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The Library of Integrated Network-based Cellular Signatures (LINCS) project is a
large-scale coordinated effort to build a comprehensive systems biology reference
resource. The goals of the program include the generation of a very large multidimensional
data matrix and informatics and computational tools to integrate, analyze, and make
the data readily accessible. LINCS data include genome-wide transcriptional signatures,
biochemical protein binding profiles, cellular phenotypic response profiles and various
other datasets for a wide range of cell model systems and molecular and genetic
perturbations. Here we present a partial survey of this data facilitated by data standards
and in particular a robust compound standardization workflow; we integrated several
types of LINCS signatures and analyzed the results with a focus on mechanism of action
(MoA) and chemical compounds. We illustrate how kinase targets can be related to
disease models and relevant drugs. We identified some fundamental trends that appear
to link Kinome binding profiles and transcriptional signatures to chemical information
and biochemical binding profiles to transcriptional responses independent of chemical
similarity. To fill gaps in the datasets we developed and applied predictive models. The
results can be interpreted at the systems level as demonstrated based on a large number
of signaling pathways. We can identify clear global relationships, suggesting robustness
of cellular responses to chemical perturbation. Overall, the results suggest that chemical
similarity is a useful measure at the systems level, which would support phenotypic drug
optimization efforts. With this study we demonstrate the potential of such integrated
analysis approaches and suggest prioritizing further experiments to fill the gaps in the
current data.
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INTRODUCTION
Modern molecular biomedical science relies to a great extent
on understanding gene function, and significant progress was
made in understanding the roles of numerous individual genes
(Silverman and Loscalzo, 2012). However, the most critical unmet
medical needs correspond to complex diseases caused by a com-
bination of genetic and environmental factors, such as in cancer.

Many studies have demonstrated that cancer emerges from
abnormal protein-protein, regulatory and metabolic interactions
caused by concurrent structural and regulatory changes in mul-
tiple genes and pathways (Nagaraj and Reverter, 2011; Acencio
et al., 2013). Further advances in the prevention, diagnosis and
treatment of cancer require a more comprehensive knowledge
of the molecular mechanisms that lead to the malignant state.
Therefore, understanding cancer pathogenesis requires knowl-
edge of not only the specific contributory genetic mutations but

also the cellular framework in which they arise and function
(Hong et al., 2008). Cancer cell lines and primary cancer cells
have recently been established as powerful model systems to study
cancer biology and the pharmacology of drug responses in cancer
subtypes. To deconvolute, model, and understand drug sensitivity
relies on systems-wide approaches to integrate large-scale biolog-
ical responses in diseased and healthy cell states, involving various
molecular entities such as drugs, proteins, genes, transcripts, cel-
lular, and molecular processes, characteristics (e.g., genetic) of
the cell model systems, etc. (Barretina et al., 2012; Heiser et al.,
2012; Yang et al., 2013). Of particular interest for the devel-
opment of novel drugs is their molecular mechanism of action
(MoA). MoA describes biochemical interaction through which a
drug modulates the corresponding target resulting in a pheno-
typic response (or pharmacological effect of the drug). Although
there are studies linking drug pharmacology to transcriptional

www.frontiersin.org September 2014 | Volume 5 | Article 342 | 1

http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/journal/10.3389/fgene.2014.00342/abstract
http://community.frontiersin.org/people/u/184781
http://community.frontiersin.org/people/u/184792
http://community.frontiersin.org/people/u/176129
mailto:sschurer@med.miami.edu
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive
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responses (Lamb et al., 2006), the connection to drug targets
and the chemical structure of drugs is underexplored, partially
because of a lack of large-scale profiling data. Such insights
are of particular interest for the rational development of next-
generation poly-pharmacology drugs (Hopkins, 2008). Here we
present such a study based on data generated at the Library of
Integrated Network-based Cellular Signatures (LINCS) project1.

It is one of the major goals of the LINCS project to gener-
ate an extensive reference set of cellular response signatures to
representative small molecule and genetic perturbations that can
facilitate the development of computational systems-level mod-
els of complex diseases and drug action. Common patterns from
these data (signatures) include information about gene tran-
scription, protein binding, cell proliferation, cell signaling and
other cellular phenotypes with a particular focus on cancer. The
LINCS data matrix extends into several dimensions including
the model systems (cell lines, primary cells), the perturbations
(such as small molecules), and the readout including the genome-
wide transcriptional profiles, Kinome-wide binding profiles, and
cell-viability and phenotypic profiles against a broad range of
cell lines. These biological responses are currently generated, col-
lected, and standardized to facilitate their integration. Data and
tools generated in the LINCS consortium are available to the
research community via the LINCS website (http://lincsproject.
org). The integration of these data and their analysis relies on
robust metadata standards developed at LINCS (Vempati et al.,
2014). There are also a few recently published approaches that uti-
lize specific LINCS data sets such as transcriptional profiles (Chen
et al., 2013a,b) or kinase inhibition profiles (Shao et al., 2013).

Here we apply these standards and report their implemen-
tation with a focus on small molecules. We report several case
studies involving multi-level integration of such diverse LINCS
datasets. Based on large amounts of publically available kinase
inhibition and binding data beyond LINCS, we built and applied
computational models to fill gaps in the LINCS data matrix to
enable much more comprehensive integrative data analyses. We
demonstrate some global trends that link chemical features of
small molecule perturbations, chemical biology, genomics and
cell viability profiles illustrating the complexity and scope of
LINCS data and how datasets can be mined. In several exam-
ples we show meaningful and biologically interpretable linkages
among different signature types in the context of small molecule
drugs and known signaling networks.

We hope that our survey and integrative analyses illustrates the
wide scope and potential of the LINCS project and will motivate
others to use LINCS generated data and knowledge to enhance
their research on diverse biological and biomedical problems.

MATERIALS AND METHODS
LINCS ASSAYS AND DATASETS
LINCS datasets cover a range of assays and technologies. Details
about LINCS assays, data and tools are available at the LINCS
project website (http://lincsproject.org/). For the analyses pre-
sented here we used three different types of LINCS data. All

1http://lincsproject.org/

data used here can also be obtained via our LINCS Information
FramEWork (LIFE) search system2.

