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Nitric oxide (NO) and reactive oxygen species (ROS) function as signaling molecules
in a number of critical signal transduction pathways in plants, including plant biotic
interactions. In addition to the role of plant-derived NO and ROS in plant resistance,
which has been well documented, pathogen-produced NO and ROS have recently
emerged as important players in fungal development and pathogenesis. However,
the effects of pathogenic fungi-derived NO and ROS on signaling pathways during
fungal pre-infection development remain unknown. Here, using a combination of
pharmacological approaches and confocal microscopy, we investigated the roles of
NO and ROS during the germination of Puccinia striiformis Westend f. sp. tritici (Pst)
the wheat stripe rust pathogen. Both NO and ROS have a crucial role in uredinial
germination. The scavengers of NO and ROS delayed spore germination and decreased
the lengths of germ tubes. A similar phenotype was produced after treatment with
the promoter. However, the spores germinated and grew normally when the levels of
NO and ROS were simultaneously elevated by the application of a promoter of NO
and a donor of ROS. Confocal laser microscopy indicated that both NO and ROS
preferentially localized at the germ pores and apexes of growing germ tubes when the
ROS/NO ratio in the spores was maintained in a specific range. We concluded that
both NO and ROS are critical signaling molecules in the pre-infection development of
Pst and that the polar growth of the germ tube is coordinately regulated by NO and
ROS.

Keywords: NO, ROS, Pst

Abbreviations: CLSM, confocal laser scanning microscopy; c-PTIO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-
1-oxyl-3-oxide; DAF-FM DA, 4-amino-5-(N-methylamino)-2, 7-difluorofluorescein diacetate; H2DCF DA, 2′, 7′-
dichlorodihydrofluorescein diacetate; DAF-FM T, 4-amino-5-(N-methylamino)-2, 7-difluorofluorescein triazole; DCF,
dichlorofluorescein; DPI, diphenyliodonium iodide; HPG, hours post germination; L-NAME, N-nitro-L-arginine methyl
ester;MFI, mean fluorescence intensity;MGL,mean germ tube lengths; MGR,mean germination rate; NADPH, nicotinamide
adenine dinucleotide phosphate; NBT, nitroblue tetrazolium; NO, nitric oxide; NOS, nitric oxide synthase; Pst, Puccinia
striiformis f. sp. Tritici; RNS, reactive nitrogen species; ROS, reactive oxygen species.
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INTRODUCTION

Two important types of free radicals, NO and ROS, are crucial
signaling molecules involved in a number of signal transduction
pathways. The roles of NO and ROS in mammals have been
studied for many years. They are crucial messengers in the
immune, nervous, and cardiovascular systems (Palmer et al.,
1987). In plants, they are involved in several physiological
processes, including seed germination and lateral leaf and root
development, and have been implicated in both abiotic and
biotic stress responses (Besson-Bard et al., 2008; Wilson et al.,
2008; Swanson and Gilroy, 2010). Indeed, there is considerable
evidence that plant-derived NO and ROS are important in
initiating plant responses to pathogens or elicitors (Brisson et al.,
1994; Levine et al., 1994; Delledonne et al., 1998; Chaki et al.,
2009).

Evidence is also emerging that NO and ROS are important
regulatory molecules in microbe, including plant pathogens. It
has been found that ROS is involved in the germination and germ
tube growth of conidia of Cladosporium fulvum (Lu andHigginsf,
1999) and the biofilm resistance of Pseudomonas aeruginosa
(Elkins et al., 1999).

It was reported that pathogen-derived NO influences
germination in Colletotrichum coccodes (Wang and Higgins,
2005), conidiation in Coniothyrium minitans (Gong et al., 2007)
and sporangiophore development in Phycomyces blakesleeanus
(Maier et al., 2001) and affects the formation of appressoria in the
obligate biotrophic powdery mildew fungus Blumeria graminis
(Prats et al., 2008) and pathogenicity in the rice blast fungus
Magnaporthe oryzae (Averyanov and Lapikova, 1990).

