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Abstract: While it is accepted that the plastic behavior of metallic glasses is affected by their free
volume content, the effect on chemical bonding has not been investigated systematically. According
to electronic structure analysis, the overall bond strength is not significantly affected by the free
volume content. However, with an increasing free volume content, the average coordination number
decreases. Furthermore, the volume fraction of regions containing atoms with a lower coordination
number increases. As the local bonding character changes from bonding to anti-bonding with a
decreasing coordination number, bonding is weakened in the volume fraction of a lower coordination
number. During deformation, the number of strong, short-distance bonds decreases more for free
volume-containing samples than for samples without free volume, resulting in additional bond
weakening. Therefore, we show that the introduction of free volume causes the formation of volume
fractions of a lower coordination number, resulting in weaker bonding, and propose that this is
the electronic structure origin of the enhanced plastic behavior reported for glasses containing
free volume.
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1. Introduction

Plastic deformability is crucial for structural applications of metallic glasses [1]. Increasing the
free volume content has been proposed to enhance the plastic deformation of metallic glasses and
is often referred to as “structural rejuvenation” [2]. Recently, an enhanced free volume content was
reported to induce work hardening and hence enable stable plastic deformation [3].

Free volume is inherent to the glassy state, as its density varies depending on the synthesis
conditions [2], and consists of volume fractions containing atoms with a lower coordination number [4],
allowing the atoms to move within their nearest neighbor cage without energy change [5]. Therefore, the
atomic mobility is enhanced [4,6] as the free volume lowers the energy barrier for shear transformations
in metallic glasses [4,6], promoting plastic deformability [7]. While the literature often focusses on free
volume-induced changes in internal energy [2,7–10] and topology [3,11–13], the effect of free volume
on the electronic structure has been overlooked thus far. Cu70Zr30 metallic glasses have previously
been predicted to be brittle based on ab initio methods [14,15]. Therefore, the goal of this study is to
understand the effect of free volume on the electronic structure and hence chemical bonding based on
ab initio calculations by systematically increasing the free volume content of Cu70Zr30.

2. Methods

Density-functional-theory (DFT)-based [16] ab initio molecular dynamics calculations were
carried out in this work. To create glassy structural models, the modeling routine introduced by
Hostert et al. [17] was employed. The initial supercell contained 115 atoms, which were initially
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randomly distributed on a bcc-lattice (115 atoms and 13 vacancies) [17]. This supercell was heated
up with a timestep of 1 fs to 4000 K for 400 fs in a canonical ensemble by the scaling of velocities
and subsequently quenched to 0 K by geometry relaxation employing the openMX 3.9.2 code [18,19].
Electronic potentials with the general gradient approximation [20] and the basic functions Cu6.0S-s3p3d3
and Zr7.0-s3p3d3f1 were applied, where the first symbol designated the chemical element and
cutoff-radius and the last set of symbols defined the primitive orbitals. A 1 × 1 × 1 k-grid and an energy
cutoff-radius of 150 Ry were used. After quenching to 0 K, the volume was relaxed by employing the
Vienna Ab initio Simulation Package (VASP) [21,22] with projector-augmented wave potentials [22,23]
using the Perdew–Burke–Ernzerhof functional [20]. Integration over the Brillouin zone was conducted
on a 3 × 3 × 3 Monkhorst–Pack k-grid [24]. This heating-quenching-relaxation cycle described above
was repeated until the volume change between two subsequent cycles was smaller than 2%.

To create different free volume contents, up to five atoms were removed from the amorphous
structural model while keeping the composition approximately constant. To avoid a vacancy-like
atomic configuration around the position of the removed atom, the supercell was heated to 4000 K
for 400 fs by velocity scaling in a canonical ensemble and subsequently quenched to 0 K by geometry
relaxation. This allowed the free volume to distribute within the supercell. To probe the significance
and reproducibility of the observed results, four independent structural models were developed from
the initial crystalline supercell up to the free volume-containing supercells.