Transcriptional response profiling data (L1000)
For the purposes of this study we selected two L1000 experiments
(Peck et al., 2006) with fairly dissimilar cell lines, A549 (non-small
cell lung carcinoma) with 1027 compounds tested, and VCAP
(prostate carcinoma) with 741 compounds tested, in order to
compare expression profiles among the same cell lines as well as
between different ones. Although there is no simple measure of
cell line similarity (LINCS is one of the first systematic efforts
that contribute to the large-scale generation of cellular response
signatures), for the purposes of this study we consider these cell
lines in the basis of their origin from different organs. In total,
here we investigate 1768 “is_ gold” signatures, corresponding to
1,729,104 data points (total number of Z-scores; perturbagens ×
transcribed genes measured × cell lines). All LINCS L1000 data
and signatures are available at the Broad LINCS Cloud3. For more
details on the L1000 data see Supplementary Material.

KINOME-wide binding profiles (KINOMEscan)
LINCS kinase biochemical profiles were generated at Harvard
Medical School (HMS) using the DiscoveRx KINOMEscan
technology4 , which is a competition binding assay. A panel of
478 purified kinases was profiled against 78 small molecule com-
pounds. However, the majority of LINCS compounds were not
profiled in the KINOMEscan assay and we therefore generated
predicted KINOME-wide inhibition/binding profiles based on
classification models (described below).

Cell growth inhibition profiles
Cell growth inhibition datasets (assay developed at the Center
for Molecular Therapeutics at Massachusetts General Hospital)
(McDermott et al., 2007; Garnett et al., 2012) were retrieved from
the LIFE database and the data were aggregated by averaging
replicates. 39 small molecules were tested against 582 previously
standardized cell lines at different concentrations (in the range
from 0.004 to 15 µM) and one time point (72 h) and number of
surviving cells counted. The measured cell viability values center
around mean of 81% (corresponding to 19% growth inhibition)
with a standard deviation of 31.68 across all concentrations.

SMALL MOLECULE CHEMICAL STRUCTURE STANDARDIZATION,
IDENTIFICATION, AND ANNOTATIONS
Compound information for small molecule perturbagens was
received from the LINCS Data Production centers, HMS and
Broad Institute. To identify unique and common compounds
required a rigorous structure standardization pipeline that we
implemented for the LINCS program. We used Pipeline Pilot
8.0 (Pipeline Pilot, 2011) components to generate the struc-
tures and remove addends and they were then subjected to the
PubChem5 chemical structure standardization procedure using

2http://life.ccs.miami.edu
3http://lincscloud.org/
4http://www.discoverx.com/technologies-platforms/competitive-binding-
technology/kinomescan-technology-platform
5http://pubchem.ncbi.nlm.nih.gov/
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the Power User Gateway (PUG) service. In order to further
identify PubChem CIDs we used additional service provided by
PubChem PUG. The entire process was automated in a custom
protocol using Pipeline Pilot. Using this process, a total of 5364
(as of October, 2013) unique LINCS compounds were obtained
and LINCS small molecule (LSM) IDs assigned. More details on
the procedure can be found in the Supplementary Material.

Additional information and annotations for the standardized
structures were retrieved from PubChem but also from numer-
ous external resources including DrugBank6 , the NCBI7 MLP
probe reports, the NCATS pharmaceutical collection (NPC), and
the Protein Data Bank (PDB) (Berman et al., 2003). Compounds
were annotated as approved drugs, kinase inhibitors, MLP probes,
PDB ligands and, if information available, as kinase inhibitor of
type I or type II (defined by the kinase ATP-binding site con-
formation in the ligand-bound form) (Dar and Shokat, 2011).
All compound information can be queried, browsed and down-
loaded via the LIFE search system (http://life.ccs.miami.edu) and
the LIFE project website8.

To characterize the diversity in chemical space of the tested
LINCS compounds, we generated a histogram of their pair-
wise chemical similarities based on the Tanimoto metric using
extended-connectivity fingerprints of length 4 (ECFP4) (Rogers
and Hahn, 2010).

Based on unique LSM IDs we identified overlap of screened
compounds among the different LINCS assays. While many com-
pounds were tested in the L1000 gene-expression assay at the
BROAD Institute, only few of those were tested in different assays
at HMS.

SMALL MOLECULE KINASE INHIBITOR MODELS
We generated predicted kinase inhibition/binding profiles for all
LINCS compounds to fill missing information of those com-
pounds not (yet) tested in the HMS KINOMEscan assay. For that
purpose we built Laplacian-corrected naïve Bayesian classifica-
tion models using the procedure previously described (Schurer
and Muskal, 2013); the models used here were rebuilt based
on the new kinase inhibition data that doubled in the mean-
time illustrating rapid growth in published kinase inhibition
data. Small molecule kinase activity data was extracted from the
Q2 2013 release of the Kinase Knowledge Base (KKB, Eidogen-
Sertanty)9 . After standardization and aggregation based on
unique kinases and compounds as previously described, the data
amounted to more than 510,000 kinase structure data points with
more than 270,000 actives (pIC50 > 6) and more than 590,000
total compounds covering the entire human Kinome. For each
model, the number of total data points and actives was consid-
ered and only models for kinases with reasonable amount of data
were built. For computational kinase profiling, we selected only
models with the area under the receiver operating characteristic
(ROC) curve greater than 0.9 and if they were based on at least
20 unique activity data points with 10 of them being considered

6http://www.drugbank.ca/
7http://www.ncbi.nlm.nih.gov/
8http://lifekb.org/
9http://eidogen-sertanty.com/kinasekb.php

active (pIC50 > 6). This selection resulted in 229 kinase mod-
els for which we could make confident predictions (for these 229
kinase models the additional information regarding their charac-
teristics [target, number of data points, number of actives, ROC
score, and enrichment factor for 1% for leave-one-out cross vali-
dation] can be found in Dataset 1 in the Supplementary Material).
The model classifier outcome is a prediction of a compound being
active (prediction value is true) or inactive (prediction value is
false) for a given kinase. The outcome of performing all mod-
els against the LINCS compounds was converted into a 229-bit
binary fingerprint for each compound.

