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y-Linolenic acid (GLA) is cytotoxic to 36B10 malignant
rat astrocytoma cells but not to 'normal' rat astrocytes

S Vartakl, R McCaw', CS Davis2, MEC Robbins' and AA Spector3
'Radiation Research Laboratory, Department of Radiology, 2Department of Preventive Medicine and 3Department of Biochemistry, University of Iowa,
Iowa City, IA 52242, USA

Summary This study compares the effect of y-linolenic acid (GLA) and its precursor linoleic acid (LA) on survival of 36B10 malignant rat
astrocytoma cells and 'normal' rat astrocytes. GLA was cytotoxic to 36B10 cells but not to astrocytes. By contrast, LA supplementation did not
affect the survival of either cell types. There were minor differences in the uptake, distribution and use of radiolabelled GLA and LA by the
36B1 0 cells and astrocytes. GLA and LA supplementation increased the total polyunsaturated fatty acid (PUFA) content of the cells indicating
increased oxidative potential. However, elevated levels of 8-isoprostane, an indicator of increased oxidative stress, were only observed in the
GLA supplemented 36B10 cells. Addition of the antioxidant trolox to GLA-enriched 36B10 cells blocked the cytotoxic effect. Further, GLA
enhanced the radiation sensitivity of the astrocytoma cells but not the astrocytes; trolox blocked the GLA-mediated increase in astrocytoma
cell radiosensitivity. LA did not affect the radiation response of either cell type. While cyclo-oxygenase inhibitors did not affect GLA cytotoxicity,
they blocked the enhanced radiation response of GLA-supplemented cells. The lipoxygenase inhibitor NDGA did not affect the toxicity
produced by GLA. Thus, GLA is toxic to the neoplastic astrocytoma cells but not to normal astrocytes.

Keywords: polyunsaturated fatty acids; y-linolenic acid; linoleic acid; astrocytoma; astrocyte; radiation

Gamma linolenic acid (GLA, 18:3n6) supplementation has been
reported to suppress the growth of tumour cells in vitro (Fujiwara
et al, 1986; Sangeetha and Das, 1992; Falconer et al, 1994) and in
vivo (Karmali et al, 1985; Abou et al, 1987). Interestingly, in
separate studies conducted on normal tissues in vivo, it has been
reported that dietary GLA decreases the severity of radiation
damage to the skin (Hopewell et al, 1993) and CNS (Hopewell et
al, 1994). We have previously shown that GLA supplementation
can decrease clonogenic cell survival of malignant rat astrocytoma
cells and increase their radiosensitivity (Vartak et al, 1997). To
determine the therapeutic potential of this observation, it is impor-
tant to investigate the effect of GLA on 'normal' rat astrocytes.
The purpose of this work was to compare the effects of GLA on
the survival of 36B10 astrocytoma cells and astrocytes and their
response to radiation. The uptake and use of GLA by astrocytoma
cells has also been compared with that by astrocytes.
The cytotoxic action of polyunsaturated fatty acids (PUFAs) is

thought to be mediated predominantly via lipid peroxidation and
free radical generation (Begin et al, 1988; Ells et al, 1996). Several
studies also indicate that eicosanoid and leukotriene synthesis play
an important role in tumour cell proliferation and metastasis
(Earashi et al, 1995; Damtew and Spagnuolo, 1997). Arachidonic
acid (AA, 20:4n6) and dihomo-y-linolenic acid (DGLA, 20:3n6)
are the substrate for the biosynthesis of prostaglandins of the 2-
and 1- series respectively (Crawford, 1983). GLA is metabolized
to form DGLA and AA. Studies on the effect of PUFAs on
eicosanoid synthesis have shown that GLA and other PUFAs
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increase prostanoid synthesis in cells (Bunce and Abou-El-Ela,
1990; Bell JG et al, 1995, Rose et al, 1995). In order to investigate
the mechanism(s) by which GLA exerts a cytotoxic effect on
astrocytoma cells, we have studied the role of lipid peroxidation
and/or free radical generation, prostanoids and leukotrienes on the
cytotoxic action of GLA and its enhancement of the response to
radiation.
GLA is formed directly from linoleic acid (LA, 18:2n6) by the

action of a delta 6-desaturase (Dunbar and Bailey, 1975).
Therefore, we have also investigated whether LA would produce
effects similar to those obtained with GLA.