The bulk modulus was calculated from the ground state by fitting the energy-volume data
with the Birch–Munarghan equation of state [25], and the shear modulus was calculated using
volume-conserving distortions [26]. To calculate pair distribution functions, taking the atomic
scattering factors into account [17], the supercell was heated to 300 K for 300 fs. The pair distribution
functions were averaged over the last 200 fs. For bonding analysis, the crystal orbital Hamilton
populations (COHPs) [27] were obtained from the LOBSTER code (version 3.2.0) [28–30].

3. Results and Discussion

Before the electronic structure and topology are analysed, the changes of total energy and elastic
moduli as a function of increasing free volume content are investigated and are shown in Figure 1.
The variability range indicated does not represent the numerical error of the calculation, but the
variability of plus and minus one standard deviation of the average of the properties listed in Table 1,
which were obtained for the different structural models investigated in the study.
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Figure 1. Ab initio total energy density (a), energy per atom (b), bulk modulus (c), and shear modulus
(d) of Cu70Zr30. Gray symbols mark the result of a single calculation and black symbols mark the
average of the data points per free volume content, while the variability bars represent plus and minus
one standard deviation of the average value of the properties listed in Table 1, which were obtained for
the different structural models investigated in the study.
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Table 1. Free volume, total energy, energy per atom, supercell volume, energy density, and bulk and
shear modulus of the four structural models developed in this study.

Free Volume
(%)

Total Energy
(eV)

Energy per Atom
(eV/Atom)

Supercell
Volume (Å3)

Energy Density
(eV/Å3)

Bulk Modulus
(GPa)

Shear Modulus
(GPa)

Structural model 1
0.0 −590.6 −5.12 1847.5 −0.320 114.4 39.2
0.9 −582.2 −5.11 1847.5 −0.315 111.3 37.9
1.8 −576.3 −5.10 1847.5 −0.312 113.4 37.2
2.7 −576.4 −5.14 1847.5 −0.312 116.1 38.7
3.6 −566.4 −5.10 1847.5 −0.307 111.5 35.5
4.5 −548.1 −4.98 1847.5 −0.297 106.1 35.9

Structural model 2
0.0 −589.9 −5.13 1857.0 −0.317 113.7 40.2
0.9 −582.5 −5.11 1857.0 −0.314 111.3 38.1
1.8 −574.2 −5.08 1857.0 −0.309 112.3 36.9
2.7 −567.3 −5.06 1857.0 −0.305 112.0 34.4
3.6 −570.9 −5.14 1857.0 −0.307 115.1 37.4
4.5 −557.3 −5.06 1857.0 −0.300 112.1 34.2

Structural model 3
0.0 −592.9 −5.16 1831.8 −0.324 114.9 43.0
0.9 −585.8 −5.14 1831.8 −0.320 111.1 41.5
1.8 −577.1 −5.11 1831.8 −0.315 108.3 40.4
2.7 −573.2 −5.12 1831.8 −0.313 103.7 38.5
3.6 −569.8 −5.13 1831.8 −0.311 102.3 37.9
4.5 −559.2 −5.08 1831.8 −0.305 96.5 35.6

Structural model 4
0.0 −588.7 −5.12 1839.0 −0.320 114.6 38.4
0.9 −581.7 −5.10 1839.0 −0.316 111.2 40.3
1.8 −572.4 −5.07 1839.0 −0.311 110.4 37.4
2.7 −569.4 −5.08 1839.0 −0.309 110.7 38.8
3.6 −564.0 −5.08 1839.0 −0.307 110.6 36.4
4.5 −554.6 −5.04 1839.0 −0.302 110.1 37.2

The free volume is the excess mean atomic volume compared to the reference structural model
that is based on a supercell containing 115 atoms, which has a free volume content of 0% per definition.
The internal energy of the glass is represented here as the energy density and energy per atom
(Figure 1a,b). The energy density is used to normalize the total energy of the structural models with the
same free volume content, as the absolute volumes of the structural models are not identical. With the
free volume content increasing by 4.6%, the energy density increased by 6.4% and the energy per atom
by 1.8%. This increase of energy is larger than the variability between the structural models and is
consistent with the literature [2,31]. However, the internal energy at free volume contents of 2.7 and
3.6% deviates to lower energies from the increasing internal energy observed before.