KINASE AND SMALL MOLECULE KINASE INHIBITOR ANNOTATIONS
To integrate KINOMEscan results and kinase models, we manu-
ally mapped them to Uniprot, standardized descriptions includ-
ing mutations and posttranslational modification and we added
external annotations such as protein name, symbols, IDs and
alternate names, and also important details such as gatekeeper
amino acid residues. We organized all kinase domains by an
extended phylogenetic classification tree that we based largely on
the Sugen kinase classification (Manning et al., 2002)10.

For LINCS standardized compounds a set of additional anno-
tations were derived from the LINCS datasets. We defined active,
selective, group selective and promiscuous kinase inhibitors based
on the number and the group membership of kinases that are
measured in the KINOMEscan assay. Compounds were con-
sidered active if they inhibited a kinase more than 90%. If a
compound is active toward 5 or more kinases (belonging to dif-
ferent kinase groups) it was considered promiscuous. Compound
was defined as selective kinase inhibitor if it is active toward only
one kinase, or group selective if it was active only against kinases
from the same kinase group. This data is available via the LIFE
search system and the LIFE project website.

CELL LINES ANNOTATIONS
Numerous cancer cell lines and non-transformed primary cul-
tures are used as disease model systems in the LINCS project. To
facilitate integration and analysis of large-scale cell-based screen-
ing profiles generated at LINCS, cell lines were systematically
annotated with controlled terms identifying associated organs
and diseases (Vempati et al., 2014). Ongoing and future LINCS
datasets are also being expanded toward primary tissues, iPS
cells and their differentiated derivatives. Here we leverage disease
annotations, which are available from the HMS LINCS website11,
and can also be queried in the LIFE search system (http://life.ccs.
miami.edu).

BIOPROFILE- AND CHEMICAL STRUCTURE-BASED FINGERPRINTS AND
SIMILARITIES
To facilitate comparative analysis of LINCS datasets, we defined
several bioprofile fingerprints for tested compound. These
bioprofile fingerprints were constructed based on categori-
cal outcomes (active/inactive) in the different LINCS pro-
filing assays. The Tanimoto metric was then used as a

10http://kinase.com/
11http://lincs.hms.harvard.edu/
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Vidović et al. Systems-level LINCS data integration

similarity measure of these profiles (similarities KinomeSim,
KinomePredSim, and TranscriptSim for KINOMEscan, predicted
kinase inhibition profile, and transcriptional expression pro-
file, respectively). Advantages of this approach include sim-
plicity (binary fingerprints) and computational efficiency (i.e.,
compute Tanimoto similarities). Chemical similarity of LINCS
compounds (ChemSim) was determined based on topological
fingerprints derived from the chemical structures also employ-
ing the Tanimoto metric. The definition of the fingerprints is
provided in the Supplementary Material.

KINASE ENRICHMENT IN CELL GROWTH INHIBITION DATA
We integrated and analyzed the KINOMEscan data and cell
growth inhibition assay data, which were retrieved from the
LIFE database (http://life.ccs.miami.edu). KINOMEscan data
consists of 78 small molecules tested against the panel of 478
kinases (including clinically relevant mutants, lipid, atypical, and
pathogen kinases), corresponding to 382 unique kinase UniProt
IDs. Cell growth inhibition data represents results of 39 small
molecules tested in 582 cell lines (standardized as described
above) at different concentrations (in the range from 0.004 µM
to 15 µM) and one time point (72 h). Twenty one compounds
were tested across the two described datasets and were used to
integrate the data. For each kinase we calculated an enrichment
score to reflect how much more likely it is to find activity in the
cell growth inhibition assay among compounds that inhibit that
particular kinase over the background probability of a compound
inhibiting cell growth (the further details are provided in the
Supplementary Material). Kinase enrichment scores were further
used in the hierarchical clustering analysis performed by TIBCO
Spotfire software (TIBCO Spotfire, 2013). Clustering was based
on the single linkage method and the Euclidian distance was used
as a distance measure.

PI3K/AKT/mTOR PATHWAY ANALYSIS
In order to demonstrate systems-level data integration, we
considered kinases in the PI3K/AKT/mTOR signaling pathway
(Laplante and Sabatini, 2012). We identified and downloaded
213 proteins (including cellular localization variation) from
PI3K/AKT/mTOR pathway from Reactome (Joshi-Tope et al.,
2005; Vastrik et al., 2007). By matching their genes to the stan-
dardized kinase genes symbols in the KKB, we identified 26
unique kinases. We then queried the aggregated KKB (the data
that was also used for building the models) for those small
molecules with a pIC50 value greater than 6 against any of these
kinases and we identified 24,158 unique kinase inhibitors. Their
(standardized) structures were compared to the LINCS com-
pounds and we identified an overlap of 35 compounds. Based on
the KKB activities, they inhibit 21 out of 26 PI3K/AKT/mTOR
pathway kinases. For these 35 compounds that theoretically affect
PI3K/AKT/mTOR pathway, we analyze their L1000 responses and
the effect on the cell growth inhibition.

SYSTEMATIC PATHWAY ANALYSIS
For the systematic pathway analysis our starting point was
the curated pathway database of the National Cancer Institute

(NCI)12. We retrieved the tab delimited file “NCI-Nature Curated
Pathway–UniProt mapping” from their website (http://pid.nci.
nih.gov/download.shtml). This file contains a total of 8420
records, which represent a combination of 2688 unique Uniprot
IDs and 224 pathways (as of April 3, 2014).

In order to identify kinases, we grouped proteins by the path-
ways and compared their UniProt IDs to the kinase annotations
in the KKB. For each pathway we further identified LINCS com-
pounds that were predicted (by the kinase models, as described
above) to be active for the kinases identified in the given pathway,
and consequently active in that pathway. For such pathway-
active compounds we compared their transcriptional similarities
and computed p-values between TranscriptSim of pathway-active
and pathway-inactive LINCS compounds in order to demon-
strate that (predicted) pathway-active compounds lead to (statis-
tically) significantly more similar transcriptional profiles than the
pathway-inactive compounds.

STUDENT T -TEST CALCULATIONS
All Student t-test calculations reported here were performed
using the R Statistics13component “R Two-Variables Tests” imple-
mented in Pipeline Pilot 8.0.

