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Biological cilia pump the surrounding fluid by asymmetric beating that is
driven by dynein motors between sliding microtubule doublets. The com-
plexity of biological cilia raises the question about minimal systems that
can re-create similar patterns of motion. One such system consists of a
pair of microtubules that are clamped at the proximal end. They interact
through dynein motors that cover one of the filaments and pull against
the other one. Here, we study theoretically the static shapes and the active
dynamics of such a system. Using the theory of elastica, we analyse the
shapes of two filaments of different lengths with clamped ends. Starting
from equal lengths, we observe a transition similar to Euler buckling leading
to a planar shape. When further increasing the length ratio, the system
assumes a non-planar shape with spontaneously broken chiral symmetry
after a secondary bifurcation and then transitions to planar again. The pre-
dicted curves agree with experimentally observed shapes of microtubule
pairs. The dynamical system can have a stable fixed point, with either
bent or straight filaments, or limit cycle oscillations. The latter match
many properties of ciliary motility, demonstrating that a two-filament
system can serve as a minimal actively beating model.
1. Introduction
Cilia and flagella are cellular appendages that can spontaneously beat in an
asymmetric or undulatory fashion in order to transport the surrounding fluid
or propel a swimming microorganism [1]. Altogether, several hundred different
proteins are involved in maintaining the structural stability of the cilium, gen-
erating and controlling the beating, as well as supplying materials and energy
[2]. The beating is powered by axonemal dynein motors that induce a shearing
force between pairs of doublet microtubules. The control mechanism that acti-
vates the dynein motors and maintains the beating, however, is not yet well
understood. An attractive hypothesis is that the dynein motors react to the
sliding motion of the filaments with effective negative damping at a certain fre-
quency [3,4]. There are several processes by which motor proteins can induce
spontaneous oscillations [5]. An alternative proposition is the ‘geometric
clutch’ model, which was initially based on the qualitative notion that a
buckled filament loses contact with the motors, which thus become inactivated
[6]. More recently, it has been proposed that the motors are controlled by trans-
verse stress, which is coupled to the curvature in helically twisted axonemes [7].

The structural and biochemical complexity of a cilium and its elusive control
mechanism lead to the question whether it is possible to design a minimal
system that reproduces the spontaneous beating dynamics of cilia and flagella.
The ability of tangential forces to produce undulatory motion has been dis-
cussed in several theoretical studies [8–14]. At high densities, such filaments
self-organize into a rich collection of mesoscopic phases [15]. However, in
these models, the filaments are propelled by external forces, rather than shear

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2021.0693&domain=pdf&date_stamp=2022-01-05
mailto:andrej.vilfan@ds.mpg.de
https://doi.org/10.6084/m9.figshare.c.6061183
https://doi.org/10.6084/m9.figshare.c.6061183
http://orcid.org/
https://orcid.org/0000-0002-3201-0479
http://orcid.org/0000-0002-1781-3767
https://orcid.org/0000-0002-3149-4002
http://orcid.org/0000-0001-8985-6072
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


LM
1

LM
2

L0

L1

L2

Figure 1. Schematic of the system of two elastic filaments and motor
proteins exerting a force between them.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210693

2
forces within the axoneme. Models based on internal forces
between connected elastic filaments [16] can explain faster
beating that is not limited by the speed of motors. The
shearing between connected filaments also leads to the coun-
terbend phenomenon—bending the axoneme in one direction
induces an opposite bend some characteristic distance away,
thus facilitating wave generation [17,18].

Early attempts to build biomimetic cilia have concen-
trated on magnetic [19–21] or electrostatic [22] actuation
mechanisms to produce non-reciprocal beating. Periodic
beating has also been achieved with bundles of microtubules
interacting with clusters of kinesin-1 [23]. A minimal system
that produces flagella-like beating has been created with a
microtubule that is clamped to the surface with one end
and pushed along its length by motors attached to the surface
[24]. Nevertheless, experiments with motors attached to the
surface differ in crucial aspects from biological cilia. The fila-
ments are driven by external forces, rather than internal
forces as in cilia. Filament velocity is largely limited by the
velocity of the motors, whereas the velocity of a cilium tip
can surpass that of the dynein motors by several orders of
magnitude. The proximity to the surface also makes filaments
unsuitable for generating fluid flows. Alternative mechan-
isms where the beating originates between filaments and
without direct contact to the substrate are therefore of a
high interest. We recently reported on the bottom-up assem-
bly of a minimal synthetic axoneme (synthoneme) consisting
of two microtubules, growing from a common seed, and a
patch of self-assembled dynein motors on one of them [25].
When the patch is relatively short, the filaments beat in a
discrete fashion, switching between a buckled and a
straight state.