Reactive oxygen species have been reported to be involved
in fungal virulence and development (Heller and Tudzynski,
2011). There are various reports on the effects of ROS free
radicals on spore germination. O2

− and OH radicals were both
detected during the germination of Pyricularia oryzae, and the
radical scavengers superoxide dismutase (SOD), catalase and
OH increased the percentage of germination (Averyanov and
Lapikova, 1990). During spore germination in Neurospora crassa,
an accumulation of catalase was observed, indirectly suggesting
that H2O2 was generated in the process (Michan et al., 2002).

Wheat stripe rust, caused by Pst, is one of the most important
diseases of wheat and can cause significant loss to wheat yield
and grain quality (Chen, 2005). Although Pst is a macrocyclic
rust pathogen, its propagation and spread occur primarily by
means of urediniospores, which are capable of germination and
infection under suitable environmental conditions immediately
after release (Chen et al., 2014). Following the initiation of
germination, the cytoplasm of a urediniospore moves into the
germ tube until it reaches a stoma.

To our knowledge, no study has suggested a role for NO and
ROS during urediniospore germination. Hence, CLSM was used
to visualize NO and ROS generated by urediniospores in vivo and
the role of NO and ROS in Pst development was investigated. We
identify a regulatory role for NO and ROS during the germination
of urediniospores and the apical growth of germ tubes in Pst using
specific probes and the donor/promoter and scavengers of NO
and ROS. The scavengers of NO and ROS delayed germination

and decreased germ tube length. Moreover, a promoter of NO
and a donor of ROS could also delay germination and decrease
the germ tube length. Further study determined that the spores
germinate when the ROS/NO ratio is maintained within a specific
range and that NO and ROS primarily exist in the apex of the
germ tube, suggesting that both NO and ROS are involved in
apical germ tube growth.

MATERIALS AND METHODS

Pathogen and Reagents
Fresh urediniospores of Pst pathotype CYR31 used in this study
were provided by the Institute of Plant Pathology, Northwest
A&F University. The specific NO scavenger c-PTIO (Balcerczyk
et al., 2005), the substrate of NO synthesis L-Arg (Bonilla et al.,
2004; for clarity, L-Arg is elsewhere called “the promoter of
NO”), the ROS donor triphosphopyridine nucleotide (NADPH),
the NADPH scavenger DPI, NO-specific probe 4-amino-5-(N-
methylamino)-2,7-difluorofluorescein diacetate (DAF-FM DA)
and the ROS-specific probe 2′,7′-dichlorodihydrofluorescein
diacetate (H2DCF DA) were used in this study. All reagents used
in this study were obtained from Sigma–Aldrich, USA.

Determination of Appropriate Reagent
Concentrations
Different reagents at different concentrations (c-PTIO at 0, 50,
100, 150 µM; L-Arg at 0, 2, 3, 4 mM; DPI at 0, 10, 20, 30 µM and
NADPH at 0, 2.5, 3.5, 4.5 mM) were tested in order to find the
appropriate concentrations for use in the experiments.

Different probes at different concentrations (DAF-FMDA at 1,
2, 5, 10, and 15µMandH2DCFDA at 20, 30, 50, 70, and 100mM)
were tested in order to find the appropriate concentrations to
detect the generation of NO and ROS in the study.

Finally, concentration of c-PTIO at 100 µM, L-Arg at 2 mM,
DPI at 20 µM, NADPH at 2.5 mM, DAF-FM DA at 10 µM and
H2DCF DA at 50 mM were selected.

Effects of NO and ROS on Urediniospore
Germination and Germ Tube Growth
Fresh urediniospores (0.6 mg) were added to 10 ml distilled
water, 10 ml 100 µM c-PTIO, 10 ml 2 mM L-Arg, 10 ml 20 µM
DPI, 10 ml 2.5 mM NADPH, 5 ml 20 µM DPI+5 ml 100 µM
c-PTIO (c-PTIO +DPI), 5 ml 2 mM L-Arg+5 ml 2.5 mM
NADPH (L-Arg +NADPH), 5 ml 20µMDPI+5 ml 2 mM L-Arg
(L-Arg +DPI) or 5 ml 2.5 mM NADPH+5 ml 100 µM
c-PTIO (c-PTIO +NADPH) and allowed to germinate at 9◦C in
darkness.