RESULTS
CHARACTERIZATION OF LINCS SMALL MOLECULE PERTURBAGENS
Small molecules tested in different LINCS datasets were com-
piled, and after removing salts and addends, were submitted to
the PubChem web services first for the compound standardiza-
tion and then for retrieving the PubChem CID identifiers. Unique
LSM parent compound IDs were assigned based on the standard-
ized chemical structure representations; a total of 5364 unique
compounds were identified across the LINCS assays. Among
them, we identified previously known kinase inhibitors, approved
drugs, MLP probes, PDB ligands etc. (described in the Materials
and Methods). These annotations are illustrated in Figure 1; they
are available and can be browsed and queried at the LIFE project
website (http://lifekb.org/) and the LIFE search engine (http://life.
ccs.miami.edu).

We explored the diversity of compounds in the LINCS chem-
ical space by pairwise Tanimoto similarities based on extended-
connectivity fingerprints (Figure 2).

As shown in the similarity histogram (Figure 2), the distri-
bution is skewed toward low similarity suggesting LINCS com-
pounds are fairly diverse (Tanimoto coefficient below 0.4). LINCS
compounds were selected by the centers to cover a broad biolog-
ical space including known drugs, kinase inhibitors and probes
from the Molecular Libraries program.

OVERLAP OF LINCS COMPOUNDS AND CELL LINES ACROSS ASSAYS
Cell lines were previously standardized by a joint effort of several
LINCS centers (Vempati et al., 2014).

Standardized compounds and cell lines were compared across
the LINCS Data Generation Centers and selected assays. One
hundred and fifty compounds and thirty one cell lines were tested

12http://pid.nci.nih.gov/index.shtml
13http://www.r-project.org/
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FIGURE 1 | Identified known PDB ligands, MLP probes, approved

drugs, and kinase drugs among LINCS compounds.

FIGURE 2 | Distribution of pairwise chemical similarity of LINCS

compounds.

at both centers (HMS and Broad) across different assays. For
the assays considered in this study the overlap between tested
compounds and cell lines is shown in Figure 3.

From this analysis it becomes obvious that only a small
number of compounds were tested in several different assays
limiting comprehensive analysis. In order to generate data that
would facilitate cross-datasets integration, we built and applied
229 small molecule kinase inhibition models (as described in
Materials and Methods) to predict the kinase inhibition pro-
files for all LINCS compounds. We used these predictions to fill
the gaps in the experimental data and to deconvolute the trends
between biological responses as described below.

INTEGRATION AND ANALYSIS OF KINASE PROFILING AND CELL
GROWTH INHIBITION PROFILING DATASETS
The integration of Kinome-wide small molecule inhibition
profiles and phenotypic responses offer a powerful approach
to deconvolute likely mechanisms of action of pharmacologi-
cally active compounds. Similar, cell line panels, in particular

cancer cell lines, are an established approach to characterize
small molecule pharmacologically. Using standardized LINCS
KINOMEscan and cell growth inhibition signatures generated for
the same compounds enables us to map chemical biology bind-
ing profiles to cancer cell viability profiles with the potential to
contribute to the identification of key kinases and pathways that
are relevant for specific cancer subtypes. To investigate this, we
generated all combinations of tested kinases and cell lines and
for each combination computed a kinase enrichment score that
quantifies how much more likely a compound is to be active if it
is an inhibitor of a given kinase over the background probability
of inhibiting cell growth (see Materials and Methods). Scores of
greater than one indicate that inhibitors of that kinase are more
likely to inhibit cell growth, suggesting that the pathways to which
these kinases belong may be involved in cell death (desirable out-
come for the cancer cell lines). Conversely, enrichment scores of
less than minus one indicate that such inhibitors would be less
likely to kill the cells.

Using the enrichment scores, we performed hierarchical clus-
tering of kinases and cell lines. The resulting heat map is shown
in Figure 4 where red areas represent high kinase enrichment
scores, white no enrichment and blue derichment; gray area
reflect combinations of kinases and cell lines without overlapping
compounds tested in two assays.

KINASE ENRICHMENT AND DERICHMENT IN CANCER
Although there is no clear clustering pattern of kinases vs. dis-
eases in Figure 4 (which cannot be expected in a relatively limited
dataset and cell line model systems), we can still identify individ-
ual kinases that are enriched in certain cell lines. For example,
kinases ALK, PRKD1, MYLK, CAMKK1, CAMKK2, DAPK3,
EGFR, GAK, DCAMKL1 emerge to be more relevant for the lung
squamous cell carcinoma (few cell lines originating from this dis-
eased tissue) while kinases MRCKA, MRCKB, DMPK2, HIPK4,
CDK2, CDK8, CDK11, PIK3CA, NEK5, ERK3, and CSNK1D
appear to be not affected by compounds causing cell death in
the same cell lines. Therefore, after identifying kinases that are
enriched in one (or several) disease, one could possibly identify
novel drug targets or previously known targets that show activity
in a new disease and therefore find a case for drug repurposing.
In this way, previously unknown side effects of a compound may
be discovered and off-targets can be identified among a subset of
enriched kinases.

Our analysis approach illustrates how LINCS data can poten-
tially be leveraged to gain important insight into molecular
mechanisms that lead to the cell malignant state, especially in
the future with the currently expanding LINCS data. The results
shown here should be considered as an illustration for data inte-
gration and how they can be interpreted. Even with this limited
dataset, we were able to identify several examples of known drugs
that would confirm potential conclusions derived from this anal-
ysis. For example Lapatinib, an approved drug for breast cancer
is very potent in the MCF7 breast cancer cell line by killing 83%
of cancerous cells (at 2.5 µM). Its known drug target is EGFR. We
also found that this drug inhibits EGFR at 100%, as well as major-
ity of its other modifications/mutations in the KINOMEscan
panel.
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FIGURE 3 | (A) Overlap between compounds tested in KINOMEscan, cell growth inhibition, and L1000 assays and (B) overlap between cell lines tested in cell
growth inhibition and L1000 assays.

BIOCHEMICAL AND PHENOTYPIC RESPONSE SIGNATURES ARE
RELATED AND INTERPRETABLE BASED ON CHEMICAL SIMILARITY
After defining bio-fingerprints to represent cellular signatures
generated in the number of LINCS assays (as described in
Materials and Methods) we analyzed them to identify correlations
and trends between different biological and cellular phenotypic
response profiles.

