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Abstract

Microarray batch effect (BE) has been the primary bottleneck for large-scale integration of

data from multiple experiments. Current BE correction methods either need known batch

identities (ComBat) or have the potential to overcorrect, by removing true but unknown bio-

logical differences (Surrogate Variable Analysis SVA). It is well known that experimental

conditions such as array or reagent batches, PCR amplification or ozone levels can affect

the measured expression levels; often the direction of perturbation of the measured expres-

sion is the same in different datasets. However, there are no BE correction algorithms that

attempt to estimate the individual effects of technical differences and use them to correct

expression data. In this manuscript, we show that a set of signatures, each of which is a vec-

tor the length of the number of probes, calculated on a reference set of microarray samples

can predict much of the batch effect in other validation sets. We present a rationale of select-

ing a reference set of samples designed to estimate technical differences without removing

biological differences. Putting both together, we introduce the Batch Effect Signature Cor-

rection (BESC) algorithm that uses the BES calculated on the reference set to efficiently pre-

dict and remove BE. Using two independent validation sets, we show that BESC is capable

of removing batch effect without removing unknown but true biological differences. Much of

the variations due to batch effect is shared between different microarray datasets. That

shared information can be used to predict signatures (i.e. directions of perturbation) due to

batch effect in new datasets. The correction can be precomputed without using the samples

to be corrected (blind), done on each sample individually (single sample) and corrects only

known technical effects without removing known or unknown biological differences (conser-

vative). Those three characteristics make it ideal for high-throughput correction of samples

for a microarray data repository. We also compare the performance of BESC to three other

batch correction methods: SVA, Removing Unwanted Variation (RUV) and Hidden Covari-

ates with Prior (HCP). An R Package besc implementing the algorithm is available from

http://explainbio.com.

Introduction

Batch effect (BE) has been the primary bottleneck for the large-scale integration of data from

multiple experiments. BE, defined as the systematic biases between microarray data generated
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by different labs at different times or under different experimental conditions [1, 2], can act as

a confounding variable in statistical tests and usually has a stronger effect on the measured

expression than the biological phenotype under study [3].

Unknown or unrecorded experimental or biological differences can add a systematic differ-

ence between putative replicates within or between two batches. Thus, we use the term batch
effect as a general term for any heterogeneity due to experimental factors between samples that

are putative experimental replicates. The heterogeneity can extend to different samples within

the same sample collection, i.e. considering only average difference between two collections

will likely underestimate the BE.

In practice, it has proven difficult to separate heterogeneity due to technical differences

from that due to unknown biological differences. The usual approach in batch correction [4–

6] is to protect the known covariates and remove all remaining heterogeneity. Biological differ-

ences such as sex and genotype can be clinically important but they will be removed if they are

not part of the protected covariates [7, 8]. Conversely, if the study design is unbalanced, the

statistical significance of the association of gene expression with the protected covariates can

be inflated beyond what one would expect by just a reduction in noise [9].

Additionally, current batch correction methods are intended to be used each time a new

composite dataset is created. It is known that specific differences in sample condition, experi-

mental technique [1, 10] and environmental conditions [2] can affect the measured gene

expression in predictable directions irrespective of the sample type. However, there has been

little systematic effort to estimate how many of those common effects are shared between data-

sets or to compute dataset-independent batch correction parameters that can be used for

“blind” prediction of BE.

In this article, we take another approach: instead of estimating and removing all differences

between two batches, we only remove those differences that are known to be associated with

technical variations. We show that a large proportion of the BE in Affymetrix U133 Plus2

array data can be captured by a relatively small set of signatures, defined as the directions in

which the measured expression has been perturbed by batch effects. We estimate batch effect
signatures (BES) in the form of orthogonal components from a large reference dataset of sam-

ples. We develop an algorithm for computing the BES using the reference dataset such that the

BES are unlikely to model known or unknown biological differences. We introduce a novel

batch-correction method called Batch Effect Signature Correction (BESC) that uses the batch

effect signatures for blind prediction and correction of BE in new samples and compare the

performance to SVA.