Evidence for, and Localization of,
Endogenous NO and ROS in Germinating
Pst Urediniospores
The specific fluorescence probes-H2DCF DA and DAF-FM DA
were used to detect ROS and NO. In the presence of ROS and
NO, H2DCF DA and DAF-FM DA were converted to fluorescent

Frontiers in Microbiology | www.frontiersin.org 2 February 2016 | Volume 7 | Article 178

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Yin et al. NO and ROS Coordinately Regulate the Germination of Pst

DCF andDAF-FM triazole (DAF-FMT), which could be detected
separately by bright green fluorescence in CLSM.

Germinating urediniospores treated as described above (see
Effects of NO and ROS on Urediniospore Germination and
Germ Tube Growth) were collected at different time points and
mixed with 10 µM DAF-FM DA or 50 mM H2DCF DA prior
to incubation in darkness at 25◦C for 30 min. They were then
immersed twice for 10 min in Tris-HCl buffer (50 mM, pH 7.4)
to remove excess dye. A distilled water control without DAF-FM
DA or H2DCF DA staining and with the same other procedures
was treated as CK to detect the autofluorescence of germinating
urediniospores. Then, the urediniospores were placed on slides to
detect the generation of NO and ROS by CLSM (LSM 510META,
Zeiss Corporation, Germany). Fluorescence was detected at an
excitation frequency of 488 nm, and emission was filtered using
a 515–530 nm barrier filter. NO and ROS were detected with
the same parameters (gain, magnification and so on) across all
treatments. Images were recorded after DAF-FMDA andH2DCF
DA staining, and observations of the CK enabled discrimination
between autofluorescence (also excited by the argon laser) and
fluorescence due to NO and ROS generation. The MFI values
were measured in different locations of the urediniospores and
germ tubes using Image Pro Plus software (IPP software, USA).

Rates of Germination and Germ Tube
Lengths
Germinating urediniospores were collected at different time
points and placed on slides to count the numbers of germinated
urediniospores and to measure the lengths of germ tubes (a germ
tube length greater than one-half the spore diameter was defined
as germination) using an Olympus BX51 microscope (Olympus
Corporation, Japan). The germination rate was expressed as a
percentage based on 100 urediniospores.

Statistical Analysis
One hundred urediniospores were analyzed in every treatment at
random, and all experiments were performed at least three times.
Only representative images are shown in the paper. Differences
in germination rates, germ tube lengths and mean pixel intensity
among the treatments were analyzed by one-way ANOVA with
the least significant differences (LSD) test at 0.05 probability level.
All statistical tests were performed using SPSS 16.0 (SPSS Inc.,
Chicago, IL, USA).

RESULTS

Promoter and Scavenger of NO and ROS
Affect Spore Germination
After treatment with c-PTIO and DPI, spore germination
was significantly suppressed and delayed in germination time
compared with spores treated with distilled water (Figures 1
and 2), as measured by MGL and MGR.

Urediniospores began to germinate after 1.5 h in distilled
water, and theMGRandMGLwere 8% and 21.3µm, respectively;
they increased over time, especially at 4–6 hpg, and peaked at

FIGURE 1 | Growth of Pst urediniospores after different treatments
and time points. Deficiencies of ROS or NO inhibited germination of
urediniospores and germ tube growth. Increases in ROS alone or NO alone
did not promote germination or germ tube growth. Only increases in both ROS
and NO led to increased spore germination. C+D, c-PTIO +DPI; L +N, L-Arg
+NADPH; L+D, L-Arg +DPI; c+N, c-PTIO +NADPH. Scale bar, 50 µm.

6 hpg (78.2% and 194.6 µm). By contrast, the urediniospores
maintained dormancy for 1–1.5 hpg when treated with DPI and
c-PTIO at 2 hpg. The MGR values were 7.7 and 8.3%, and
the MGL values were 20.8 and 23.4 µm, respectively. Although
the MGR and MGL increased over time, there were significant
differences compared with the distilled water control. Thus ROS
and NO had important roles in the germination of spores and in
germ tube growth.

After treatment with L-Arg and NADPH, urediniospore
germination was also significantly suppressed (Figures 1 and 2).
The data for MGR and MGL showed no differences between
L-Arg, NADPH, c-PTIO, and DPI treatments at any time
points, which suggested that an increase in ROS only or
NO only could not promote spore germination or germ tube
growth.