Kinome-wide binding activity (KINOMEscan) profiles
We calculated pairwise Tanimoto similarities (KinomeSim) based
on the kinase binding (KINOMEscan) profiles for 78 compounds
that were tested in that assay (see Materials and Methods). For
the same compounds we computed the corresponding pairwise
molecular similarities (ChemSim). KinomeSim thus represents
the similarity of a compound pair based on their biochemical
(kinase) binding profile while ChemSim quantifies the similarity
of two compounds based on features of their chemical structures.
Chemical structure similarity is an important concept in chem-
informatics where it is generally assumed that more structurally
similar compounds are more likely to have similar biological
activity (similarity property principle) (Martin et al., 2002). Here
we apply this concept to a biological profile. Figure 5 illustrates
the global relationship between pairwise biological profile and
chemical similarities; specifically ChemSim is binned and within
each bin the average KinomeSim is calculated and shown as
the corresponding bar height. As Figure 5 illustrated, there is a
general trend that highly similar compounds also have very sim-
ilar kinases panel activity (KINOMEscan) profiles. A two-sided
Student t-test confirmed the statistical significance of this trend.
For example using a ChemSim cutoff of 0.8, which can be con-
sidered reasonable similar for the fingerprints applied here (see
Materials and Methods), the average biological profile similarities
of the corresponding KinomeSim distributions are (statistically)
significantly different with a p-value of 1.9·10–61.

Predicted small molecule kinase inhibition profiles
Using predicted kinase inhibition profiles rather than the exper-
imental binding profiles allowed us to investigate a much larger
number of compounds. Whereas KINOMEscan profiles were

available for 78 compounds, we generated predicted kinase inhi-
bition profiles for all 5364 LINCS standardized compounds as
described in Material and Methods. Although we don’t expect
perfect predictions, we have shown that the predictors are highly
accurate (Schurer and Muskal, 2013); we only applied models
with sufficient data and very good cross-validation performance.
An important characteristic of the kinase classification models
is that they are derived from a large corpus of published and
patented results comprising many different assay technologies
and assay conditions aggregated by unique chemical structures
and kinase protein target. It may therefore be the case that such
results are in fact more robust in terms of reproducibility as
oppose to comparing just two different assay methods or assay
conditions, which can sometimes give considerably different out-
comes (Haibe-Kains et al., 2013). It was therefore of much interest
how the predicted profiles would perform statistically.

In the same manner as described above, we compared pair-
wise similarities based on (predicted) kinase activity profiles
(KinomePredSim) and chemical structural features (ChemSim).
Figure 6 illustrates the global trend.

As before, structurally similar compounds exhibit similar
(in this case predicted) biological response profiles. We cor-
roborated this trend by a t-test comparing two distributions
of KinomePredSim corresponding to a ChemSim split of 0.8
(reflecting similar and dissimilar compound pairs) and obtained
a p-value of 1.62·10–79. As expected no such trend is observed
when the kinase predictions are randomized.

Gene expression (L1000) profiles
After demonstrating a robust, perhaps expected trend that the
similarity of compounds based on their biochemical activity pro-
files (KINOMEscan as well as predicted) increases significantly
with their chemical similarity, it was of interest to compare chem-
ical similarity to gene expression similarity. To evaluate transcrip-
tional similarity we considered not just one response (active vs.
inactive) for each feature (e.g., kinase target), but two responses,
overexpressed and underexpressed for each feature (i.e., gene);
this was implemented in a binary fingerprint simply by doubling
the features as described in Materials and Methods. With that
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FIGURE 4 | Heat map of kinase enrichment across cell lines as described

in the text. Two circles focused on the area of high enrichment (red) and
derichment (blue), respectively (the gradient color mode range shown from

red, for the maximum enrichment score of 3.13, via white for average score
of −0.32, to blue color corresponding to minimum derichment score
of −5.50). Kinases, cell lines and diseases are annotated.
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FIGURE 5 | Global trend of kinase binding profile similarities

(KinomeSim) and chemical structure similarities (ChemSim) for 78

compounds, illustrated as average KinomePredSim values by

ChemSim ranges.

FIGURE 6 | Global trend of pairwise predicted kinase inhibition profile

similarities (KinomePredSim) and chemical structure similarities

(ChemSim) for 5364 compounds, illustrated as average

KinomePredSim values by ChemSim ranges.

we can again compare pairwise similarities, this time based on
the gene expression profiles (TranscriptSim) vs. chemical simi-
larity (ChemSim). We found that a similar global trend holds
even in this case, when there are no direct interactions between
small molecule perturbagens and the molecular entity underlying
the biological profiles, i.e., transcribed gene in this case. Figure 7
illustrates this trend for two dissimilar cell lines, A549 (non-small
cell lung carcinoma) and VCAP (prostate carcinoma).

As before we quantified the statistical significance of this trend
by the two-tailed t-test using a ChemSim cutoff of 0.8 to dif-
ferentiate similar vs. dissimilar compounds. The p-values of the
corresponding TranscriptSim distributions are 2.06·10–14 and
9.64·10–14, for the A549 and VCAP cell lines, respectively.

In the same way we also compared compound L1000 response
profiles across both cell lines. Although there is the general trend
of increasing transcriptional similarity with molecular similarity
holds, the effect is much smaller (about half the average simi-
larity) compared to the trend on one cell line alone (shown in
Figure 8). This is expected, because the cell lines can be expected

to have a very different response to the same compounds; in par-
ticular that is the case for kinase inhibitors that was evaluated
above. The response of kinase inhibitors tested (for example) in
A549 and VCAP growth inhibition assays can be explored in our
LIFE software (http://life.ccs.miami.edu). A global effect across
two very different cell lines is noteworthy and probably related to
conserved pathways.