MATERIALS AND METHODS

Cell and culture conditions

The tumour cell line tested was the ethylnitrosurea-induced 36B 10
malignant rat astrocytoma (Spence and Coates, 1978). The
'normal' rat astrocytes used in the study were obtained as primary
cell cultures isolated from 1- to 2-day-old Sprague-Dawley rat
pups using the method of Murphy (1990). Briefly, cortices were
removed from the rat pups, meninges were stripped and the
cortices homogenized. After incubation with trypsin for 15 min in
a 37°C shaking water bath, the homogenate was centrifuged
at room temperature for 2 min at 1000 r.p.m. The supematant
was discarded and the pellet resuspended in a trypsin
inhibitor/DNAase solution, triturated, layered over a bovine serum
albumin (BSA) solution and centrifuged at room temperature for
7 min at 1000 r.p.m. The supernatant was removed and the pellet
was resuspended in media. Cells were counted using a haemocy-
tometer and plated at 56 000 cells cm-2.

Both cell types were incubated at 370C under a humidified
atmosphere of 95% air:5% carbon dioxide. The astrocytoma cells
were cultured in Dulbecco's modified Eagle medium containing
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10% fetal bovine serum and L-glutamine (2 mM), penicillin
(50 IU ml-') and streptomycin (50 jg ml-'). They were maintained
as monolayer cultures in tissue culture flasks by routine passage.
The astrocytes were cultured in Eagle's minimum essential
medium containing 10% fetal bovine serum and 2 mM L-gluta-
mine, 33 mM glucose and 60 ,ug ml-' gentamycin. All cell culture
reagents were purchased from Gibco, Grand Island, NY, USA.

Cell survival analyses and cytotoxicity studies

The effect of GLA and LA, either alone or combined with radia-
tion, on 36B10 astrocytoma cell survival (Cayman Chemical, Ann
Arbor, MI, USA) was studied using the clonogenic cell survival
assay. Viable cells assessed by the 0.4% erythrosin B dye exclusion
method using a haemocytometer were seeded at varying densities
depending on the radiation dose; 200 cells for unirradiated cells,
600 cells for 2.5 Gy, 1000 cells for 5 Gy, 1800 cells for 7.5 Gy and
2500 cells for 10 Gy (137Cs y-source; dose rate 1.5 Gy min-') in
60-mm dishes. At the end of a 7-day incubation period, they were
stained with 0.1% crystal violet and the colonies (> 50 cells per
colony) were counted using a dissecting microscope.

In order to study whether lipid peroxidation played a role in the
effect of GLA on survival of 36B10 cells, 50 or 100 jM Trolox
(Aldrich, Milwaukee, WI, USA) was added to the medium in addi-
tion to the GLA. Trolox is a water-soluble analogue of vitamin E
and has been shown to protect mammalian cells from oxidative
damage (Mickle et al, 1989; Wu et al, 1990). Stock solutions of
trolox (100 mM) were prepared in 1 M sodium bicarbonate as, at
concentrations above 1.8 mm, trolox has poor solubility in water.
The pH was adjusted to 7.0 using 1 N hydrochloric acid.

To investigate whether altered prostaglandin or leukotriene
synthesis was involved in GLA cytotoxicity and/or the modified
radiation response of GLA-supplemented cells, the cyclo-oxygenase
inhibitors ibuprofen (50-100 jiM) or indomethacin (2.5-10 jM)
and the lipoxygenase inhibitor nordihydroguaretic acid (NDGA,
1-5 jiM) were used. All inhibitors were added to the medium at the
same time as GLA, and the cells were maintained in this medium
throughout the experiment. Ibuprofen, indomethacin and NDGA
were purchased from Sigma Chemical, St Louis, MO, USA.

Cell cytotoxicity studies for rat astrocytes

As rat astrocytes do not form colonies, the effect of fatty acids on
the survival of these cells was determined using the fluorescent
dye Calcein AM (Molecular Probes, Eugene, OR, USA). In order
to facilitate direct comparison between the effects of GLA and LA
on the survival of astrocytes and astrocytoma cells, this assay was
also performed using the 36B 10 cells.

Rat astrocytes (2500 cells per well) or astrocytoma cells (250
cells per well) were seeded onto 96-well plates. The two cell types
were seeded at different densities because of the differences in
their growth rates. The doubling time of rat astrocytes in culture is
approximately 4 days, whereas that of the 36B 10 astrocytoma cells
is 16 h (unpublished data). After an overnight incubation, the cells
were supplemented with 30 or 45 jM GLA or LA and/or exposed
to 2.5-10 Gy y-rays (1.5 Gy min-m; 137Cs y-source). The cells were
then allowed to grow for 1-7 days at the end of which the viability
of the cells was assessed. The cells were incubated with calcein-
AM (live-cell fluorescence stain) at a final concentration of 1 jiM
for 45 min at room temperature. The fluorescence then was
measured using a fluorescence microplate reader (FL500, Bio-Tek

Instruments, VI, USA). The live cell populations were character-
ized by an intense fluorescence in the 530-nm region.