In this paper, we study theoretically a system with
two filaments clamped on one end and interacting via
molecular motors along their length (figure 1). We demon-
strate that such systems are able to reproduce periodic
beating of a cilium. Additionally, we show that under these
conditions (or in vitro) a broader class of configurations of
microtubule–motor protein systems is accessible. We describe
the filaments as linear elastica. For the motors, we use a
simple continuum model in which a longitudinal force
slows the motors down according to a linear force–velocity
relationship. A normal force, when exceeding a threshold
value, leads to the detachment (unzipping) of motors. A
related model in which only one of the two filaments is
allowed to bend has been studied by Brokaw [26] to explain
the dynamics in frayed natural axonemes [27]. Here, we pro-
vide a full range of solutions for the system of two clamped
filaments and a general discussion of the dynamic regimes
induced by the molecular motors acting between them. We
further compare the calculated static shapes to experimental
images of coupled microtubules driven by dynein motors
and obtain an excellent fit.
2. Static problem
Our solution is based on a timescale separation: the elastic
filaments reach their quasi-static configuration quickly
while the actuation by molecular motors takes place on a
slower timescale. We therefore first determine the equili-
brium configuration of two elastic filaments whose ends
are clamped to one another. We parameterize each filament
i = 1, 2 with the position vector xi(s) as a function of the arc
length s∈ [− Li/2, Li/2] measured from its centre. The tan-
gent vector is given by tiðsÞ ¼ dxi=ds. The stress in each rod
is described with the force Fi and the bending moment
(torque) Mi(s). We assume that the motors cannot exert a tor-
sional torque on the filaments, therefore Mi · ti = 0. The
clamped ends impose the boundary conditions

x1ð+L1=2Þ ¼ x2ð+L2=2Þ ð2:1Þ
and

t1ð+L1=2Þ ¼ t2ð+L2=2Þ: ð2:2Þ
In addition, the ends are force- and torque-free

F1 þ F2 ¼ 0 and M1ð+L1=2Þ þM2ð+L2=2Þ ¼ 0: ð2:3Þ
Between the endpoints, the filaments obey the elastic rod
equations [28]

dMi

ds
¼ Fi � ti and Mi ¼ EI ti � dti

ds
: ð2:4Þ
2.1. Small amplitude limit
We first solve the problem in the limit of small deflections,
which is the case for small length differences, L1− L2≪ L2.
Both filaments are then deformed in the same plane and
can be parameterized with the tangent angles ϕi(s)≪ 1. The
linearized beam equation reads

EI
d2fiðsÞ
ds2

¼ FifiðsÞ: ð2:5Þ

For F1 =−F and F2 = F (F > 0), it can be solved using the
ansatz

f1ðsÞ ¼ A1 sinðksÞ and f2ðsÞ ¼ A2 sinhðksÞ, ð2:6Þ
with k ¼ ffiffiffiffiffiffiffiffiffiffi

F=EI
p

. The boundary conditions from equation
(2.2) require ϕ1(L/2) = ϕ2(L/2) and from equation (2.3)
ϕ10(L/2) + ϕ20(L/2) = 0. Together, they lead to the equation
tanh (kL/2) =−tan(kL/2) with the lowest non-trivial solution
kL = 4.730. The critical load for the buckling transition
follows as:

Fcrit ¼ 2:267
p2EI
L2

: ð2:7Þ

The critical load of a filament clamped to another elastic
filament therefore lies between the Euler critical load
with pinned ends (π2EI/L2) and that with clamped ends
(4π2EI/L2) [28,29]. This critical load allows us to estimate
the total force needed from the molecular motors to leave
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Figure 2. Planar (a,b) and 3D (c) solutions for the shape of two clamped filaments of lengths L1 and L2. (a) The first solution is characterized by an inflection point:
along the arc length, ϕ1 changes from 0 to a maximum ϕM and then decreases to ϕE. The length ratio is L1/L2 = 1.37. (b) In the second solution, ϕ1 starts at π and
then falls monotonously to ϕE (shown for L1/L2 = 6.94). (c) At intermediate length ratios (here L1/L2 = 3.85), the stable solution assumes a non-planar shape with
either left-handed (shown) or right-handed chirality. (d ) Transition from planar to non-planar and back to planar shapes as the length ratio L1/L2 increases.
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the straight configuration, which is a prerequisite on the way
to active beating.

2.2. Planar solution
Above the critical load, we solve the rod equation (2.4)
numerically. Again, we use a parametrization starting from
the midpoint of each filament and orient the system such
that the solutions are symmetric with respect to the rotation
around the z-axis. The symmetry implies t1 ? êz and F ? êz.

We first determine the planar solutions of the two-
filament system. In this case, each filament is still described
with a single tangent angle ϕi(s), but the nonlinear equations
read EIϕi00 (s) = Fi sin(ϕi(s)) or

EI
2

dfi

ds

� �2

+F cosfi ¼ Ci, ð2:8Þ

where the negative sign applies for i = 1 and positive for i = 2.
The filament shapes are determined by the differential
equations

dxi
ds

¼ cosfi and
dzi
ds

¼ sinfi: ð2:9Þ

For given values of F and the integration constants Ci,
the solutions s(ϕ), x(ϕ) and z(ϕ) can be expressed with elliptic
integrals. The symmetry of the solutions is ϕ(− s) =−ϕ(s)
and the boundary conditions x1(L1/2) = x2(L2/2), ϕ1(L1/2) =
ϕ2(L2/2) = ϕE and C1 + FcosϕE = C2− FcosϕE. The boundary
conditions can be satisfied in two ways: (i) filament 1 has
an inflection point, i.e. the curvature df1=ds changes sign
between s = 0 and s = L1/2 (figure 2a), or (ii) filament 1
starts with ϕ1(0) = π and has a negative derivative throughout
the solution (figure 2b). Solutions with a larger number of
inflection points are possible, but they are unstable, even in
2D confinement [30].
In case (i), which holds for small length differences, the
two filament equations can be rewritten as

EI
2F

df1

ds

� �2

¼ cosf1 � cosfM ð2:10Þ

and

EI
2F

df2

ds

� �2

¼ 2 cosfE � cosfM � cosf2, ð2:11Þ

where ϕM is the angle at the inflection (figure 2a). Their
solution in explicit form is given in electronic supple-
mentary material, §A. The equations contain two non-trivial
parameters (ϕE and ϕM) and have to satisfy the conditions
L1/L2 = s1(ϕE)/s2(ϕE) and x1(ϕE) = x2(ϕE). We find numeri-
cally that they are solvable for 0 � fE � fmax

E ¼ 0:941.
The maximum ϕE corresponds to a solution with
L1=L2 ¼ L1 ¼ 2:70.

Solution (ii) is valid for large L1/L2 ratios, for which
filament 1 forms a loop. Equations for solution (ii) can be
written as

