12S- and 12R-HETE have different physiological function. It reported that 12S-
HETE played a direct role in platelet aggregation, cancer, and diabetes [22]. The cornea had
been reported to produce 12R-HETE, and it can inhibit Na+-K+-ATPase activity. It was indi-
cated that 12R-HETE may also have a role in the eyes [23]. Considering that their structures
are similar, it is necessary for performing chiral analysis of 12-HETE to detect 12(S)- and
12(R)-HETE concentrations in feces. S- and R-enantiomers were well resolved in our study.
There was no significant difference in 12(S)-HETE and 12(R)-HETE concentrations at the
same developmental stage. This suggested that the relative contribution of CYP450 (which
produces appreciable R-enantiomers) is equivalent to the 12-LOX pathway (which mainly
produces S-enantiomers). Moreover, it is the first report of the enantiomeric composition of
12-HETE in the feces of suckling piglets in vivo.
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There are many factors that could affect the oxylipins profile, including sow milk, feed,
microbiota and raising conditions. Piglets were followed from farrowing until 21 days
after birth and they were housed under the same condition in order to better analyze the
changes of oxylipins in feces of suckling piglets at different developmental stages. Mean
values of ARA reported in sow colostrum or milk are 0.8 % and 0.6% of total fatty acids,
respectively [24]. The effect of sow colostrum or milk on ARA metabolism need to further
study. We previously discussed that exogenous addition of ARA can produce metabolites
by cultured some bacteria or fungi in vitro [19]. However, whether the intestinal microbes
could metabolize ARA to generate oxylipins in vivo remains to be further studied. Future
work will be required to study the role of intestinal microbiota in ARA metabolism.

The intestine of the piglets is immature during the suckling period. At this stage,
intestinal microbiota starts to be colonized, and the lymphoid cells begin to develop,
potentially impacting the host metabolism [25,26]. It has been reported that ARA plays
an important role in infant development and normal health. Free ARA modulates the
function of ion channels, several receptors, and the immune system. Particularly, ARA
has an essentiality in neonatal life and during development [7,27]. A growing number
of studies have confirmed that ARA has been added to infant formulas and follow-on
formulas to meet metabolic demand, and these studies have focused primarily on human.
However, there are few studies on the physiological concentration of ARA and its oxylipins
in the early life of piglets. While the majority of n-6 PUFA have proinflammatory properties
as precursors of eicosanoids, some metabolites of ARA are proven to be involved in the
regulators of innate lymphoid cells development and resolution of inflammation [8,28].
We reported here a lipidomics study of feces ARA-derived oxylipins in suckling piglets,
and provided new information that could describe oxylipins changes of piglets over the
suckling period.

4. Materials and Methods
4.1. Chemicals and Reagent

All oxylipins and deuterated internal standards were purchased from Cayman Chemi-
cal, Ann Arbor, MI, USA (Supplementary Table S1). HPLC-grade acetonitrile, isopropyl
alcohol, acetic acid and methanol were purchased from Merck (Darmstadt, Germany).

4.2. Animals and Sampling

A total of 24 good health multiparous Landrace sows with an average parity of 4.74
were selected to our study. Sows were screened by the same inclusion criteria as those in
Cheng et al. [29]. Sows had never received antibiotics before the study and kept in the same
environment. Piglets were followed from farrowing until before weaning (about 21 days),
and all piglets were housed with their respective sow in farrowing cages located in the same
room with automated control of temperature. All sows were fed with the same lactation
diet, which was formulated to meet or exceed the National Research Council [30] nutrient
requirements for lactating sows. The piglets had no access to probiotics and antibiotics,
importantly, no diarrhea and both sows and piglets had free access to water.

Fresh fecal samples were individually collected at 3 and 21 days after birth. Fecal
samples collected directly from the rectum using sterile 15 mL centrifuge tubes from the
piglets and then stored at −80 ◦C until being examined.

4.3. Analytical Condition of LC-MS/MS

Fresh fecal (50 mg weight) was frozen in liquid nitrogen, ground into powder. It was
extracted with 1.0 mL cold methanol and was vortexed continuously for 5 min. The
mixtures were kept in a 4 ◦C refrigerator overnight to ensure complete extraction. We then
added 10 uL of mixed internal standard (1 µM). After the centrifugation using 5000 r/min
for 10 min at 4 ◦C, the supernatant was collected and then evaporated to dryness under
nitrogen gas stream, reconstituted in 100 µL of methanol: water (1:1, v/v). The solution
was centrifuged and the supernatant was collected for LC–MS/MS analysis.
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The sample extracts were analyzed in Metware (Wuhan, China) by using an LC-ESI-
MS/MS system (HPLC, Shim-pack UFLC SHIMADZU CBM30A system; MS, Applied
Biosystems 6500 Q TRAP system, MS, Foster City, CA, USA).