Determination of 8-isoprostane levels

Astrocytoma cells and astrocytes were supplemented with 45 jM
GLA or LA. The media was tested for 8-isoprostane 0-72 h
after fatty acid supplementation. The isoprostanes are a family
of eicosanoids of non-enzymatic origin produced through the
random oxidation of tissue phospholipids by oxygen radicals.
8-Isoprostane (8-epiprostaglandin F2a) has been proposed as a
marker of antioxidant deficiency and oxidative stress (Morrow
et al, 1990, 1992). The level of 8-isoprostane after GLA and LA
supplementation was measured using an EIA kit (Cayman
Chemical). Briefly, the samples were incubated with the 8-
isoprostane tracer (an 8-isoprostane-acetylcholinesterase conju-
gate) and 8-isoprostane polyclonal antiserum for 18 h at room
temperature. After incubation, the plate was washed and devel-
oped for 60 min with Ellman's reagent (which contains the
substrate for acetylcholinesterase). The plate was read at 405 nm
using a microplate reader (CERESuv900c, Bio-Tek Instruments)
and the amount of 8-isoprostane determined from an 8-isoprostane
standard graph.

Incorporation of GLA and LA into cells

Incorporation of GLA and LA into cells was determined after
supplementation of the medium with 20 or 45 gM [1-14C] 18:3 or
[1-14C] 18:2 for 1, 6, 24 and 48 h. Lipids were extracted from the
cells using chloroform-methanol (2:1 v/v) following the standard
protocol of Folch et al (1957). The radiolabelled fatty acids present
in the media were determined by separating the media from the
cells after the required incubations using 20 gM [1-'4C] GLA or
LA. To determine the amount of radioactivity remaining in the
medium and the amount incorporated into the cells, aliquots were
taken from the cell extract and from the medium, after it had been
centrifuged at 2500 r.p.m. for 5 min to remove any cell debris.
Lipids were extracted from the medium using two volumes of
water saturated ethyl acetate. The ethyl acetate was removed by
evaporation under nitrogen and the fatty acids separated by high-
performance liquid chromatography (HPLC). The lipid extracts
were then transesterified with 12% boron fluoride in methanol at
95°C for 45 min (Morrison and Smith, 1964). The radiolabelled
material was assayed using a liquid scintillation spectrophoto-
meter (Packard Tricarb 4640). Quenching was monitored using an
internal standard.
The phospholipid and neutral lipid fractions of the cell lipid

extracts were separated by thin-layer chromatography (TLC) (Bell
ME et al, 1982). Neutral lipids were separated on Whatman silica
gel G plates with a mixture of heptane-diethyl ether-acetic acid-
methanol (90:20:2:3). Phospholipids were separated on Whatman
LKSD plates with a mixture of chloroform-methanol-40%
methanolamine (60:36:5). The distribution of radioactivity on the
TLC plate was determined with a gas flow proportional scanner
(Radiomatic model R). Lipid standards or radiolabelled standards
were applied to each plate and the chromatogram was visualized
under UV light after development by spraying with 1 mM 8-
anilino-1-naphthalene sulphonic acid, or analysed using the
radioisotope scanner.
To measure the conversion of the fatty acids to metabolites, the

cell and medium lipid extracts were analysed by reverse-phase
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Figure 1 Time dependence of fatty acid uptake. Incorporation of 20 AM of
[1-14C] (A) GLA or (B) LA into 36B10 rat astrocytoma cells (0) and rat
astrocytes (0). Cells were supplemented with the fatty acid for 1-48 h.
Values represent the mean from two separate cultures

HPLC (Gordon et al, 1994). The HPLC was a Gilson 715 system
comprising an 805 nanometric module, 811 dynamic mixer, 306
pump, 117 UV detector and a 231 XL sample injector. The column
used was an Altech C18 2.1 x 150 mm Solvent Miser with 5-,um
spherical packing. The elution profile for the separation of fatty acid
methyl esters consisted of water adjusted to pH 3 with phosphoric
acid and an acetonitrile gradient increasing from 60% to 100% over

65 min at a flow rate of 0.4 ml min-'. Free fatty acid separation was
achieved using an acetonitrile gradient that increased from 50% to
100% over 65 min at a flow rate of 0.4 ml min-'. The radioactivity
was measured by combining the column effluent with scintillator
solution and passing the mixture through a Radiomatic Flow-
one/Beta radioisotope detector A200 at 2 ml min-'.