After treatment with L-Arg +DPI and c-PTIO +NADPH,
the MGL and MGR were increased compared with the DPI and
c-PTIO treatment (Figures 1 and 2). However, variance analysis
showed no significant difference, indicating that excess NO or
ROS did not promote spore germination or germ tube growth.

Germination was almost completely suppressed after
treatment with c-PTIO +DPI (Figures 1 and 2), and variance
analysis indicated significant differences compared with other
treatments, especially distilled water.

In the presence of L-Arg +NADPH, spore germination was
indistinguishable from that observed in distilled water (Figures 1
and 2). However, there was a significant difference between
L-Arg +NADPH and distilled water at 4 hpg.
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FIGURE 2 | The mean germ tube lengths and mean germination rate during Pst spore germination after different treatments at different time points.
MGL, mean germ tube length; MGR, mean germination rate.

Thus, spore germination and fungal growth were significantly
reduced when NO or ROS levels were decreased (Figures 1
and 2), and increases in ROS only or NO only failed to promote
increases (Figures 1 and 2), suggesting that NO and ROS play
a crucial role in spore germination and germ tube growth. This
result suggested that an optimum ratio of ROS to NO possibly
exist during urediniospore germination in Pst.

The Fluorescence Intensity of
Endogenous NO Generated During
Urediniospore Germination Following
Different Treatments
Nitric oxide-specific fluorescent probe DAF-FM DA and CLSM
were used to detect NO produced during urediniospore

germination. The urediniospore and the germ tube were divided
into three parts (urediniospore, base of germ tube and apex of
germ tube), as shown in Figure 3.

CSLM performed after DAF-FM DA staining revealed the
generation of NO in Pst spores and germ tubes.

Bright fluorescence was observed after treatment with
distilled water and DAF-FM DA (Figure 4A); faint fluorescence
was observed in distilled water without DAF-FM DA staining
(CK; Figure 4B); c-PTIO-treated samples also displayed faint
and uniform fluorescence throughout the study (Figure 4C).
Combining the results of these three treatments, it could
be confirmed that the fluorescence in Figure 4B is the
autofluorescence of urediniospore, and the bright green
fluorescence in Figure 4A is due to NO generation and not
autofluorescence.
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FIGURE 3 | Image of a germinating urediniospore at 2 hpg when
stained with DAF-FM DA. Intense green fluorescence indicates the
presence of NO in the apex of the germ tube. U, urediniospore; B, base of
germ tube; A, apex of germ tube. Scale bar, 10 µm.

Bright green fluorescence was detected in germ pores,
indicating that NO was generated around the germ pores
during the urediniospore water-swelling stage at 1 hpg. However,
germ tubes emerged from the germ pores at 1.5–2 hpg,
and staining showed pronounced fluorescence in most short
germ tubes, especially at their tips (Figure 4A). Further
images showed intense fluorescence localized at the apices
of germ tubes at 2–6 hpg, although faint fluorescence was
also observed in the spores and bases of the germ tubes
(Figure 4A). The same trends were observed after treatment
with L-Arg +NADPH (Figure 4H), L-Arg (Figure 4F), and
L-Arg +DPI (Figure 4I), although germination was delayed in
the last two treatments.

After treatment with DPI or NADPH, visual inspection
and staining with DAF-FM DA showed a constant faint
fluorescence in the spores and germ tubes throughout the
study (Figures 4D,G), showing that both the suppression and
promotion of ROS inhibited NO.

When ROS and NO were both inhibited, the MFI of
NO was decreased (Figure 4E), and spore germination was
considerably delayed (Figures 1 and 2). After treatment with
c-PTIO +NADPH, staining with DAF-FM DA showed faint
fluorescence in the spores and germ tubes (Figure 4J).

Urediniospores treated with L-Arg, L-Arg +NADPH and
L-Arg +DPI, when stained with DAF-FM DA, displayed a
marked bright fluorescence correlated with the development of
germ tubes (Figures 4F,H,I).

After treatment with L-Arg +DPI, the bright fluorescence
at the spores and germ tubes were observed (Figure 4I),
which suggested that although L-Arg could help to relieve ROS
depression and produce more NO, it exhibited no enhancement
on the elongation of germ tubes (Figures 1 and 2).