The bulk modulus (Figure 1c) varies from 110 to 115 GPa and hence by 4.3%. This small change
of the bulk modulus with an increasing free volume content reflects bond weakening. The shear
modulus (Figure 1d) decreases linearly by 10% with an increasing free volume content. Therefore,
the energy barrier for shear transformations decreases [32], which is consistent with the increased
internal energy [8]. The effect of the free volume on the resistance to hydrostatic deformation is small
but significant.

To reveal the effect of an increasing free volume on the electronic structure, partitioning of the
bond energy is analysed: The COHPs of the three structural models, which are based on different initial
configurations, are similar (Figure 2a–c), showing bonding contributions below approx. −2.5 eV and
anti-bonding contributions close to the Fermi level. However, it is evident that with an increasing free
volume content, the COHPs are shifting towards the Fermi level, which is indicated by the arrows in
Figure 2a–c and is further visualized by the free volume-induced changes of the center of gravity (CoG)
of the COHP and the electronic density of states (DOS, Figure S1) depicted in Figure 2d,e, as calculated
by Equation (1).

CoGX =

∫
(X·E) dE∫

X dE
(1)
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and the d-bands (d-d) are dominating the bonding in Cu70Zr30. As observed for the total COHPs 
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Figure 2. Global bonding analysis of free volume-containing Cu70Zr30. Crystal orbital Hamilton
population (COHP) of three Cu70Zr30 metallic glass structural models (a–c). Free volume-induced
changes in the integrated COHP up to the Fermi level, in the center of gravity of the COHP, and in
the density of states are depicted in (d–f), respectively. In (d–f), black symbols indicate the average of
the quantities based on all structural models, and gray symbols indicate the values of the individual
calculations. The variability bars indicate the range of plus and minus one standard deviation from the
average value obtained for the different structural models investigated in this study.

Here, X is the COHP or DOS, respectively, and E is the energy of the electronic states. For free
volume contents up to 2.7%, the CoG shift towards the Fermi level is larger than the variation of data at
a constant free volume (red shaded area in Figure 2d,e). However, for free volume contents larger
than 2.7%, the shift of the CoG is smaller than the variation at a constant free volume and hence, the CoG
remains constant with respect to the Fermi level. This is in line with the critical free volume content for
yielding of metallic glasses proposed by Wang et al. [33].

The integrated COHP (ICOHP) at the Fermi level, which is a measure of the bond strength [29],
exhibits a subtle decreasing trend and strongly dispersed data (Figure 2f). The difference in ICOHP
between the minimum and maximum free volume contents (0.0 and 4.6%) is −0.3 meV/atom. Due to
the numerical precision of ab initio calculations [34] and the orthogonal projection of the electrons [29],
this difference is appraised as not significant, while the scattering within the set of calculations analysed
here indicates a slightly decreasing ICOHP with an increasing free volume content. Therefore, while the
electrons occupy higher energetic electronic states with an increased free volume content, the analysis
of the total COHP confirms that the effect of the free volume on the overall bond strength is small
but significant.