Statistical analysis

Statistical analysis of the radiation response data was performed
using simple linear regression. Simple linear regression models of
the form 'log (surviving fraction) = dose' were fitted. Student's t-

tests were used to compare each slope to the control slope; P-values
< 0.05 were considered to be statistically significant. Do values,
defined as the dose (Gy) required to reduce the fraction of surviving

Figure 2 Fatty acid incorporation into phospholipids. Distribution of 20 gM
[1-14C] GLA in the PC (0), PE (0), Pi (A) and PS (A) fractions of (A) 36B10
rat astrocytoma cells and (B) rat astrocytes. Cells were supplemented with
the fatty acid for 1-48 h. Values represent the mean from two separate
cultures

cells to 37% of its control value, were estimated by the negative
reciprocal of the slope. Standard errors for Do values were calcu-
lated from the standard errors of the estimated slopes using Taylor
series variance approximations (the delta method). Statistical
significance for all other data was analysed using the Student's t-

test. Data with P-values < 0.05 were considered to be statistically
significant.

RESULTS

Incorporation of GLA and LA into 36B10 cells and
astrocytes

Figure 1 shows the incorporation of 20 ,UM [I-'4C] GLA (Figure
1A) and [1-'4C] LA (Figure IB) into 36B10 astrocytoma cells and
astrocytes. The incorporation of GLA and LA into both cell types
was very rapid. The majority of the fatty acid available to the
36B10 cells was taken up in 6 h. However, the astrocytes
continued to accumulate GLA and LA, and maximum incorpora-
tion did not occur until 24 h. Thus, at the end of the 48 h time
period, the incorporation of the radiolabelled fatty acid by the
astrocytes was 2 1.5 times greater than by the 36B 10 cells. Similar
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Figure 3 Conversion of 20 gM [1-14C] GLA to other fatty acids by (A) 36B10
rat astrocytoma cells and (B) rat astrocytes. GLA (0), DGLA (0), AA (A) and
DTA (A). Cells were supplemented with GLA for 1-48 h. Values represent
the mean from two separate cultures

results were obtained using 45 gM [1-14C] GLA and LA (data
not shown).

Distribution of GLA and LA in 36B130 astrocytoma cells
and astrocytes

Using TLC it was determined that the majority of the total radio-
labelled fatty acids taken up by the 36B10 cells and astrocytes
supplemented with either fatty acids was present in the phospho-
lipids. Figure 2 shows the distribution of [1-'4C] GLA into the
different phospholipid classes of the astrocytoma cells (Figure 2A)
and astrocytes (Figure 2B) between 1 and 48 h after GLA supple-
mentation. The two cell types showed some differences in the
distribution of the fatty acid in the various phospholipid classes. In
the 36B10 cells, phosphatidylcholine (PC) contained approxi-
mately 60% of the radioactivity during the first 6 h. Subsequently,
the amount of radioactivity in PC declined and phospha-
tidylethanolamine (PE) became the most heavily labelled fraction
(Figure 2A). Thus, at 48 h, PE contained 60% of the radioactivity,
with only 19% remaining in the PC. The amounts of phos-
phatidylinositol (PI) and phosphatidylserine (PS) also showed
small increases with time. In the case of the astrocytes, however,
PC contained most of the radioactivity at all the time points
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Figure 4 Conversion of 20 FM [1-14C] LA to other fatty acids by (A) 36B10
rat astrocytoma cells and (B) rat astrocytes. LA (A), GLA (0), DGLA (0) and
AA (A). Cells were supplemented with LA for 1-48 h. Values represent the
mean from two separate cultures

studied (Figure 2B). The amount of radioactivity in the remaining
phospholipid classes showed small increases with time.

Similar patterns of distribution were noticed when 36B10 cells
and astrocytes were supplemented with LA (data not shown).

Metabolism of GLA and LA by 36B10 cells and
astrocytes

Figure 3 shows the conversion of [1-'4C] GLA to other radio-
labelled fatty acids by the 36B10 cells and astrocytes. The 36B10
cells rapidly converted GLA to DGLA and AA; by 24 h, all of the
[1-'4C] GLA supplied was metabolized mainly to AA (Figure 3A).
On the other hand, the astrocytes quickly converted the GLA to
DGLA, AA and docosatetraenoic acid (DTA, 22:4n6; Figure 3B).
As in the case of the 36B10 cells, AA was the predominant
product in the astrocytes from 6 to 48 h GLA supplementation.