Materials and methods

Batch effect and correction methods

The measured expression for a set of samples can depend on one or more biological factors

(such as cell line name, tissue of origin or disease status) and unknown or unmodeled experi-

mental factors (such as microarray batch, FFPE vs. fresh samples, and experimental tech-

nique). Following [4] we can model the expression of a sample as a linear combination of

known biological covariates, unknown batch effect and noise

xij¼ miþf iðyjÞ þ
XL

l¼1

gilgljþeij ð1Þ

Where xij is the measured expression of gene i (out ofm genes) for sample j (out of n sam-

ples), μi is the overall mean expression of gene i, fi(yj) is a (possibly non-linear) function that
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models the dependence of the expression of the ith gene on the jth known biological factors yj.
The batch effect is modelled as a linear combination

PL
l¼1
gilglj of L experimental factors each

composed of glj the effect of the lth experimental factor on the ith gene multiplied by weight γil.

The last term eij is uncorrelated noise.

Eq 1 indicates that the overall space of measured gene expressions can be separated into a

space spanned by the biological variation fi(yj) and a space spanned by systematic batch effects
PL

l¼1
gilglj. The purpose of BE correction is to estimate and remove the latter (third term on the

RHS of Eq 1) while retaining the biological differences. Data-specific batch correction methods

(such as ComBat and SVA) assume that the BE space (third term) is unique to each composite

dataset and has to be recalculated each time a new composite dataset is created. However, we

show that an orthogonal basis derived from the BE space of a reference dataset can be used to

estimate and remove the variation in the BE space for other test datasets (i.e. blind batch
correction).

Surrogate Variable Analysis (SVA). SVA [4] has been widely used for estimating hidden

covariates (including technical and biological). Fitting the functions fi and global means μi
using linear or non-linear regression, we can express Eq 1 in terms of the residuals of the fit

rij¼ xij� mi� f iðyjÞ ¼
XL

l¼1

gilglj ð2Þ

The aim of SVA is to find a set of K�L orthogonal vectors (surrogate variables) that span

the same linear space as gl

XK

k¼1

likhkj �
XL

l¼1

gilglj ð3Þ

Each surrogate variable hk = [hk1,hk2,. . .,hkn]T is a vector of length equal to the number of

samples that models one hidden covariate that is not present in the known covariates, and λik

is the influence of hk the measured expression of the ith gene. Together they can be used to

model heterogeneity from unknown sources in any future statistical analysis on that dataset.

SVA proceeds to find these surrogate variables by doing a Singular Value Decomposition of

the residuals rij.
The advantage of SVA is that we do not need to know the actual batches. The disadvantages

of SVA are that, firstly, it has to be recomputed on each new dataset, secondly, it can remove

unknown but important biological differences between samples.

Removing Unwanted Variation (RUV). RUV [11] is a batch correction algorithm that

uses factor analysis on control genes (i.e. genes that are not known to be differentially

expressed for any of the known covariates) to estimate and remove batch effect. Apart from

selection of the control genes, there is a parameter ν that has to be adapted to the dataset being

corrected. RUV can be used without knowing the actual batches, but the selection of the con-

trol genes and ν remain challenging. Furthermore, these two selections are only valid for a par-

ticular dataset; they have to be re-evaluated for each new dataset.

Hidden Covariates with Prior (HCP). HCP [12] is an approach to estimating batch

effects modelled as a linear combination of known covariates. HCP aims to be a generalization

of several factorization-based batch correction methods by modelling both the known and

unknown biological or technical covariates. The weights given to the known and unknown

variation results in three parameters λ,σ1,σ2 that have to be optimized for each dataset. HCP

has the disadvantage that these parameters are specific to a particular dataset and have to be

re-computed for each new dataset. Furthermore, without some ground truth to compare to
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(e.g. gene co-expression compared to known co-expressions, detection of known eQTLs), it is

not possible to find the values for the three parameters that minimize the batch effect.