It was also observed that only when the ROS and NO were
simultaneously added (Figure 4H) could the spore germinate
normally, as in the distilled water treatment (Figures 1 and 2).

These results show that NO plays a crucial role in apical
growth and that ROS is involved in the generation of NO. NO
production was greatly increased by L-Arg, further suggesting a
role for a NOS enzyme as the source of NO generation in the
fungus.

Fluorescence Intensity of Endogenous
ROS Generated During Germination
After Different Treatments
Reactive oxygen species-specific fluorescent probe H2DCF DA
and CLSM were used to detect the ROS produced during
urediniospore germination.

Bright green fluorescence was observed for the treatment with
distilled water and H2DCF DA (Figure 5A); faint fluorescence
was observed in the distilled water without H2DCF DA staining
(CK; Figure 5B); DPI-treated samples also displayed faint
and uniform fluorescence throughout the study (Figure 5D).
Combining the results of these three treatments, it could
be confirmed that the fluorescence in Figure 5B was the
autofluorescence of urediniospores, whereas the bright green
fluorescence in Figure 5A was due to ROS generation and not
autofluorescence.

Bright green fluorescence indicated that ROS was generated
around germination pores during the water-swelling stage
at 1 hpg (Figure 5A). During the growth of the germ
tubes, the characteristic of ROS generation were similar to
DAF-FM DA staining (Figure 5A). The same trends were
observed after treatment with L-Arg +NADPH (Figure 5H),
NADPH (Figure 5G) and c-PTIO +NADPH (Figure 5J),
although the germination was delayed in the last two
treatments.

After treatment with the NO scavenger c-PTIO or the
NO promoter L-Arg and staining with H2DCF DA, only
faint fluorescence was detected at the tips of germ tubes
(Figures 5C,F). This result indicated that either the suppression
or the promotion of NO decreased the concentration of ROS
during spore germination.

Urediniospore treatment with NADPH, L-Arg +NADPH
or c-PTIO +NADPH and staining with H2DCF DA showed
a markedly bright fluorescence during the germination of
urediniospores (Figures 5G,H,J).

When the ROS and NO were both restrained, the MFI of ROS
was decreased (Figure 5E) and spore germination was delayed
(Figures 1 and 2) which was similar to DAF-FM DA staining.

Frontiers in Microbiology | www.frontiersin.org 5 February 2016 | Volume 7 | Article 178

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Yin et al. NO and ROS Coordinately Regulate the Germination of Pst

FIGURE 4 | Mean fluorescence intensity of endogenous NO generated during germination at different time points after different treatments. Bright
fluorescence was observed after treatment with distilled water (H2O) and DAF-FM DA (A); faint fluorescence was observed in distilled water without DAF-FM DA
staining (CK) (B). U, urediniospore; B, base of germ tube; A, apex of germ tube. c+D, c-PTIO +DPI; L+N, L-Arg +NADPH; L+D, L-Arg +DPI; c+N, c-PTIO
+NADPH.
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FIGURE 5 | Mean fluorescence intensity of endogenous ROS generated during germination at different time points and treatments. Bright fluorescence
was observed after treatment with distilled water (H2O) and H2DCF DA (A); faint fluorescence was observed in distilled water without H2DCF DA staining (CK) (B). U,
urediniospore; B, base of germ tube; A, apex of germ tube. c+D, c-PTIO +DPI; L+N, L-Arg +NADPH; L+D, L-Arg +DPI; c+N, c-PTIO +NADPH.
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After treatment with L-Arg +DPI and staining with H2DCF
DA, the urediniospore showed faint fluorescence in the spores
and germ tubes (Figure 5I).

There was a significant difference between treatments with
c-PTIO and c-PTIO +NADPH in the urediniospores at 1 hpg
and in the apex of germ tubes at 2–6 hpg after H2DCF
DA staining (Figures 5C,J). However, the MGL were not
increased (Figures 1 and 2), which suggested that although
NADPH could help to relieve NO depression and produce
more ROS, it did not enhance the elongation of germ
tubes.

It was also observed that only when the ROS and NO
were promoted simultaneously (Figure 5H), the spore could
germinate normally as in the distilled water treatment (Figures 1
and 2).