For comparision, the metabolism of [1-'4C] LA by the astro-
cytoma cells and astrocytes is shown in Figure 4. Although the
pattern of use of LA by the 36B 10 cells and astrocytes was similar,
the rate of conversion ofLA to its metabolites was different for the
two cell types. Most of the LA supplied to the astrocytoma cells
remained as LA, with little conversion to DGLA and AA (Figure

British Joumal of Cancer (1998) 77(10), 1612-1620
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Figure 5 Effect of fatty acid incorporation on astrocytoma cell survival and
response to radiation. A shows the effect of GLA and LA on the survival of
36B10 cells. Cells were supplemented with 30 gM (2) or 45 gM (-) GLA or
LA throughout the duration of the experiment (7 days). Control cultures (E)
received no supplement. Values represent mean ± s.e. obtained from two
experiments (n = 6). B shows the effect of GLA and LA on the radiation
response of 36B10 cells. Cells supplemented with 45 gM GLA (0) or 45 gM
LA (A) for 24 h were irradiated with 0- to 1 0-Gy y-radiation. Cells were
continued on supplemented media throughout the experiment. Control
cultures (0) received no supplement. Values represent mean + s.e. obtained
from two experiments (n = 6). "Significantly different from controls; P < 0.01

4A). The astrocytes, however, readily converted LA to its longer
chain metabolites (Figure 4B).

Effect of GLA and LA on the survival and radiation
response of 36B10 cells and rat astrocytes

Figure SA and B show the effect of LA or GLA supplementation
on the survival and the radiation response of 36B10 cells as

assessed using the clonogenic cell survival assay. Incubating the
cells with 45 ,UM GLA reduced their survival to 55% (P < 0.01) of
the controls, which received no fatty acid supplement (Figure SA).
GLA supplementation (45 ,UM) also significantly enhanced the
radiation response of the 36B10 cells (P < 0.01; Figure 5B). As
previously published (Vartak et al, 1997), the mean (± s.e.) Do Gy
value obtained for cells supplemented with GLA was significantly
reduced (P < 0.001; Do Gy = 1.92 ± 0.04) compared with that
of the cells that received no fatty acid supplement (Do Gy =

2.70 ± 0.04). In marked contrast, LA supplementation did not
affect either survival of the astrocytoma cells or the response of the
astrocytoma cells to radiation. In fact, the Do value obtained for
cells enriched with LA (Do Gy = 3.00 + 0.14) was higher than that
for the unsupplemented controls.
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Figure 6 Comparison of the effects of GLA on the survival and radiation
responses of astrocytoma cells and astrocytes. Effect of 30 or 45 gM GLA
supplementation on (A) survival and (B) radiation response at 7.5 Gy of
36B10 cells (0) and astrocytes (-) was assessed using the calcein AM
fluorescence assay. Cells were supplemented with the fatty acid for 7 days.
Bars indicate values obtained from one experiment with n = 5 (mean + s.e.).
*P < 0.05 and **P < 0.01; significantly different from respective controls

Figure 6 shows the effect of GLA (Figure 6A) and GLA plus
7.5-Gy radiation (Figure 6B) on the survival of 'normal' rat astro-
cytes compared with the rat astrocytoma cells, assessed using the
fluorescent dye calcein AM. Consistent with the clonogenic assay,

supplementation of 36B10 cells with 45 ,UM GLA alone reduced
their survival to 65 ± 1.59% of the controls (P < 0.01; Figure 6A).
However, GLA had no effect on the viability of the astrocytes.
Similarly, GLA at 45 ,UM enhanced the radiation response of the
astrocytoma cells but not that of the astrocytes (Figure 6A and B).
In contrast, supplementation of the neoplastic astrocytoma cells or

astrocytes with LA did not affect their survival or radiation
response as assessed by the fluorescent dye assay (data not shown).

Effect of trolox and GLA on survival and radiation
response of astrocytoma cells

Figure 7A shows the effects of trolox on the survival of 36B10
cells supplemented with GLA. Incubation of the cells with 50 or

100 gM trolox alone did not affect their survival; as previously
noted (Vartak et al, 1997), GLA (45 gM) supplementation reduced
survival to 55 ± 8.8% of control values (P < 0.01). However, when
the cells were supplemented with trolox in addition to the GLA,
the cytotoxic effect of GLA was completely blocked. Similarly,
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Figure 7 Trolox protects the GLA-mediated increase in 36B10 cell
cytotoxicity and radiation response. A shows the effect of GLA and trolox on
the survival of 36B10 cells. Cells were supplemented with 50 gM (M) or
100 gM (2) trolox alone, 45 gM GLA alone (m), GLA and 50 gM trolox (E) or
GLA and 100 gM trolox (-) throughout the duration of the experiment
(7 days). Control cultures (O) received no supplement. Values represent
mean ± s.e. obtained from two experiments (n = 6). B shows the effect of
GLA and trolox on the radiation response of 36B10 cells. Cells supplemented
with 50 (0) or 100 (A) gM trolox alone, 45 gM GLA alone (A), GLA and 50 gM
trolox (E) or GLA and 100 gM trolox (O) for 24 h were irradiated with 0- to
1 0-Gy y-radiation. Cells were continued on supplemented media throughout
the experiment. Control cultures (0) received no supplement. Values
represent mean ± s.e. obtained from two experiments (n = 6). Cells
supplemented with 50 (0) or 100 (A) gm ibuprofen alone, 45 gM GLA alone
(A), GLA and 50 gM ibuprofen (O) or GLA and 100 gM ibuprofen (O) for 24 h
were irradiated with 0- to IO-Gy y-radiation. "Significantly different from
controls; P < 0.01

addition of trolox along with GLA led to a complete inhibition
of the enhancement of radiation response observed in GLA-
supplemented cells (Figure 7B).