To investigate the influence of the free volume on directional and non-directional bonds spatially
resolved, the COHPs are separated into the contributions of the electronic bands of the Cu70Zr30 samples
with free volume contents of 4.6% (Figure 3a–c) and 0.0% (Figure 3d–f). As the total COHPs of the
structural models are consistent (Figure 2a–c) and due to computational constraints, the band-resolved
analysis has been conducted only for structural model 1. Based on the electronic band contributions
(Figure 3a,b,d,e), the interactions between the s-bands (s-s), the s- and d-bands (s-d), and the d-bands
(d-d) are dominating the bonding in Cu70Zr30. As observed for the total COHPs (Figure 2a–c),
only minor differences exist between the COHPs for the same structural model but different free
volume contents. Therefore, both directional (s-d and d-d bonds) and non-directional bonding (s-s [35])
is affected in a similar way by the free volume. However, the COHPs for low coordination numbers
exhibit less bonding states below −2.5 eV, as well as an enhanced number of anti-bonding states
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between −1.5 eV and the Fermi level (Figure 3c,f). As this analysis indicates that the local atomic
structure predominantly affects the bonding, the effect of the free volume on the local bonding is
probed next.
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To this end, the distribution of coordination numbers, i.e., the number of neighbors of an atom
within the first coordination shell, which is discussed later in Figure 6, is analysed by comparing the
simulation cell containing no free volume with the one containing a 4.6% free volume, as presented in
Figure 4a. The range of coordination numbers observed is consistent with the literature [36]. The average
coordination number decreases from 14.2 to 13.5 as free volume is introduced. To visualize the impact
of the free volume on the spatial distribution of coordination numbers, iso-coordination surfaces that
enclose volume sections containing atoms with a coordination number ≤ 12 are shown in the simulation
cell in Figure 4b,c. In the configuration without free volume (Figure 4b), these iso-coordination sections
are partly interconnected and populate 11.3% of the volume of the supercell. With an increased free
volume content of 4.6% (Figure 4c), the volume fraction of the iso-coordination sections increases by
11.8%. Therefore, the introduction of a 4.6% free volume causes the volume fraction containing atoms
with coordination numbers ≤ 12 to increase to 23.1%.

The analysis of the ICOHP(Ef) of individual atoms as a function of the coordination number
(Figure 5) emphasizes the bond weakening in regions of a low coordination number: Atoms with a
coordination number ≤ 14 exhibit a positive ICOHP(Ef) and hence overall anti-bonding interactions.
Therefore, the bonding in the volume fraction with a coordination number ≤ 14 is weakened. For more
densely packed atoms with a coordination number > 14 and larger, the ICOHP(Ef) is negative. Hence,
interactions with the nearest neighbors for atoms with a coordination number > 14 are bonding
strongly. The magnitude of the bond energy range for coordination numbers between 14 and 17 may
originate from the inherent structural heterogeneities of metallic glasses [6]. From Figure 5, it is clearly
visible that the ICOHP(Ef) as a function of the coordination number is independent on the overall free
volume content in the sample. However, it is also evident that the number of weakened bonds clearly
increases due to the shift of the coordination number distribution to lower values and the increasing
volume fraction of regions containing atoms with a lower coordination number. This is consistent
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with the reduced shear modulus (Figure 1), and the reported lowered activation energy for shear
transformations [4,6].Materials 2020, 13, x FOR PEER REVIEW 6 of 11 
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To analyse the effect of the free volume on the short-range order, the pair distribution function
(PDF) of an undeformed, a 2% sheared, and a 2% hydrostatically expanded glass with a 4.6% free
volume content (Figure 6a) and 0% free volume (Figure 6b) are compared by showing the difference in
the PDF in Figure 6c. To enlarge the overall sample size, the average of three independently calculated
configurations is shown in Figure 6. The complete pair distribution functions presented in Figure S2
clearly show the lack of long-range order in the samples. The bond distances of 2.5, 2.75, and 3.2 Å for
Cu-Cu, Cu-Zr, and Zr-Zr, respectively, are consistent with the literature [36,37] within 0.15 Å, which has
been reported for ab initio structural models of metallic glasses before [38]. However, as the deviation
from the literature is consistent throughout the structural models investigated and this analysis is based
on a comparison with the structural model without free volume as a reference, the conclusions from
this study are considered valid. While the bond distribution is similar for deformed and undeformed,
free-volume-containing and free-volume-free samples, small changes can be observed in the difference
curve (Figure 6c): With an increased free volume content, the number of bonds is reduced for the
sheared and hydrostatically deformed cells. While this effect is small, the variability bands of the PDF
of the sheared and hydrostatically deformed samples do not overlap completely with the variability
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band of the reference PDF, indicating a decreased number of bonds. Therefore, the effect of the free
volume content on the number of bonds is small but significant.Materials 2020, 13, x FOR PEER REVIEW 7 of 11 
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Figure 6. Total pair distribution functions of Cu70Zr30 of the undeformed, 2% sheared, and 2%
hydrostatically enlarged cells for a sample containing a 4.6% free volume (a) and 0.0% free volume (b)
and the difference in the pair distribution functions with a 4.6% and 0.0% free volume (c). (d–f) present
the corresponding partial pair distribution functions for Cu-Cu, (g–i) Cu-Zr, and (k–m) Zr-Zr bonds.
The pair distribution functions (PDFs) shown are the average of three independently calculated samples
to enlarge the overall sample size. Shaded areas represent the variability obtained for the different
structural models investigated in this study.
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By not only comparing the total PDFs, but also focusing on the partial Cu-Cu PDFs (Figure 6d–f),
Cu-Zr PDFs, (Figure 6g–i) and Zr-Zr PDFs (Figure 6k–m), the bond depletion discussed for the total PDF
can be observed in the partial Cu-Cu and Cu-Zr PDFs, which are the main contributors to the total PDF:
While the deformation-induced bond depletion with an increased free volume content is not significant
for Cu-Cu bonds (Figure 6f), the number of Cu-Zr bonds in the hydrostatically deformed samples is
reduced on the short bond-distance side of the first peak of the PDF for the free volume-containing
glass compared to the glass without free volume. However, for the undeformed cell, a larger peak,
i.e., a larger number of bonds, is observed for Cu-Cu and Cu-Zr in the free volume-containing cell
(Figure 6f,i), while during deformation, these additional bonds are no longer present. For the Zr-Zr
bonds (Figure 6k–m), a small increase in the number of bonds with free volume content in the
undeformed cell is observed, while the effect of deformation on the number of bonds for the free
volume-containing system compared to the system without free volume is minor.