Batch Effect Signature Correction (BESC. We introduce a novel approach BESC that

aims to learn the variation due to unknown technical differences using a reference dataset and

apply it to correct batch effect in other datasets. To motivate our approach, note that λik is the

difference in the expression of the ith gene for each unit change in the kth surrogate variable.

Thus, the vector λk = [λ1k,λ2k,. . .,λmk], for the kth surrogate variable and each genes 1. . .m, is a

signature that quantifies the dependence of the expression of each gene on the kth surrogate

variable. For example, if the surrogate variable captures the effect of a particular type of sample

preparation, the signature is the differential expression between samples that use that prepara-

tion method vs. samples that do not. We call the set of K vectors λk the Batch Effect Signatures
(BES). Each vector is a zero-mean unit vector (i.e. sum of square of components equals one)

that is as long as the number of probes on the array. We can consider batch effect to be a per-

turbation in a certain direction for all samples in the same batch. These perturbations can be

estimated by looking at the expressions of the same cell line in different batches. Each pertur-

bation is a sum of contributions from multiple sources of technical variation. BES decomposes

the individual contribution of each source of technical variation by looking for a set of vectors

that spans the batch effect perturbation-space.

Our claim is that the expression difference (i.e. signature λk) between samples that differ on

a certain experimental factor (e.g. RNA amplified vs. un-amplified) would be more likely to

remain the same, multiplied by some coefficient even if the surrogate variables do not remain

the same. Given a dataset of reference samples that is large and diverse enough, we can com-

pute the signatures of the various known or unknown factors that contribute to BE. Those sig-

natures can then be used to estimate and remove BE from new samples. We call this approach

the Batch Effect Signature Correction (BESC).

Difference between SVA and BESC

There are some differences between the SVA and BESC formulations. Writing Eq (2) in matrix

form

R ¼ DU ð4Þ

Where R is them×nmatrix of residuals (n samples, m genes), D is them×Kmatrix of batch

effect signatures (λik the element at ith row and kth column) and U is the K×nmatrix of surro-

gate variables (hkj the element at kth row and jth column). SVA constrains the rows of U to be

orthogonal and estimates the matrix U using singular value decomposition (SVD) on the resid-

ual matrix R (which also constrains the columns of D to be orthogonal). On the other hand,

we constrain the columns of D to be orthogonal and estimate D by taking the Principal Com-

ponents (PCA) of the transpose of the residual matrix, RT. Note that there is no substantial dif-

ference between using SVD or PCA for decomposing R (except computational stability).

Strictly speaking, SVA is not a batch correction algorithm. The surrogate variables also cap-

ture heterogeneity due to unknown biological differences since they are calculated without ref-

erence to the batch. Other batch correction methods such as ComBat [5] require known batch

assignment, i.e. which samples belongs to which batch. A modification to SVA, permuted-SVA
(or pSVA) [8] has been proposed to prevent the algorithm from removing unknown biological

differences. However, pSVA has the same limitation as ComBat, i.e. it is applicable only when

the technical covariates that contribute to batch effect are known. As SVA does not require

that information, it is the closest comparable algorithm to BESC and was selected for compari-

son to BESC in this article.
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Selecting samples for the reference set

The selection of the reference set is crucial to ensure that the BES computed from it does not

capture unknown biological covariates of the samples (e.g. sex, genotype). We selected and

annotated a reference set of 2020 cell line samples (242 unique cell lines) on the Affymetrix

U133 Plus 2.0 platform, selected from 348 collections from the Gene Expression Omnibus (S1

Table). Fitting the linear model in Eq (1) using the cell line name as the known covariate cap-

tures all known and unknown biological differences between the samples. The same cell line,

under untreated conditions, should give similar expression profiles between replicates.

Although it is possible for growth conditions (e.g. passage number, growth medium) to

affect the expression for a cell line, it can be argued that cell lines that have been grown from a

standardized population of cells are one of the most replicable biological samples. Any differ-

ences in expression measured in two batches can be treated as mostly arising from BEs and

experimental noise.