EI
2F

df1

ds

� �2

¼ C� cosf1 ð2:12Þ

and

EI
2F

df2

ds

� �2

¼ C� 2 cosfE þ cosf2 ð2:13Þ

and the solutions are a function of C and ϕE (see electronic
supplementary material, §B for an explicit form). They can
be found for 0≤ ϕE≤ 0.255—the highest angle corresponds
to L1=L2 ¼ L2 ¼ 4:12.
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Figure 4. Experimental realization of a microtubule pair and dynein motors
(two examples). The shapes show good agreement with the model fit,
obtained with parameters: (a) L1/L2 = 1.36, ϕE = 0.70 and (b) L1/L2 = 1.27,
ϕE = 0.64.
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2.3. Non-planar solution
The discontinuity between simply bent and looped configur-
ations suggests that a filament that is continuously pushed by
the motors bends out-of-plane during the shape transition. It
is known from the literature that a single rod with two
clamped ends undergoes a secondary bifurcation beyond
which the shape becomes non-planar [14,31,32]. Here, we
analyse the possible 3D shapes of two clamped filaments
numerically. To solve the 3D shape of two filaments, we
first integrate both filament equations for a set of initial
values t1(0), t2(0), F,M1(0) and x2(0)− x1(0). We then determine
the parameters that fulfil the boundary conditions (2.1)
and (2.2). If we fix x1(0) = 0 and t1ð0Þ ¼ êx, we get a system
with five independent variables (t2ð0Þ � êx, x2ð0Þ � êz, Fx, Fy
and M1y) that has to satisfy five equations (three components
of x1(L1/2) = x2(L2/2), two independent components of
t1(L1/2) = t2(L2/2)). In the range L1 , L1=L2 , L2, there is a
set of non-planar solutions that spontaneously break
the chiral symmetry. They represent configurations with
minimal energy, below the planar solutions. An example of
a non-planar solution is shown in figure 2c. At both ends
of the interval, the 3D solutions become planar without any
discontinuity.

We can summarize the equilibrium shapes of two
filaments with mutually clamped ends as a function of
the length ratio L1/L2 as follows. At L1/L2 = 1, a buckling
transition takes place when the force reaches a threshold
value. After buckling, the configuration is initially planar.
At the length ratio L1, a secondary bifurcation appears and
the shapes become non-planar. At the next bifurcation, at
length ratio L2, the solution becomes planar again, but with
a loop in filament 1. From the equilibrium solution, we can
write the parallel and perpendicular component of the force
in the joints in the dimensionless form

fk
L1
L2

� �
¼ L22

EI
F cosfE and f?

L1
L2

� �
¼ L22

EI
F sinfE ð2:14Þ

shown in figure 3, which can be used to discuss the active
system.

2.4. Experimental realization
The planar static shapes predicted by our model can be com-
pared with experimental observations. We carried out
experiments by using active microtubule–motor protein sys-
tems, which bend under the action of the motors. The
experimental set-up was similar to the one reported in [25],
but carried out on longer microtubules what allowed stable
deformed configurations. Briefly, two fluorescently labelled
microtubules were grown from the same seed, i.e. with the
same polarity. They were randomly decorated with axonemal
dyneins, which collectively self-assembled on one of the
microtubules in patches. Under this configuration, the
dyneins form cross-bridges to the other filament and buckle
it as they walk towards the seed, as illustrated in figure 1.
In [25], we observed that the filaments oscillate persistently
under these conditions as long as the system is fed with
energy from ATP hydrolysis. However, in some cases, the
motors shear the filaments until they stall in a strongly
curved and planar state. Two examples of such static
shapes are shown in figure 4. We tracked the filament con-
tours and we verified that they match perfectly with the
fitted curves as predicted by the theory. The agreement
suggests that the microtubules are well described with the
linear elastica model in the relevant range of curvatures.
None of the observed filament pairs entered a non-planar
shape, possibly because the dynein patch sizes were in a
range where unzipping prevented the build up of a sufficient
buckling force. A discussion of dynamical regimes is given
in the next section. A systematic mapping of static and
dynamical states for different sizes and arrangements of
dynein patches, possibly with labelled dyneins, remains an
outstanding challenge.
3. Active system
In our study on the synthoneme [25], we observed persistent
oscillations between two microtubules with fixed minus ends
and containing a patch of dynein motors on one of the micro-
tubules. Here, our aim is to study the appearance of such
oscillations over a broad range of parameters. Our system
consists of two filaments (lengths LM1 and LM2 ) that are
clamped together at one end (referred to as minus end). Fila-
ment 1 consists of an empty segment of length L0, followed
by a segment (length LM1 � L0) carrying motor proteins
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(figure 1). In contact with filament 2, the motors produce a
force that pushes filament 2 towards the minus end and
pulls filament 1 towards the plus end. We use a continuum
model for the action of motors, described with a force
density f = γ(v0− v), where v is the relative velocity of the
two filaments in the overlapping segment. If the longitu-
dinal component of the elastic force is given by
Fk ¼ ðEI=L22ÞfkðL1=L2Þ, the velocity follows as:

v ¼ v0 �
Fk

gLoverlap
, ð3:1Þ

where Loverlap ¼ minðLM1 � L1, LM2 � L2Þ is the overlap length
between the section of filament 1 containing motors and fila-
ment 2 attached to them. The ability of motors to resist
normal loads, when the filaments are being pulled apart, is
also limited. We model the detachment in a similar way as
has previously been done for motors attached to a surface
[33]. We propose that the filaments ‘unzip’ with the velocity
vunzip ¼ ðF? � FM? Þ=G, where FM? is the maximum normal load
that can be sustained by the motors (note that the normal
load only acts on the motors in the unzipping region and is
therefore independent of the overlap length). The equations
of motion for the segment lengths are

_L1 ¼ vunzip and _L2 ¼ vunzip � v: ð3:2Þ
We first determine the fixed points for which _L1 ¼ _L2 ¼ 0.
They lead to the condition

EI
L22Loverlap

fk
L1
L2

� �
¼ v0g and

EI
L22

f?
L1
L2

� �
¼ FM? , ð3:3Þ

which can be written in non-dimensional form as

fk
L1
L2

� �
¼ L22Loverlap

ðLM2 Þ3
~fk and f?

L1
L2

� �
¼ L2

LM2

� �2
~f?, ð3:4Þ

by defining the dimensionless motor forces ~fk ¼ v0gðLM2 Þ3=EI
and ~f? ¼ FM? ðLM2 Þ2=EI. In addition, when L1 = L0, vunzip cannot
be negative. vunzip = 0 is therefore also fulfilled when L1 = L0
and f?ðL1=L2Þ , ðL2=LM2 Þ2~f?. A graphical representation of
equations (3.4) is shown in figure 5 for the case of equally
long filaments LM1 ¼ LM2 . They fall into several distinct regimes:
(i) the straight configuration of both filaments is stable if
ðL0=LM2 Þ2ð1� L0=LM2 Þ~fk , 2:267p2. (ii) A fixed point can exist
at L1 > L0, see figure 5b,c for two examples. If the fixed point
is stable (figure 5b), the stationary state consists of bent
filaments and stationary, stalled motors. If, however, it is
unstable (figure 5c), it is encircled bya limit cycle that represents
periodic beating of the filaments. The transition between the
two regimes takes place in the form of a Hopf bifurcation.
The oscillation frequency at the bifurcation is given by

v ¼ EI

ðLMÞ3G ~v: ð3:5Þ

In the example shown in figure 5, the bifurcation occurs at
gLM=G ¼ 1:05 with ~v ¼ 40. (iii) For parameters with no fixed
point at all, a limit cycle can still exist that runs via full detach-
ment of all motors. The maximum tip angle during the cycle is
then limited to 2fmax

E ¼ 108�. In all the cases discussed above,
the necessary condition for generating oscillations is a sufficient
filament lengthwithout motors L0 and a sufficient force density
to buckle this segment. Note that the derivation holds for a con-
tinuum model—if we take into account the stochastic binding
and unbinding of motors, random unbinding of motors can
possibly replace the motor-free segment.

A quantitative comparison with the experimentally
observed shapes shows that the angles can get close to the
maximum possible deflection. In the example shown in
figure 4a, the angle was 2fE ¼ 80�, 25% below the theoretical
limit 2fmax