The analytical conditions were as follows: HPLC: Waters ACQUITY UPLC HSS T3 C18
(2.1 mm × 100 mm, 1.8 µm, Foster City, CA, USA); mobile phase A, water with acetonitrile
and acetic acid(40/60/0.002, v/v/v); mobile phase B, isopropyl alcohol: acetonitrile (50/50,
v/v); gradient program, mobile phase A: mobile phase B, 99.9:0.1 V/V at 0 min, 45:55 V/V
at 4.0 min, 1:99 V/V at 5.0 min, 1:99 V/V at 6.8 min, 99.9:0.1 V/V at 7.0 min; flow rate,
0.40 mL/min; temperature, 40 ◦C; injection volume: 10 µL.

The ESI-MS/MS conditions were as follows: ion source, turbo spray; source tempera-
ture 550 ◦C; ion source gas I (GSI), gas II (GSII), curtain gas (CUR) set at 40, 40, and 35 psi,
respectively, the collision gas was set to 5 psi. Triple quadrupole (QQQ) and LIT scans were
acquired on a triple quadrupole-linear ion trap mass spectrometer (Q TRAP), API 6500
Q TRAP LC/MS/MS System, supplied with an ESI Turbo Ion-Spray interface, running
in a positive ion mode and controlled by Analyst 1.6.1 software (AB Sciex, Foster City,
CA, USA).

The scheduled multiple reaction monitoring (MRM) was used in this study, which is
based on these parameters including precursor ions (Q1), characteristic fragment ions (Q3),
retention time, declustering potential (DP), and collision energy (CE) [31]. Briefly, the Q1
of target compounds were first searched by the quadrupole while any ions derived from
diverse molecular weight compounds were screened. Many fragment ions were generated
after an ionization collision chamber ionized and fragmented the precursor ions, which
were then filtered by QQQ, and the desired characteristics of single-fragment ions (Q3)
were selected. A specific set of MRM transitions was monitored for each period based
on the metabolites eluted within this period [32,33]. The mass spectrum peak areas of all
oxylipins were integrated after the metabolite mass spectrometry data of different samples
were obtained, and the same metabolite mass spectrum peaks within the different samples
were integrated for correction [34]. Finally, the recovery and accuracy data of LC-MS/MS
analytical method were recorded (Supplementary Table S2).

4.4. Identification of Differential Oxylipins

The metabolites were quantified by using the MRM model of the triple four-stage
rod mass spectrometry [35,36]. All metabolites identify was carried out using Metware’s
own and public metabolite database. An OPLS-DA model was established using multiple
supervision methods. Differential accumulation of metabolites (DAMs) between samples
was identified using orthogonal partial least squares discriminant analysis. Oxylipins with
Log2|fold change| ≥ 1.0 and variable importance in projection (VIP) values ≥ 1.0 were
considered as DAMs.

4.5. Chiral Analysis of 12-HETEs

Chiral LC-MS/MS separation analysis based upon the method of Neilson et al. [31].
Briefly, the chiral separation of 12(S) and 12(R)-HETE separation was performed by using
a Chiral-Pak AD-RH analytical column (5 µm particle size, 2.1 × 150 mm) (Chiral Tech-
nologies, West Chester, PA, USA). LC-MS/MS conditions were as follows: The column
was maintained at 40 ◦C, phase A: 95% H2O, 5% acetonitrile (ACN), 0.025% formic acid;
phase B: 5% H2O, 95% ACN, 0.025% formic acid. The program was used with a flow rate
of 0.2 mL/min. The linear gradient program was as follows: 50% B (0–10 min), 60% B
(25 min), 100% B (27–30 min), and 50% B (31–40 min). Samples were maintained at 10 ◦C
prior to injection and injection volume was 1 µL. Both S and R enantiomers of 12-HETE
were calculated relative to the corresponding 12S-HETE-d8.
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4.6. Statistical Analysis

Quantitative data are presented as mean values ± SD. Statistical analysis was per-
formed using Tukey tests, and it was considered statistically significantly different at the
p < 0.05 level.

5. Conclusions

Our findings suggested that the level of oxylipins in feces was different between 3d
and 21d after birth during the suckling period. These oxylipins were primarily derived
from ARA, and ARA derived oxylipins generally present at the higher levels in the feces
at early stage of sucking piglets. Particularly, 12-HETE was the highest concentration of
feces. Considering that 12-HETE contained S and R enantiomers, we further detected
the level of 12(S)- and 12(R)-HETE in feces by chiral analysis. There was no significant
difference in 12(S)-HETE and 12(R)-HETE concentration at the same developmental stage
of sucking piglets.

Supplementary Materials: The following supporting information can be downloaded at: https://
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