Relating small molecule predicted kinase inhibition profiles and
gene expression profiles
After establishing a general global trend of biochemical and tran-
scriptional similarity with compound similarity, it was of interest
to compare gene expression (L1000) signatures and kinase inhi-
bition profiles. Because of the limited number of experimental
KINOMEscan profiles and encouraged by our results, we com-
pared compound pairwise similarities based on transcriptional
response profiles to the predicted kinase inhibition profiles. As
shown in Figure 9, compounds that are more similar based
on their biochemical kinase profile are also more similar with
respect to changes in gene expression. We estimated statistical
significance of this trend for the KinomePredSim cutoff of 0.8
(above the cutoff considered similar biochemical kinase profile)
with the p-values of 1.28·10–21 and 6.70·10–30 for A549 and
VCAP, respectively. While it is known that kinases are mech-
anistically related to downstream gene expression via various
signaling pathways and networks, these results suggest some level
of global systems-wide stability of gene transcription with respect
to modulating the entire human Kinome. We did not incor-
porate any systems-level information to group kinases (this is
described in more detail below), but look only at the global
profiles.

Earlier observed trend of increasing transcriptional similar-
ity for more similar chemical purturbagens reasonably could be
rationalized based on the assumption that more similar com-
pounds are more likely to bind to similar targets. The kinase
profile similarity analyses above confirm that assumption, even at
large scale of more than 5000 compounds using predicted kinase
profiles. To investigate further the dependencies of chemical sim-
ilarity, biochemical similarity and transcriptional similarity we
analyzed TranscriptSim vs. KinomePredSim for different cut-
offs of ChemSim as shown for the two cell lines, A549 and
VCAP in Figures 10A,B, respectively. Specifically Figure 10 com-
pares three ChemSim cutoff values, namely 1 (keep all com-
pounds, green), 0.8 (remove compound pairs with similarity
higher than that, blue), and 0.5 (leave practically only non-similar
compounds, red).

As Figure 10 illustrates, as chemically similar compounds are
removed from the analysis, the observed trend between transcrip-
tional similarity and biochemical similarity of compound pairs
decreases, but still holds even for only dissimilar compounds
(ChemSim cutoff 0.5). This is the case again for two very different
cell lines.

To evaluate these trends statistically, we performed Student
t-tests for the different datasets corresponding to a ChemSim
cutoffs of 0.8 (426,331 and 219,163 compound pairs for A549
and VCAP, respectively) and 0.5 (425,452 and 218,648 of com-
pound pairs for A549 and VCAP, respectively). In both cases the
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Vidović et al. Systems-level LINCS data integration

FIGURE 7 | Global trend of pairwise transcriptional similarity (TranscriptSim) in (A) A549 cells and (B) VCAP cell and chemical structure similarities

(ChemSim) for 1027 and 741 compounds per cell line, respectively, illustrated as average TranscriptSim values by ChemSim ranges.

FIGURE 8 | Global trend of pairwise transcriptional similarity

(TranscriptSim) across A549 and VCAP cells and chemical structure

similarities (ChemSim) for 1027 and 741 compounds per cell line,

respectively, illustrated as average TranscriptSim values by ChemSim

ranges.

dataset was split by a KinomePredSim cutoff of 0.8 (similar and
dissimilar based on their predicted kinase inhibition profile) and
p-values characterizing the difference in mean for the correspond-
ing distributions of transcriptional similarity were calculated.
The p-values for the ChemSim cutoff of 0.8 are 2.15·10–19 and
1.15·10–28 for A549 and VCAP cell lines, respectively, while for
the ChemSim cutoff of 0.5 the p-values are 0.004 and 0.014 for
A549 and VCAP cells, respectively. These results confirm that the
observed trend between the biochemical kinase profile and tran-
scriptional profile similarities is statistically significant even for
structurally dissimilar compound pairs. This is noteworthy as a
global trend suggesting that transcriptional response signatures
may be modeled based on biochemical response profiles alone.
With this, it is of course not surprising that this trend is more pro-
nounced with increasing chemical similarity, because—as shown
above—chemical similarity would results in higher biochemical
similarity. For example, Figure 11 illustrates two highly similar

compounds (ChemSim = 0.88) with high KinomePredSim (of
0.70) and TranscriptSim (of 0.56).

An example of high biochemical similarity and high gene
expression similarity for two structurally dissimilar compounds
is illustrated in Figure 12; specifically ChemSim = 0.25,
KinomePredSim = 0.83, and TranscriptSim = 0.47. Identifying
pharmacologically similar, but structurally diverse compounds
as demonstrated here using LINCS signatures, is an important
approach in drug lead development; for example to overcome
undesired physicochemical properties, such as solubility or brain
penetration, or for patent reasons.

SYSTEMS-LEVEL INTEGRATION AND ANALYSIS OF LINCS SIGNATURES
The above analyses suggested that the transcriptional profiles are
correlated (to some extent) to the MoAs of kinase inhibitors as
characterized by their kinase inhibition profiles. We therefore
anticipated that small molecule perturbagens that affect same
pathway would also exhibit similar transcription. To demon-
strate that in a specific example, we selected and analyzed the
PI3K/AKT/mTOR pathway, which is in the regulation of cell
apoptosis and a target of many cancer drug discovery studies. For
this example we extracted experimental kinase inhibitor activities
from the KKB to identify those compounds that would interact
physically with a protein target in the pathway.

In addition we pursued a systematic approach analyzing tran-
scriptional response for all currently available pathways from the
NCI database. Here we used the kinase models (described above)
to predict LINCS compounds that could affect kinases in the
considered pathways.

PI3K/AKT/mTOR pathway analysis
For 21 kinases previously identified in the mTOR pathway
we identified (using the KKB) 35 active kinase inhibitors
among LINCS compounds (see Materials and Methods; see
Supplementary Material Dataset 2 for the list of mTOR pathway
proteins, 21 mTOR pathway kinases with the inhibition data, and
35 active compounds). For these, pathway-active, compounds
we compared L1000 fingerprint similarities. We found that for
the two cell lines, the pairwise mTOR pathway inhibitors’ L1000
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FIGURE 9 | Global trend of pairwise transcriptional similarity (TranscriptSim) in (A) A549 cells and (B) VCAP cells as a function of predicted kinase profile

similarity (KinomePredSim) for 1027 and 741 compounds per cell line, respectively, illustrated as average TranscriptSim values by KinomePredSim ranges.

FIGURE 10 | Effect of the chemical similarity (ChemSim) of compound

pairs on the trend of the average TranscriptSim as a function of

KinomePredSim in (A) A549 cells and (B) VCAP cells. ChemSim cutoff

applied are: 1.0 (green) including all compound pairs, 0.8 (blue) removing
compound pairs more similar than 0.8, and 0.5 (red) leaving only dissimilar
compound pairs (ChemSim < 0.5).