These results show that ROS plays a crucial role in the apical
growth of urediniospores and NO is involved in the generation of
ROS. ROS production was greatly increased by NADPH, further
suggesting a role for NADPH as the source of ROS generation in
the fungus.

ROS/NO Ratio
The fluorescence intensity was directly proportional to the
content of NO or ROS, so the ratio of ROS/NO fluorescence
intensity could indirectly reflect the ratio of ROS/NO content in
germinated urediniospores.

The MFI values of urediniospores treatment with H2O and
L-Arg +NADPH (the urediniospores after the two treatments
could germinate normally) were recorded and analyzed (Table 1).

The ratio of ROS/NO at different locations and time points
showed that spores germinated normally when the ROS/NO ratio
maintained within the range of 0.9–1.6.

DISCUSSION

In eukaryotes, NO is generated from many oxynitrides such
as nitrite (NO2

−) under acid conditions (Castello et al., 2008).
In addition to chemical synthesis, NO can be generated by
enzymatic reactions. In animals, NO is synthesized from O2
and L-Arg by different NO synthase (Bonilla et al., 2004)
isoforms (Nowles and Moncada, 1994). Ninnemann and Maier
(1996) reported NO synthase activities in fungi for the first
time. NO synthase activity was detected during sporulation
in Blastocladiella emersonii (Bonilla et al., 2004), and activity
decreased significantly with the addition of L-NAME (Vieira
et al., 2009). These results suggested that there was an enzymatic
pathway of NO synthesis in fungi that was similar to that of
mammals. In our study, endogenous NO increased sharply when
the substrate of NO synthase L-Arg was added. L-Arg generates
NO through the NOS catalysis pathway. Green fluorescence
could still be observed after staining with the specific NO
fluorescence probe, and the intensity fluorescence decreased
dramatically after c-PTIO treatment. Therefore, endogenous NO
might be generated by the NOS pathway during the germination
of Pst urediniospores. It has been suggested that NO synthesis
in phytopathogenic fungi is derived from an L-Arg-dependent
pathway by a NOS-like system, as in the ascomycete fungi
C. coccodes and B. graminis (Wang and Higgins, 2005; Prats

TABLE 1 | Reactive oxygen species/NO ratio after H2O and L+N treatments.