8-Isoprostane levels of 36B1 0 cells supplemented
with GLA

As the protective effect of trolox suggested that GLA might act
through the production of oxidative products, we determined
whether 8-isoprostane production increased in the supplemented
cells. Figure 8 shows the effect of 45 ,UM GLA and LA supplemen-
tation on the 8-isoprostane level in 36B10 cells and astrocytes
24-72 h after incubation with the fatty acids. Supplementation of
the astrocytoma cells with GLA for 72 h increased the level of 8-
isoprostane approximately threefold (P < 0.01), but LA produced
no increase compared with control unsupplemented cells (Figure
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Figure 8 8-Isoprostane production in (A) 36B10 cells and (B) astrocytes
supplemented with GLA or LA. Cells were supplemented with 45 gM GLA (0)
or LA (A) and the 8-isoprostane levels were measured 0-72 h after
supplementation. Control cells (0) received no GLA supplement. Values
represent mean ± s.e. from one experiment with n = 4. *P < 0.05 and
**P < 0.01; significantly different from respective controls

8A). However, the astrocytes exhibited a smaller increase in 8-
isoprostane level after incubation with GLA compared with the
increase observed in 36B10 cells (compare Figure 8A and B).
Further, LA supplementation did not alter the 8-isoprostane level
of the astrocytes.

Effect of cyclo-oxygenase and lipoxygenase inhibitors
on the radiation response of GLA-supplemented 36B10
cells

In order to investigate whether prostanoid and/or leukotriene
synthesis is involved in the cytotoxic effect of GLA and its
enhancement of the radiation response in the neoplastic cells, the
cyclo-oxygenase inhibitors ibuprofen and indomethacin and the
lipoxygenase inhibitor NDGA were tested. Ibuprofen alone had no
effect on the survival of the astrocytoma cells and addition of
ibuprofen plus GLA did not affect GLA cytotoxicity (Figure 9A).
However, incubating the cells with ibuprofen along with GLA
completely blocked the GLA-induced enhancement of radiation
response of 36B 10 cells (Figure 9B). Similar results were obtained
with 2.5-10 gM indomethacin (data not shown).
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Figure 9 Cyclo-oxygenase inhibitor prevents the GLA enhancement of the
radiation response but not GLA-mediated cytotoxicity. A shows the effect of
45 gM GLA and 50-100 gM ibuprofen on the survival of 36B10 cells. Cells
were supplemented with 50 gM (D) or 100 gM (2) ibuprofen alone, 45 gM
GLA alone (PI), GLA and 50 gM ibuprofen (E1) or GLA and 100 gM ibuprofen
(-) throughout the duration of the experiment (7 days). Control cultures (O)
received no supplement. Values represent mean ± s.e. obtained from two
experiments (n = 6). B shows the effect of GLA and ibuprofen on the
radiation response of 36B10 cells. Cells supplemented with 50 (0) or 100 gM
(A) ibuprofen alone, 45 gM GLA alone (A), GLA and 50 gM ibuprofen (O) or
GLA and 100 gM ibuprofen (-) for 24 h were irradiated with 0- to 1 O-Gy y-
radiation. Cells were continued on supplemented media throughout the
experiment. Control cultures (0) received no supplement. Values represent
mean ± s.e. obtained from two experiments (n = 6). "Significantly different
from controls; P< 0.01

The lipoxygenase inhibitor NDGA, at concentrations of 1-5 tM,
did not affect the survival of the astrocytoma cells (data not
shown). Further, incubation of the astrocytoma cells with GLA and
NDGA did not affect GLA cytotoxicity or the GLA-induced
increase in radiation sensitivity (data not shown).

DISCUSSION

The present results show that the overall pattem of distribution and
metabolism of GLA and LA by 36B10 malignant rat astrocytoma
cells differs little from that of the astrocytes. However, GLA is
cytotoxic to the astrocytoma cells but not to the 'normal' astro-
cytes. In contrast, the precursor of GLA, LA, is not cytotoxic to
either 36B10 cells or astrocytes. The increase in 8-isoprostane
formation after GLA supplementation and the protective effect of
trolox in the astrocytoma cells suggest that the cytotoxic action of
GLA alone and the GLA-mediated increase in radiation-induced

cytotoxicity is the result of increased lipid peroxidation and/or free
radical generation. However, the ability of the cyclo-oxygenase
inhibitors ibuprofen and indomethacin to block the GLA-mediated
increase in astrocytoma cell radiosensitivity suggests that, in addi-
tion to the increased oxidative stress, this effect may involve
increased prostanoid synthesis.