FIGURE 11 | Similar compounds (ChemSim of 0.88) with high KinomePredSim and TranscriptSim (based on L1000 in A549 cells).
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FIGURE 12 | Dissimilar compounds with high KinomePredSim and high TranscriptSim (based on L1000 in A549 cells).

responses are on average more similar then the L1000 responses of
all LINCS compounds: for the A549 cell line, the global pairwise
L1000 similarity average is 0.035 versus mTOR-pathway com-
pounds’ pairwise L1000 similarity average of 0.057; in VCAP
cells these number are 0.028 versus 0.043, respectively. The cor-
responding Student test p-values are 1.38·10–28 and 1.1·10–14
for A549 and VCAP, respectively, providing a strong evidence
that small molecule perturbagens that interfere with the same
pathway (by inhibiting specific kinases in that pathway) result
in significantly more similar transcriptional profiles compared to
compounds active across different pathways.

Systematic pathway analysis
We also performed a more systematic study by using the NCI
pathway database. We utilized the kinase inhibition models to
predict the most likely pathway-active LINCS compounds in
order to cover as much data as possible. We first annotated all
kinase targets covered by our models by pathways (using a total of
224 NCI pathways). Once we had the kinase list for each pathway,
we identified LINCS compounds that were predicted to be active
for kinases in a given pathway, i.e., pathway-active compounds.
Pairwise TransciptSim values of these pathway-active compounds
were compared to the TranscriptSim numbers of the remain-
ing tested compounds and for each pathway the corresponding
p-values were calculated. The requirement for the p-value calcu-
lation for each pathway was the presence of at least three pathway-
active compounds, i.e., two similarities between them (necessary
for the t-test mean distribution calculation). This reduced the
number of pathways that could be investigated in formal statistics
to 191. For the A549 cell line, 156 of 191 pathways have p-value
below 0.05, suggesting that the greater transcriptional similarity

is not random, while for the VCAP cell line we identified 162 of
191 pathways with p-value of less than 0.05. Kinases identified
per pathway, as well as pathway-active compounds, can be found
in the Supplementary Material Datasets 3 and 4 along with the
corresponding p-values for cell line A549 and VCAP, respectively.

Even though our approach used a simplified assumption of
pathway independence (we analyzed each pathway separately and
not as a part of the network), it can be seen that transcrip-
tional expression profiles originating from the same pathway (as
defined by the participating kinases) are on average significantly
more similar compared to result based on compounds that are
not related to the same pathway. This is the case for majority
of the pathways. For the pathways where this is not the case, we
anticipate that additional information of pathway coexistence and
dependence may be needed. However, our results provide strong
indication that targeting a particular pathway will most likely lead
to a certain transcriptional expression profile. And, importantly,
it suggests that we can identify pathway-active compounds based
on large-scale published data (KKB) or predict their activity via
models based on these datasets.

KINASE SIGNATURES SUGGEST DIFFERENT CELL GROWTH INHIBITION
PATHWAYS FOR A549 AND VCAP
After illustrating that transcriptional profiles are on average
more similar when corresponding to the same cell line then
when they are arising from two different cell lines (Figure 8),
we were interested to contrast the enrichments of kinases for
the two cell lines. We used the enrichment scores (as described
in Materials and Methods and depicted in Figure 4) to iden-
tify kinases that are relevant for each cell line. Based on the
experimental data we found that, for example, kinases PIK3CG,
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NEK5, ERK3, NEK2, PIK3CA, PRKCE, CSNK2A2, PIM1, PKN2,
and CAMK2D are enriched in non-small lung carcinoma A549
cell line while kinases DYRK1B, PCTK1, HIPK1, ICK, CDKL5,
DYRK1A, MAK, ERK8, CLK1, and CLK2 are enriched in prostate
carcinoma VCAP cell line. Mapping these kinases to pathways
suggests that cell toxicity may be mediated by different path-
ways. For example, for VCAP enriched kinase MAK one pathway
was identified from the NCI pathway collection: Co-regulation
of Androgen receptor activity. In contrast, for A549 multiple
pathways were related to the enriched kinases, but 7 pathways
had more than one of these kinases as members: PDGFR-
beta signaling pathway, CDC42 signaling events, Atypical NF-
kappaB pathway, E-cadherin signaling in the nascent adherens
junction, IL3-mediated signaling events, IL5-mediated signaling
events, GMCSF-mediated signaling events, IL2-mediated sig-
naling events, Role of Calcineurin-dependent NFAT signaling
in lymphocytes, RhoA signaling pathway, IL8- and CXCR1-
mediated signaling events, CXCR4-mediated signaling events,
Class I PI3K signaling events, Thromboxane A2 receptor signal-
ing pathway. These results illustrate the different (systems-wide)
characteristics of the two cell lines and likely underlying mecha-
nisms of action related to their growth inhibition. This is valuable
for the development of selective and efficacious drugs based on
prioritized and cell line-/disease-specific drug targets.

KINASE BINDING AND CELL VIABILITY PROFILES TO GUIDE DRUG
REPURPOSING
In contrast to the example above where there appear to be no
common kinase targets, repurposing of known drugs is now a
common strategy to quickly identify approved drugs that can be
applied to a new disease. Here we show an example of Crizotinib
(LSM-1027), approved drug for some non-small cell lung carci-
nomas. Based on the LINCS KINOMEscan data one can identify
kinases that are inhibited by this drug (INSR, AURKB, SRC,
IGF1R, ROS1, MAP3K1, TYRO3, EPHB4, AXL, TXK, MET, FGR,
FLT3, ALK). Furthermore we can identify the related pathways
(NCI pathways described in Material and Methods). Although
there are several pathways that may be implicated in multiple dis-
eases, we can also identify specific ones, for example Glypican 1
(NCI Pathway ID 200026), which is associated through kinases
SRC and FGR. This pathway is implicated in pancreatic cancer
(Aikawa et al., 2008). Therefore by using approved non-small lung
carcinoma drug Crizotinib, it may be possible to target SRC or
FGR and therefore find its new uses in different cancer types.