Correcting BE using BES

Given a set of BES, the batch effect in a new set of samples is computed by fitting a linear

model of the BES to the expressions of each sample, i.e. we find weights ak that minimize the

squared residuals

kxnew �
XK

k¼1

aklkk
2

ð5Þ

Where xnew is the vector of expressions for a new sample to be corrected and λk is the kth

BES.
PK

k¼1
aklk is the estimate of the BEs and the residuals xcorr ¼ xnew �

PK
k¼1
aklk is the cor-

rected expression for the sample. Since the BES λk are zero sum orthonormal vectors, it is sim-

ple to show that ak ¼ l
T
k xnew where the superscript T indicates the transpose, i.e. the weights

for each BES is the scalar product of the BES and the expression vector.

BES is thus a “blind" estimate of the BE; we do not recalculate BE parameters on the set of

new samples. That enables single sample correction of new samples, i.e. without having to re-

compute the correction for all the samples whenever new samples are added.

Quantifying batch effect

Several methods have been proposed in literature to visualize or quantify the batch effect in a

dataset [13]. Visualization methods include clustering (dendrograms) and principal compo-

nent analysis (PCA). However, they are not suited for very large number of samples, as is the

case for the datasets in this paper. Principal Variance Component Analysis (PVCA) [1] has

been proposed as a quantitative measure. PVCA fits a linear mixed model to the principal

components of the data using the known biological covariates and batch identities as random

effects. The variance due to the different covariates and batch is summed up across the princi-

pal components and offers a way to compare the primary sources of variance. For the two vali-

dation sets, we used PVCA to compute the contribution of variance due to sample-type as a

measure of the batch effect. The higher the contribution, the lower the batch effect.

However, PVCA has the disadvantage that the variances due to batch effect in different test

datasets cannot be averaged together (as is required for cross-validation). So, we developed

another batch effect measure, the Distance Ratio Score (DRS) that is intuitive, provides one

value for each sample and can be averaged across various test sets. Consider a set of samples

from one or more sample types hybridized in multiple batches. For a sample of a certain sam-

ple type, we take the log of the ratio of the distance to the closest sample of a different sample
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type to the distance to the closest sample belonging to a different batch but the same sample

type.

DRS ¼
1

n

Xn

i¼1

log2

dðxi; xi;dtÞ
dðxi; xi;db=stÞ

 !

ð6Þ

Where d() is any measure of dissimilarity between two samples, xi is the ith sample, xi,dt is

the closest sample of a different sample type and xi,db/st is the closest sample from a different

batch of the same sample type as xi. Intuitively, the DRS is high if samples of the same type clus-

ter together irrespective of batch since the denominator will be small compared to the numera-

tor. Conversely if most of the samples cluster according to batch rather than sample type, the

DRS will be small. For our analysis, we used the Euclidean distance as the dissimilarity measure.

Cross-validating batch effect signatures

The question remains whether BES calculated on one dataset are general enough to be predic-

tive of the BE in another dataset. To investigate that, we did 5-fold cross-validation, i.e. created

5 random splits of the samples in the reference set into training and testing sets (approximately

80% samples for training and 20% samples for testing) ensuring that all samples from an indi-

vidual collection are either all in the testing set or in the training set (S1 Table).

For each train/test split, we used the training set to compute the residuals after fitting a

model to the expression with the known sample type as the covariate. Then we computed the

principal components of the transpose of the residual matrix. The eigenvectors of the covari-

ance matrix (i.e. the principal components) were used as putative BES. We used varying num-

bers of eigenvectors with the highest eigenvalues to correct the samples in the testing set and

computed a Distance Ratio Score (DRS) of the test set samples for each number of BES.

Consistency of BESC corrections for different reference sets

Since we claim that the BESC algorithm picks up batch effects due to common technical differ-

ences, it should pick the same corrections when trained on different reference sets. To investi-

gate that, we used the 5 cross-validation splits of the reference set to create two smaller

reference sets: one reference set using splits 1 and 2 together and another reference set using

splits 3 and 4 together. From each reference set, we computed a set of BES: BES1+2 from splits

1 and 2 and BES3+4 from splits 3 and 4. Using these two sets of BES, we did three analyses.