Treatment Localization Free radicals Time points

1 h 1.5 h 2 h 4 h 6 h

H2O U ROS 83.8 ± 5.3 15.7 ± 2.1 13.9 ± 1.5 10.3 ± 2.7 13.0 ± 3.1

NO 63.8 ± 4.1 14.7 ± 1.3 13.1 ± 1.3 11.0 ± 2.7 12.1 ± 3.0

ROS/NO 1.3 1.1 1.1 0.9 1.1

B ROS 0 57.0 ± 5.1 16.8 ± 2.7 11.6 ± 3.0 15.3 ± 2.1

NO 0 37.0 ± 5.2 15.7 ± 2.2 11.2 ± 1.4 15.0 ± 2.8

ROS/NO / 1.5 1.1 1.0 1.0

A ROS 0 112.2 ± 7.1 114.8 ± 8.4 112.0 ± 7.0 110.9 ± 7.1

NO 0 92.2 ± 6.0 94.8 ± 8.4 96.0 ± 8.1 94.9 ± 6.2

ROS/NO / 1.2 1.2 1.2 1.2

L+N U ROS 130.9 ± 5.9 68.7 ± 5.0 16.5 ± 2.2 15.5 ± 3.2 14.0 ± 3.0

NO 80.9 ± 5.9 78.0 ± 6.7 14.2 ± 1.9 14.0 ± 3.7 14.4 ± 4.0

ROS/NO 1.6 0.9 1.2 1.4 1.0

B ROS 0 120.4 ± 5.2 63.9 ± 5.0 31.9 ± 3.2 14.9 ± 2.2

NO 0 110.4 ± 4.4 53.9 ± 3.4 21.9 ± 5.9 15.2 ± 5.9

ROS/NO / 1.1 1.2 1.5 1.0

A ROS 0 139.3 ± 8.2 138.3 ± 9.5 130.7 ± 8.2 129.9 ± 9.2

NO 0 131.3 ± 7.4 128.3 ± 5.3 120.7 ± 4.3 119.9 ± 7.7

ROS/NO / 1.1 1.1 1.1 1.1

The MFI values of ROS and NO of the spores treated with H2O and L + N (spores after the two treatments could germinate normally) was collected. The ratio of ROS/NO
was calculated at different locations at different time points. U, urediniospore; B, base of germ tube; A, apex of germ tube.
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et al., 2008). However, fungi do not contain NOS-like sequences
in their genomes, except for Aspergillus species and Glomerella
graminicola (Turrion-Gomez and Benito, 2011). Genetic studies
indicated that NO synthesis inM. oryzae was not associated with
an arginine-dependent pathway, although relatively weak NOS-
like sequences were present in the genome (Samalova et al., 2013).
It should be feasible to validate this result by identifying the NOS
in Pst using the available genome sequence (Zheng et al., 2013).

There is growing evidence that certain specific enzymes,
such as NADPH oxidase (NOX), produce ROS to regulate
cellular functions, such as immunity, cell proliferation, cell
differentiation, signal transduction, and ion transport (Finkel,
2003; Foreman et al., 2003; Kwak et al., 2003; Lambeth, 2004).
In this study, it was found that although spore germination was
restrained after NADPH treatment, a mass of green fluorescence
was still detected by the ROS-specific fluorescence probe, and
the intensity of this green fluorescence decreased dramatically
after DPI treatment. Thus, during urediniospore germination,
endogenous ROS might be generated by the NADPH pathway.

During the study, we observe that the wax layer and the
epidermal hairs on the surface of the wheat leaves would cause the
gathering of ROS/NO fluorescence probes which could interfere
with the accuracy of the results by CLSM. This causes the
difficulty to the research of the role of NO and ROS during the
germination of urediniospore. Fortunately, Pst, as an obligate
biotroph urediniospores, can germinate and form a germ tube on
the water surface which cause the feasibility of the research in the
pre-infection process in vitro under controlled conditions.

After hydration, a urediniospore germinates and develops
a germ tube that can extend along the water surface. During
germination, it is believed that fungal spores undergo an initial
period of isotropic expansion associated with the uptake of water.
Upon the establishment of a polarity axis, a short germ tube
emerges and grows by apical extension, which is a defining
feature of the filamentous fungi (Harris, 2006; Riquelme, 2013).
Thus, the pre-infection development of Pst essentially involves
the transition from isotropic growth to polarized growth, and
it has been proposed that polarized hyphal growth requires
the establishment of polarity during spore germination and
maintenance of polarity during germ tube elongation (Momany,
2002). In this study, NO and ROS preferentially localized to the
spore pore and apical region of the germ tube, suggesting that
they are associated with these processes. Accumulating evidence
indicates that there is a correlation between ROS production
by NADPH oxidase and the polarized growth of fungal cells
(Glasauer and Chandel, 2013). Localized production of ROS at
the growing hyphal tips was detected by NBT or H2DCF DA
staining for several fungal species, including Epichlöe festucae,
M. grisea, and Aspergillus nidulans (Tanaka et al., 2006; Egan
et al., 2007; Semighini and Harris, 2008). Further experiments
performed in M. grisea showed that the inhibition or scavenging
of ROS production by the NADPH oxidase inhibitor DPI or by
the antioxidant ascorbate inhibited or impaired fungal polarized
growth, which was detected as inhibition or delay of germination
of the conidia and aberrant morphology of the germ tubes or
appressoria (Egan et al., 2007). In the mutualistic, endophytic
fungus E. festucae, it was demonstrated that ROS generation

requires the functional assembly of a multisubunit complex
composed of NoxA, a regulatory component, NoxR, and the
small GTPase RacA (Takemoto et al., 2007; Tanaka et al.,
2008), whereas BemA and Cdc24, well-characterized regulators
of polarity in yeast, were identified as interacting with the
Nox complex via NoxR (Takemoto et al., 2011). Significantly,
GFP fusions of NoxR, RacA, Cdc24, and BemA preferentially
localized to actively growing hyphal tips, where they functioned
as an activated NADPH oxidase enzyme complex responsible for
the production of ROS (Takemoto et al., 2011). These results
together with our observations indicate that the NADPHoxidase-
dependent production of ROS plays a conserved role in polarized
hyphal growth. It is well known that the fungal cytoskeleton
plays a crucial role in polarity establishment, maintenance and
polar growth (Harris, 2006; Riquelme, 2013). This finding was
validated in Pst by functional analysis of the actin gene PsACT1
(Liu et al., 2012). A recent study revealed that ROS may
regulate filamentous polarized fungal growth by remodeling the
arrangement of the F-actin cytoskeleton, whereas the latrunculin-
mediated depolymerization of fungal appressorial F-actin is
competitively inhibited by fungal NADPH oxidases mediated
by ROS (Rydera et al., 2013). Thus, we can speculate that the
production of ROS by the Pst NADPH oxidase complex in Pst
regulates polarized growth by reorganizing components of the
cytoskeleton, such as F-actin.