Hence, small topological differences between 0.0 and 4.6% free volume-containing samples are
observed: The number of bonds in the short-range order increases with the free volume content for
undeformed systems, while for shear and hydrostatic deformation, the number of short-distance and
hence strong bonds in the short-range order is reduced more for free volume-containing systems than
for systems without free volume. This originates from a deformation-induced depletion in the number
of Cu-Zr bonds. The observed changes in topology are consistent with the weaker bonding under
shear deformation proposed based on the electronic structure analysis and the reported decreased
barrier for shear transformations [4,5].

4. Conclusions

A systematic, ab initio calculation-based comparison pf Cu70Zr30 metallic glasses with free volume
contents varying from 0.0% to 4.6% revealed that the overall bond strength based on the integrated
COHP changes marginally with an increasing free volume content, while the populated electronic states
and bond energy contributions shift by 0.1 eV to higher energies. However, the average coordination
number decreases from 14.2 to 13.5 with an increasing free volume content from 0.0 to 4.6%, since the
volume fraction of regions containing atoms with a coordination number ≤ 12 increases significantly:
For samples without free volume, the volume fraction of regions containing atoms with a coordination
number ≤ 12 occupies 11.3% of the simulation cell volume, while this volume fraction increases to
23.1% for glasses with a 4.6% free volume content. Due to an increasing number of anti-bonding
contributions to the local bonding with a decreasing coordination number, the ICOHP(Ef) exhibits
positive bonds of atoms with coordination numbers ≤ 14, indicating the dominance of anti-bonding
contributions. Therefore, the bonding is weakened locally in the volume fraction of lower coordination.
Topology-wise, under shear and hydrostatic deformation, free volume-containing samples show a
larger decrease in strong, short-distance bonds with an increased free volume than samples without
free volume, indicating additional bond weakening. Therefore, the introduction of free volume causes
the formation of volume fractions of lower coordination. Due to a local rise of anti-bonding states
in these volume fractions of lower coordination, bonding is weakened. We propose that this local
bond weakening is the electronic structure origin of the enhanced plastic behavior reported for free
volume-containing metallic glasses.
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Pair distribution functions of Cu70Zr30 structural models containing different amounts of free volume.
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