First, both sets of BES were used to correct the 5th split with different numbers of BES. We

visualized the two sets of corrected data for split 5 using principal component analysis (PCA).

Second, we corrected random vectors with the two BES and computed the correlations

between the corrections for different numbers of BES. Third, we corrected the colon cancer

dataset (validation set 2) with both sets of BES and compared the list of genes differentially

expressed between MSI and MSS samples. Results for these analyses are in S1 File.

Testing on validation sets

We selected two validation sets to test the effectiveness of the BES calculated on the reference

set for removing BE. All of these samples were collected from public GEO datasets. Annota-

tions for the samples were compiled from annotations provided by the original data submitter.

Different numbers of the top BES were used to estimate and remove the BE in the validation

sets and the DRS BE score was calculated. Note that the BES were calculated using only the ref-

erence set samples. The sample type (or any other covariate) of the validation set samples were

not used during the BE correction.
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Validation set 1 (Primary normal samples)– 878 samples of primary healthy tissue (532

blood, 228 colon and 118 lung samples from 41 collections) on the U133 Plus 2.0 platform

from GEO (S2 Table). We predicted the sex of each sample using 5 chromosome-Y genes (S1

File). Samples were selected to create a balanced dataset with respect to collection, organ and

sex.

Validation set 2 (Colon cancer and normal)– 3041 samples of primary colon cancer and

normal samples (476 normal colon and 2565 colon cancer samples from 60 GEO collections)

on the U133 Plus 2.0 platform from GEO (S3 Table). We have compiled the reported Micro-

Satellite Stability/Instability (MSS/MSI) status for 513 out of the 2565 colon cancer samples

(154 MSI, 359 MSS). Out of those 513, we selected a balanced set of 503 samples with known

MSI/MSS status to test for differential expression between MSI and MSS.

Permutation p-value for DRS

To test whether the improvement in the DRS is statistically significant, we performed a permu-

tation test of the DRS obtained with various numbers of BES. We permuted the data for each

gene in the reference set to destroy any batch effect signatures and then computed the BES

using that null dataset. Varying numbers of those null BES were used to correct the samples in

the validation set and the DRS obtained was compared to the true DRS at different numbers of

BES. The procedure was repeated 100 times and the null DRSs used to compute the p-value for

the true DRS using a Student’s t-test at each number of BES.

Comparison to SVA, RUV and HCP

We compared the DRS for the validation set for increasing numbers of BES to that for increas-

ing levels of correction for SVA, RUV andHCP. The comparison was done for varying number

of 1) surrogate variables (SVA), 2) factors (RUV) and 3) estimated hidden covariates (HCP).

Note that it is not a direct comparison, since the other three methods use the validation set

samples to compute the BE parameters. The training set/validation set approach we have taken

with BES cannot be applied to SVA, RUV orHCP since they are expected to be run on the

same dataset that is being corrected.

For RUV, we selected the set of housekeeping genes as well as the value of ν that gave the

best performance in terms of DRS and PVCA (S1 File). ForHCP, we did a grid search over the

three parameters λ,σ1,σ2 and selected the values that gave the highest DRS.

One disadvantage of SVA is that it will remove unknown biological differences (e.g. sex)

from the cleaned data [7, 8]. To show that, we predicted the sex of each sample in the valida-

tion set 1 using the expression of chromosome Y genes (RPS4Y1, KDM5D, USP9Y, DDX3Y,

EIF1AY, see S1 File) and looked at the number of genes significantly different between male

and female samples at various levels of correction for BESC and SVA. For validation set 2, we

had the reported MSI status for 513 colon cancer samples. We looked at the number of genes

significantly different between MSI and MSS samples. The computation of statistical signifi-

cance for validation set 1 was done using organ source, sex and batch as covariates and for vali-

dation set 2 was done using batch and MSI/MSS status as covariates.