Changes in fatty acid composition as a result of alterations in the
type of fatty acid available have been reported in vivo and in vitro
(Burns and Spector, 1987). Indeed, we have previously demon-
strated marked changes in the fatty acid profiles of 36B 10 cells
supplemented with GLA (Vartak et al, 1997). We have tested the
ability of the cells to use this fatty acid in the present study. Our
results show that both neoplastic astrocytoma cells and 'normal'
astrocytes are able to incorporate GLA and LA. The amount of
GLA or LA incorporated into the astrocytes was greater than the
36B10 cells. However, we have observed that GLA was toxic to
the 36B10 cells; astrocytes were unaffected. Thus, the selectively
cytotoxic effect of GLA cannot be explained based on differences
in uptake of GLA by the cells.
A difference in the distribution of the fatty acids into the various

phospholipid classes was also observed for the two cell types. All
GLA or LA supplied to the astrocytoma cells was first incorpo-
rated into the PC fraction, with a gradual shift to PE over time
(Figure 2A). However, this shift was much more dramatic in the
GLA-supplemented astrocytoma cells than when they were incu-
bated in LA-enriched medium. Studies conducted on the distribu-
tion of the different phospholipid classes in various mammalian
cell membranes show that the outer leaflet of the lipid bilayer
predominantly consists of PC while the majority of the PE is
confined to the inner leaflet (Cullis and Hope, 1991). Thus, the
shift of radiolabelled fatty acid from PC to PE observed in our
study may simply reflect a redistribution of the newly incorporated
fatty acids from the outer to the inner leaflet of the cell membrane.
The shift of radioactivity from the PC to the PE fraction may also
be due to increased amounts of AA in the cells. Unsaturated fatty
acids are incorporated preferentially with regard to individual
phospholipid classes. While OA and LA are found primarily in the
PC fraction, AA is transferred to both PE and PI. Several groups
have reported a redistribution of AA from PC to PE when AA was
provided to cells (Aeberhard et al, 1984; Goppelt et al, 1985). We
observed that the 36B 10 cells rapidly converted the GLA supplied
to AA; the transfer of radioactivity from the PC to the PE fraction
may reflect this conversion of GLA to AA. In addition, the rela-
tively slower shift of radioactivity from PC to PE in LA-supple-
mented cells observed in the present study might be because of the
slower conversion of LA to AA by the astrocytoma. The astro-
cytes, however, incorporated most of the fatty acid supplied into
the PC fraction with little shift to PE over the time course studied
(Figure 2B). While the exact reason for this remains unclear, the
results do suggest that the two cell types incorporate the fatty acid
supplied into different membrane compartments.
Our results show that GLA is selectively toxic to the tumour

cells, whereas it has no deleterious effect on astrocyte survival. In
contrast, LA has no toxic effect on either of these cell populations.
Studies on several different neoplastic cell types also indicate that
GLA has a greater cytotoxic effect than LA (Fujiwara et al, 1986;
Begin et al, 1998; Connolly, 1991; Madhavi and Das, 1994). Our
results suggest that the difference in the cytotoxicity of GLA and
LA might be due, in part, to differences in their metabolism by the
astrocytoma cells. While the 36B10 cells could rapidly elongate
and desaturate GLA to DGLA and AA (Figure 3A), these cells
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showed a rapid uptake of LA but a relatively slow conversion of
this fatty acid to DGLA and AA (Figure 4A). The difference in the
amount of long-chain PUFAs, such as AA, present in the GLA- or
LA-enriched cells might explain the difference in cytotoxic effect
of the two fatty acids. However, our unpublished data on the effect
of AA on survival of astrocytoma cells shows that this fatty acid
does not affect the survival of these cells. Thus, the cytotoxic
effect of GLA and the lack thereof using LA cannot be explained
by the rapid conversion of GLA to AA.
LA is converted to GLA by the action of a A-6-desaturase