In addition to ROS, we provide evidence that NO is involved in
polarized growth during spore germination and subsequent germ
tube growth. As with ROS, interference in NO production by
application of scavenger or promoter delayed spore germination
and impaired germ tube growth. A similar role has also been
indicated in other fungi. For instance, the application of external
NO to C. coccodes delayed spore germination, whereas treatment
with L-Arg accelerated the germination and development of
conidiospores (Wang and Higgins, 2005). Similarly, in the
hemibiotrophic ascomycete M. oryzae, NO scavengers delayed
germination and reduced lesion formation (Samalova et al.,
2013). These data and our observations collectively indicate that
NO may have a role in signaling in spore germination and
polarized growth in fungi.

Significantly, NO seems to act in concert with ROS to control
germination and germ tube growth because the elevation or
reduction of NO or ROS alone has a negative effect on these
processes, whereas the accumulation of high level of NO and ROS
results in normal growth in Pst. It is likely that a balance between
NO and ROS, rather than these molecules functioning alone,
allows germination to proceed while ensuring that it does so only
under ideal environmental conditions (Wang andHiggins, 2005).

It has been demonstrated that NO and ROS signaling
pathways in plant biotic interactions are closely connected
(Scheler et al., 2013). Furthermore, there is evidence showing
that ROS can influence NO levels and vice versa (Moncada
and Erusalimsky, 2002; Desikan et al., 2004). For example, the
regulation of ROS production by NO is thought to modulate the
development of the hypersensitive response (HR), a programmed
cell death involved in plant defense (Yun et al., 2011; Rasul et al.,
2012). NO and ROS crosstalk during fungal development may be
resolved only after the characterization of all fungal NOS isomers

Frontiers in Microbiology | www.frontiersin.org 9 February 2016 | Volume 7 | Article 178

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Yin et al. NO and ROS Coordinately Regulate the Germination of Pst

(Wang and Higgins, 2005). We found that upon treatment with
either the promoter or scavenger of NO, ROS generation in
Pst urediniospores was inhibited. Similarly, upon treatment with
either the donor or scavenger of ROS, the generation of NO
was inhibited. A critical balance of ROS and NO seems to be
essential in regulating urediniospore germination and germ tube
development in Pst and other fungi.

The generation of ROS during the interaction of fungus and
its host has been repeatedly studied. There is evidence that the
host produces ROS (Wang et al., 2007, 2010; Zhang et al., 2012)
and NO (Romero-Puertas et al., 2004; Piterkova et al., 2009;
Sedlářvá et al., 2010; Melillo et al., 2011) during the early stages
of infection. In incompatible interactions, ROS was detected in
the stomata and the necrotic mesophyll cells following fungal
penetration and the induction of HR (Wang et al., 2007, 2010).
Similar results were obtained by our laboratory with regard to
NO (Yin et al., unpublished). The generation of ROS and NO is
also involved in systemic acquired resistance (Gao et al., 2014;
Wendehenne et al., 2014).

Combining all of the results, we deduced that in addition
to supplying itself for apical growth, it was likely that Pst also
produced a small amount of ROS and NO to adapt to the highly
oxidative conditions in the infected plant. The small amount
of ROS and NO might protect the growth and development of

the germ tube and the expansion of hyphae in the intercellular
space from the harm of highly oxidative condition in the infected
plant.

In future studies, a higher priority should be given to defining
the molecular identity of the genes involved in NO and ROS
biosynthesis and the relationship between NO and ROS in
signaling transduction during germination and germ tube growth
in Pst.
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