Results

BES computed on training data is predictive of batch effect in test data

Fig 1 shows the 5-split cross-validated batch effect DRS on the reference set. The plot shows

the average DRS on the test set corrected using BES calculated on the training set. The DRS

increases as the number of BES increases, indicating reduction of BE with increasing
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correction. It reaches a maximum with 30 BES used in the correction, indicating that the first

30 Batch Effect Signatures estimated on the training set capture variation due to BE in the test

set. Further correction reduces the DRS, indicating that the BES above 30 do not capture any

information about the BE.

BES computed on different reference sets are consistent

S5 Fig shows the results of applying BESC using BES computed from different reference sets.

As long as the number of BES is smaller than 10, the corrected samples from the two sets of

BES stay close together (while moving away from the uncorrected samples). After 10 BES, the

two sets of corrected samples start separating. S6 Fig shows the mean correlation between the

corrections performed by the two sets of BES on a random vector. The correlation increases

with increasing number of BES, reaching a maximum at 10 BES and then goes down. Further-

more, S7 Fig shows the overlap percentage between genes differentially expressed between

MSI and MSS for validation set 2 corrected by the two sets of BES. The overlap remains high

(>80%) for up to 10 BES.

Fig 1. Cross-validated performance on reference set. The cross-validated Distance Ratio Score (DRS) for the reference set vs. the number of Batch Effect Signatures

(BES) used for the correction. Higher DRS indicate lower levels of batch effect. The DRS reaches a maximum for 30 BES.

https://doi.org/10.1371/journal.pone.0231446.g001
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Together, the three results show that two reference sets (splits 1+2 and splits 3+4), pick up

similar batch effect signatures (until ~ 10 BES) indicating that the algorithm is picking up con-

sistent correction factors from different reference sets.

BES computed on reference set corrects batch effect in validation sets

Fig 2A shows the DRS on validation set 1 using various numbers of BES calculated on the refer-

ence set. The figure compares the performance of the BESCmethod to the SVA, RUV andHCP
methods using the same number of correction factors as the number of BES. The BESCmethod

shows improvement in the DRS when up-to 15 BES are used for correction. Using more than

15 signatures begins to decrease the effectiveness. SVA shows a steady improvement in batch

effect at each level while RUV shows improvement up to two correction factors and then satu-

rates.HCP shows improvement for the first correction factor, but its performance decreases

once 20 or more correction factors are included. Fig 2B shows similar results using the variance

contributed to the sample type (in this case, the organ of origin of the samples). The variance

increases for the sample type (with a corresponding decreasing in variance due to batch effect;

not shown) as the number of BES or number of surrogate variables increases. As with the DRS

(Fig 2A), SVA show a steady improvement in batch effect at each level. The performance for

BESC reaches a maximum when 15 BES are used. RUV andHCP do not show any improvement

with correction (with the performance ofHCP decreasing over the un-corrected data).

Fig 3A shows the DRS on validation set 2 for varying number of BES used in the correction.

For that dataset too, the DRS reaches a maximum plateau at 15 BES. Using more than 15 BES

does not significantly change the DRS. Fig 3B shows similar results using the PVCA-computed

variance contribution due to sample-type (i.e. disease status- colon cancer vs. normal in this case).

In both cases, the SVA corrected data shows superior performance in removing batch effect.

Comparison to SVA

SVA shows superior performance (Fig 2A) over most of the range of the x-axis (number of

BES/number of surrogate variables used for correction).

However, Figs 2C and 3C illustrates the primary disadvantage of SVA which is the “normal-

izing away” of unknown but true biological differences. When sample sex is not included as

one of the “protected” covariates in the SVA algorithm, the difference between male and

female samples (i.e. the number of statistically significant genes) decreases with increasing

SVA correction. On the other hand, the difference is maintained (and slightly increased) with

increasing BES correction.

Fig 3C shows the number of genes that are differentially expressed between MSI and MSS

samples at a statistically significant level (FDR<0.05). There is a steep drop off of the number

of genes for the SVA-corrected data. SVA correction eventually removes almost all of the dif-

ferences between the MSI and MSS samples. On the other hand, the BES corrected data retains

most of the differential expression.