DISCUSSION AND CONCLUSIONS
The LINCS project is a large-scale coordinated effort to gener-
ate a comprehensive systems biology reference resource of cellular
and molecular response signatures for a wide range of cell lines,
primary cells and stem cells, molecular, genetic, and other per-
turbations. The goals of the program include the generation
of a very large multidimensional data matrix and informatics
and computational tools to integrate, analyze, and make readily
accessible such diverse data as genome-wide transcriptional pro-
files, biochemical protein binding, large-scale cellular phenotypic
response signatures, and also proteomics and metabolomics data.
To produce an integrative view of large and diverse datasets like

those in the LINCS project, it is important to systematically stan-
dardize and annotate all data. Multiple efforts were carried out
within our group and the LINCS consortium to define standards
specifications and apply them to annotate a variety of perturb-
ing or detected molecular entities cell model systems and other
relevant concepts (Vempati et al., 2014). These efforts continue
as the project moves into the next phase. Via tools developed in
the program, for example the LIFE search engine (http://life.ccs.
miami.edu), LINCS data can already be queried by standardized
annotations across different sources.

Here we are particularly interested in small molecule perturba-
tions, because of the potential of small molecules to be developed
into therapeutic drugs and a general shift from purely target
focused toward a systems poly-pharmacology based approach to
drug development that could gain great insights from LINCS. To
facilitate the cross-comparison of LINCS signatures, we estab-
lished a fairly automated process for the standardization of small
molecule compounds, which simplifies identification of com-
pounds tested across several assays and also facilitates mapping
and annotating of compounds using external sources such as
DrugBank, the NCBI MLP probe reports, the NPC collection, and
the Protein Data Bank (PDB). Unique compound IDs are also
required to better coordinate data generation across centers; as
illustrated in Figure 3, there are still gaps to be filled in order to
achieve a complete data matrix across LINCS assays.

Nevertheless, important insights can be gained by bringing
together the current datasets. For example we illustrated the inte-
gration of kinase binding profiles (KINOMEscan assay) and cell
growth inhibition profiles. We combined these datasets using
unique small molecules profiles across and used statistical enrich-
ment to identify kinases that may play a role in the certain cell
lines or diseases. The nature of the LINCS data matrix consisting
of standardized response profiles enables the prioritization of sets
of interesting kinases (signatures) that influence any of the tested
cell lines. In that way kinases shared across many cell lines can be
identified and such discovery may lead to new target identifica-
tion or at least novel hypotheses. Also, by discovering common
kinases between cell lines related to different diseases may lead to
novel starting points for (cancer) drug repurposing.

We demonstrated that the similarity of compounds based on
their chemical structure is related to their kinase binding profiles.
This could be expected based on the similarity-property dogma,
however is still noteworthy at a global level where each profile can
represent a characteristic signature, implying that such signatures
are related to chemical structures. Looking at the genome-wide
transcriptional profiles for a much larger number of tested com-
pounds at the Broad institute (see Materials and Methods), there
was a similar trend that relates chemical similarity to global tran-
scriptional similarity. It was more pronounced in the same cell
line, but also detectable across cell lines. These chemical similar-
ity trends can be interpreted as a generalization of the classical
similarity-property principle, which underlies targeted lead opti-
mization efforts. In particular in the case of transcriptional pro-
files, which have been related to disease phenotypes and models
thereof (Lamb, 2007), these findings appear to support the feasi-
bility of phenotypic lead optimization and utility of phenotypic
structure-activity-relationships for drug development.
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To link transcriptional responses to the underlying MoA, we
compared the transcriptional profiles to the kinase binding pro-
files. Because of the quite small intersection of compounds for
which L1000 and KINOMEscan profiles were available, we devel-
oped and applied kinase inhibition classification models based
on a very large corpus of published data and applied these to all
compounds tested in L1000. In addition to predicting activities
for non-tested compounds and extending the current datasets to
identify patterns in the data, these computational results can be
also used to prioritize compounds for further experimental test-
ing. For example the models could be used to identify a set of
diverse compounds that are most likely to efficiently dissect the
entire Kinome activity space or to prioritize compounds most
likely to interfere in a given biological pathway, or any desirable
poly-pharmacology profile to help deconvolute mechanisms of
cellular responses.

As expected, the trend we observed for the experimental
kinase binding profiles that chemically similar compounds are
more likely to have similar kinase inhibition profiles, was also
confirmed for the predicted kinase profiles just for all LINCS
compounds as the modeling enabled it. We already knew that
structurally very similar compounds were also more likely to
have similar transcriptional profiles. However, their biochem-
ical kinase similarity appeared related to transcriptional simi-
larity independently from chemical similarity, at least to some
extent. This would confirm a mechanistic relationship (by path-
ways), but more importantly a global response suggests a level
of robustness in the cellular responses to chemical perturba-
tion; i.e. small changes in biochemical binding do not have a
huge effect on transcriptional response. This may be one rea-
son why most drugs are well tolerated, despite (previously not
known) poly-pharmacology and in some cases even alternate
indications (drug repurposing). We anticipated that downstream
gene expression signatures would be much more closely related
by signaling pathways; i.e. compounds inhibiting kinases within
a specific pathway should have more similar transcriptional pro-
files. We tested and confirmed this using actual data for the
PI3K/AKT/mTOR pathway and using the kinase inhibition mod-
els for a large number of pathways from the NCI database.
Although we applied a simplified approach of analyzing indi-
vidual pathways, we observed that for the majority of path-
ways the transcriptional expression profiles resulting from small
molecules that are active against any kinase in the same pathway
are indeed more similar than transcriptional expression pro-
files of compounds that do not share activity against the same
pathway.

Facilitated by common data standards and annotations we
were able to integrate diverse biochemical, transcriptional, and
phenotypic cell growth inhibition profiles for small molecule
drug like molecules. After computing various similarity measures
based on the response signatures and chemical information, we
illustrated some insightful trends and elucidated the results at the
systems-level. Our approach and findings to relate biochemical
and transcriptional responses to chemical similarity as well as use
of predictive models appear relevant to inform the development
of novel poly-pharmacology drugs. We hope that some of the data
integration and analysis presented here can inspire others in the

research community to leverage LINCS data and the annotations
we provided for their own studies and in novel ways.
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