enzyme (Dunbar and Bailey, 1975). Although a complete loss of A-
6-desaturase in several tumour cells has been reported (Dunbar and
Bailey, 1975), some conversion of LA to its longer-chain, more
unsaturated metabolites was observed in the 36B10 astrocytoma
cells. Recent studies on PUFA metabolism have shown that there is
considerable variation in the ability of normal and neoplastic cells
to elongate and desaturate PUFAs (Grammatikos et al, 1994). The
ability of the astrocytoma cells to metabolize LA, as observed in
this study (Figure 4A), indicates that some A-6-desaturase activity
is present in these tumour cells. Our results are thus in agreement
with the findings of others that indicate the presence of A-6-desat-
urase activity in cultured neuroblastoma cells and other brain
tumours (Robert et al, 1978; Grammatikos et al, 1994).
The selective cytotoxic effect of GLA may also be due to the

reduced ability of the neoplastic astrocytoma cells to protect them-
selves against lipid peroxidation and/or free radical generation
resulting from the increased PUFA content. Increased 8-
isoprostane levels in the 36B10 cells after GLA supplementation
do indicate increased oxidative stress in these cells. Antioxidant
enzymes, such as superoxide dismutase (SOD), catalase and
glutathione peroxidase, are the cells' primary mechanisms for
scavenging free radicals. Studies have shown decreased activities
of these enzymes in many tumour cells (Tisdale and Mahmoud,
1983; Oberley et al, 1989). Preliminary results in our laboratory
show that the manganese (Mn) and copper-zinc (CuZn) SOD
levels in 36B10 cells are significantly lower than those of astro-
cytes, and supplementation of 36B10 cells with GLA failed to alter
the SOD levels in these neoplastic cells (unpublished data).
Our findings that 'normal' astrocytes were unaffected by GLA

suggests that they are able to deal with the increased oxidative
stress resulting from PUFA supplementation. The mechanism
might involve a PUFA-mediated increase in antioxidant enzyme
activity. We have observed that GLA supplementation increases
the activity of MnSOD in rat astrocytes (Gimun et al, 1996).
Moreover, in vivo results also show an increase in expression and
activity of these antioxidant enzymes in normal mouse liver
(Venkatraman et al, 1994) and rat heart (Phylactos et al, 1994).

Thus, the reduced ability of the astrocytoma cells to scavenge
free radicals might account for the cytotoxicity of GLA in these
cells. Free radical generation in these PUFA-enriched 36B10 cells
may be further increased after irradiation. Indeed, providing
36B10 cells with trolox not only blocked the cytotoxic effect of
GLA, but also blocked the GLA-mediated increase in glioma cell
radiosensitivity. Thus, our results support the hypothesis that the
cytotoxic effect of GLA in tumour cells is, at least in part, the
result of increased generation of free radicals and lipid peroxida-
tion (Begin et al, 1988; Ells et al, 1996). LA supplementation did
not affect the survival of 36B10 cells and astrocytes. We observed
that the 8-isoprostane level of astrocytoma cells and astrocytes
supplemented with LA did not differ from the unsupplemented
controls, indicating that there was no difference in free radical

formation between LA-enriched cells and controls. This may
explain the lack of cytotoxic effect ofLA on the astrocytoma cells.

Studies indicate that eicosanoid and leukotriene synthesis play
an important role in tumour cell proliferation (Earashi et al, 1995;
Damtew and Spagnuolo, 1997). On the other hand, several investi-
gators have reported that prostanoid and leukotriene synthesis do
not play a role in PUFA-induced tumour cell cytotoxicity (Begin et
al, 1985; Das, 1991). Thus, there appear to be contradictory views
on the role of prostanoid and leukotriene synthesis in the cytotoxic
effect of PUFAs. The inability of the cyclo-oxygenase inhibitors
ibuprofen and indomethacin to block the cytotoxic effect of GLA
alone, as observed in the present study, supports the view that
prostanoid and leukotriene synthesis are not involved in GLA
cytotoxicity. However, both ibuprofen and indomethacin blocked
the enhanced radiation response of 36B 10 cells supplemented with
GLA. Thus, while the cytotoxic effect of GLA alone is likely to
result from increased oxidative stress, the augmentation of radia-
tion response of GLA-supplemented astrocytoma cells might also
involve an increase in prostanoid synthesis. However, the exact
mechanism(s) by which prostanoids affect GLA-mediated
increase in radiation sensitivity is not known and needs to be
investigated.

In summary, the present results indicate that GLA is selectively
cytotoxic to 36B 10 malignant rat astrocytoma cells; 'normal' rat
astrocytes are not affected. GLA also selectively increases the
radiation response of the neoplastic astrocytoma cells. Malignant
gliomas are extremely radioresistant and difficult to treat
(Laramore et al, 1989; Imperato et al, 1991; Phuphanich et al,
1993). Moreover, damage to surrounding normal tissues is a major
dose-limiting factor in the treatment of these tumours (Sheline et
al, 1980; Leibel et al, 1989). The use of GLA as a therapeutic
adjunct may provide benefit in the treatment of this type of
malignant brain tumour with radiation.
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