E . We can also estimate the oscillation frequency
at the critical point. Using the parameters EI = 6 pN μm2,
LM = 10 μm and G ¼ 1 pN smm�1, equation (3.5) predicts
ω = 0.24 s−1. The oscillations are significantly slower than
beating of natural cilia, but similar in frequency to those
observed in a related artificial two-filament system [25]. We
note that depending on the parameters, the system also
allows other oscillatory modes that are not related to the
Hopf bifuctation (e.g. the regime (iii) in the above discussion).
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4. Summary
To summarize, we have shown that two filaments with one
clamped end and motors acting between them show a variety
of static and dynamical regimes. Whether filaments will
buckle under load depends on a condition similar to the clas-
sical Euler buckling instability, but it differs because the
filaments are mutually clamped to each other, rather than
to an external support. At higher loads, the filaments
can stay arrested in a planar configuration or in one with
spontaneous chiral symmetry breaking. When the steady
solutions become unstable, cyclic oscillations appear. The
oscillations have a non-reciprocal nature, which leads to the
conclusion that such filaments could act as a minimal
model system for beating cilia and would even generate a
net flow of the surrounding fluid. Relatively low beating fre-
quencies are still a deficiency of the simple design—making
them faster will likely need additional crosslinking between
filaments. Likewise, crosslinking allows the formation of
bends and counterbends that lead to flagellar beating. By
contrast, our simple system bends the filaments in a single
buckled region. Chiral beating patterns are another feature
of many cilia [34]. In nature, cilia and flagella exhibit a
wide range of beating patterns, ranging from largely planar
in respiratory epithelia [35] and microorganisms like Chlamy-
domonas [36] to strongly chiral in ciliates like Paramecium or in
the vertebrate left–right organizer [37]. The minimal two-
filament system we discuss here can also produce both
planar and chiral beats, depending on the parameters.
A major difference is that the chirality of beats in our
system is random and determined by spontaneous symmetry
breaking. However, by taking into account that many motor
proteins also exert a torque on the filaments they are moving
[38,39], even the simple two-filament system could exhibit a
defined chirality.
5. Material and methods
The experimental set-up was arranged as described in a previous
study [25]. Briefly, axonemes were obtained from wild-type
Chlamydomonas reinhardtii according to the dibucaine method
[38,40]. For the extraction of outer dynein arm (ODA) and
docking complex from the axonemes, we followed the method
described in previous works [27,41]. Demembranated axonemes
were resuspended in 0.6M KCl containing HMDEK solution to
extract crude dynein sample and prepare high-salt extract from
oda1 axonemes.
The experimental flow chamber was built with Teflon-treated
coverslips as previously described in [42] to prevent non-specific
binding of proteins onto the surface and spaced with double-
sided tape 100 μm thick. Microtubules polymerizing close to
each other and with the same polarity were obtained by using
fragments of demembranated axonemes prepared by vigorous
pipetting and used as seeds attached to the bottom of the flow
chamber. After 5min seed incubation, the experimental chamber
was washed with 1% (w/v) Pluronic F127 in BRB80 (80mM
PIPES, 1mM MgCl2, 1 mM EGTA, pH 6.8 with KOH) and incu-
bated for 5min. Fluorescently labelled (Cy3-labelled) porcine
tubulin (3% labelling) was introduced into the flow chamber,
polymerized in the presence of 1mM GTP, 50% DMSO, 1mM
MgCl2 at 37�C for 30min and stabilized with 7 μM taxol.
After microtubule polymerization, diluted crude ODA extract
was introduced into the flow chamber and incubated for 5min.
The non-bound protein was eliminated by washing the chamber
with buffer and afterwards 1mM ATP was perfused into the
chamber to trigger the activity.

Fluorescence images of the MT-ODA complex were acquired
using an inverted fluorescence microscope Ti-E (Nikon, Japan)
equipped with a 60 × CFI Apochromat objective (N.A. = 1.49,
Nikon, Japan) and the confocal unit (CSU-X1, YOKOGAWA,
Japan). The images were acquired at a frequency of 10 Hz. The
movement of the filaments over time was tracked manually by
using a purpose-written Matlab code. The filament shapes
were fitted to the theoretical results by pre-calculating the pre-
dicted pair shapes for a dense set of length ratios L1/L2, fitting
each to the tracked points using a least-squares fitting procedure
(GNU Scientific Library (GSL), nmsimplex minimizer) using
translation, rotation and scaling as fitting parameters, and finally
determining the L1/L2 ratio of the best fit.
Data accessibility. All data are included in the manuscript.
Electronic supplementary material is available online [43].
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