Figs 2C and 3C emphasize the conservative nature of BESC; only differences that are

known to be due to BE are removed. Any unknown/unmodeled difference between the sam-

ples that is due to true biology is maintained. In contrast, SVA captures those differences

unless they are protected, and correction with the surrogate variables removes those differ-

ences from the samples.

Comparison to RUV

For validation set 1, RUV shows some promise as a batch correction method for small num-

bers of correction factors (2 or less). However, it fails to do any correction for validation set 2.
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Also note that the results for RUV are selected from that value of ν and set of housekeeping

genes that has the highest performance. In practice, it is computationally cumbersome to select

the best parameter.

Comparison to HCP

HCP does some significant correction for validation set 2 (Fig 3) but shows disappointing per-

formance on validation set 1 (Fig 2). In addition, HCP had the disadvantage that its perfor-

mance had to be tuned by optimizing over a grid of three parameters (we show the results for

the best performing combination).

BES correction is statistically significant

The orange line (Figs 2A and 3A) shows the average DRS for the validation sets corrected

using the BES calculated on the permuted reference set data. As expected, there is no signifi-

cant correction of the data (i.e. the DRS does not improve from baseline). The z-score p-value

of the DRS using the true reference set (black line) is<1e-16 over the entire range of numbers

of BES.

Discussion

We show that the batch effects between different datasets occupy a space that can be character-

ized by a small set of orthogonal basis vectors. That enables us to compute Batch Effect Signa-

ture (BES) vectors that capture the direction of perturbation using a reference dataset and

apply them to predict and remove the batch in independent validation datasets. As far as we

know, no other “blind” methods of batch correction have been published. All methods,

(including SVA [4], RUV [11] andHCP [12]) require the correction factors to be computed on

the entire sample set, needing re-calculation each time new samples are added.

Crucial to the correct operation of our algorithm is the selection of a reference set com-

posed of cell lines since specifying the cell line name completely fixes all known and unknown

biological covariates. We argue that cell lines that have been grown from a standardized popu-

lation of cells are one of the most replicable biological experiments, and any difference between

the same cell line sample from different experiments is quite likely due only to technical varia-

tion. However, note that we can use any sample that has been analysed in multiple experiments

by different labs. For example, samples from The Cancer Genome Atlas (TCGA) or any other

sample repository have the property that specifying the sample id completely specifies all of the

known and unknown biological covariates. All that is required for inclusion in the reference

set is that the sample must be uniquely identified across multiple experiments.

We compared the BESC algorithm to Surrogate Variable Analysis (SVA), Removing

Unwanted Variation (RUV) and Hidden Covariates with Prior (HCP). At larger number of

surrogate variables, SVA is more effective at detecting and removing residual structure from

the dataset, however it is not possible to know how much of that residual structure is due to

batch effect compared to unknown but true biological differences. We show that SVA is very

likely to remove unknown but important biological information in our validation sets (e.g. sex

in the case of normal samples and MSI vs. MSS differences in the case of colon cancer). We

show that BESC is much more conservative about retaining unknown biological differences

Fig 2. Performance on validation set 1. a) DRS for the validation set 1 using BESC, SVA, RUV andHCP and the

permuted null BES b) Contribution of variance due to organ-type, calculated using PVCA c) Number of genes

differentially ex-pressed between male and female samples at various levels of correction.

https://doi.org/10.1371/journal.pone.0231446.g002

PLOS ONE Blind microarray batch correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0231446 April 9, 2020 11 / 15

https://doi.org/10.1371/journal.pone.0231446.g002
https://doi.org/10.1371/journal.pone.0231446


PLOS ONE Blind microarray batch correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0231446 April 9, 2020 12 / 15

https://doi.org/10.1371/journal.pone.0231446


while removing technical differences. RUV and HCP show some performance on one valida-

tion set each, but do not do any significant correction in the other validation set. Furthermore,

both algorithms need to be tuned by testing out various values of tuning parameter(s); a com-

putationally expensive process.

The characteristics of the BESC algorithm make it ideally suited for large-scale batch correc-

tion in microarray data repositories. BESC is conservative, i.e. only BE known to be likely due

to technical differences is removed. We have shown that biological variation, even if unknown

to the BESC algorithm, is preserved. BESC can be applied to individual samples and does not

need to be recomputed as more samples are added to the repository.

One primary disadvantage of the BESC algorithm is that it will remove all differences

between samples that are parallel to the BES vectors. It is possible that there is important bio-

logical information along those directions. However, that biological difference is confounded

with the technical differences and cannot be separated out in any analysis.

Another disadvantage is that the current BES vectors are only applicable to the Affymetrix

U133 Plus2 array. We used samples from the U133 Plus2 platform to calculate the BES, mainly

because it is the most commonly used platform with a large number of cell line samples. Before

BES can be used on another platform, we will have to compile a reference set of cell line or

other identified samples on that platform and re-compute the vectors on that set. Other BE

correction methods are platform agnostic.

Conclusions

This paper describes a novel finding that batch effect (BE) perturbs measured gene expression

in predictable directions which we call Batch Effect Signatures (BES). That characteristic can

be used to compute possible directions of the perturbations in a reference dataset which can be

used to predict the BE in an independent validation set. Selecting the reference set to contain

only known cell-lines ensures that all (known or unknown) biological differences are fixed by

specifying the cell-line name. That ensures that the BES capture differences due only to techni-

cal differences between the batches.

We show that the BES calculated on the reference set efficiently removes batch effect in two

validation sets, as measured by PVCA and the Distance Ratio Score (DRS), a novel measure of

batch effect. Compared to SVA, our algorithm does not remove all possible differences

between samples of the same type in different batches, but we show that SVA also over-corrects

by removing unknown but true biological differences. Compared to RUV andHCP, our algo-

rithm shows superior performance over a wider range of datasets.

An R Package besc implementing the algorithm is available from http://www.explainbio.

com. All data used are public data available from GEO (Gene Expression Omnibus https://

www.ncbi.nlm.nih.gov/geo/). GEO accession numbers for all samples used in the analyses are

in S1–S3 Tables.

Supporting information

S1 Fig. Normalization of arrays. a) Bias in measured expression that depends on intensity b)

Bias in measured expression that depends on array y-axis.

(TIF)

Fig 3. Performance on validation set 2. a) DRS for the validation set 2 using BESC, SVA, RUV andHCP and the

permuted null BES b) Contribution of variance due to disease status, calculated using PVCA c) Number of genes

differentially expressed between MSI and MSS samples at various levels of correction by BESC, SVA, RUV andHCP.

https://doi.org/10.1371/journal.pone.0231446.g003
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S2 Fig. Prediction of sex. Scatterplots of sex related genes with known sex and ellipse of 95%

density for fitted Gaussian mixture model.

(TIF)

S3 Fig. RUV parameter selection for validation set 1. Plot of DRS and PVCA for various lev-

els of the tuning parameter for RUV as well as two different sets of housekeeping genes.

(TIFF)

S4 Fig. RUV parameter selection for validation set 2. Plot of DRS and PVCA for various lev-

els of the tuning parameter for RUV as well as two different sets of housekeeping genes.

(TIFF)

S5 Fig. Consistency of calculated BES. Overlap between significant genes selected for MSS/

MSI differences in validation set 2 for BES calculated on different subsets of the reference set.
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S6 Fig. PCA of corrected samples for two sets of BES. Principal Component Analysis (PCA)

plots of uncorrected samples and samples corrected using two different sets of BES calculated

on different subsets of the reference set.
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S7 Fig. Correlation between corrected samples. Correlation between corrected samples at

various levels of correction for BES calculated on different subsets of the reference set.
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S1 Table. List of samples in the reference set (Cell lines) with cross-validation split IDs.

(XLS)

S2 Table. List of samples in validation set 1 (Primary normal samples) with predicted sex.
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MSS status.
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