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Abstract 

Swine DNA viruses have developed unique mechanisms for evasion of the host immune system, infection and DNA 

replication, and finally, construction and release of new viral particles. This article reviews four classes of DNA viruses affecting 

swine: porcine circoviruses, African swine fever virus, porcine parvoviruses, and pseudorabies virus. Porcine circoviruses 

belonging to the Circoviridae family are small single-stranded DNA viruses causing different diseases in swine including  

poly-weaning multisystemic wasting syndrome, porcine dermatitis and nephropathy syndrome, and porcine respiratory disease 

complex. African swine fever virus, the only member of the Asfivirus genus in the Asfarviridae family, is a large double-stranded 

DNA virus and for its propensity to cause high mortality, it is currently considered the most dangerous virus in the pig industry. 

Porcine parvoviruses are small single-stranded DNA viruses belonging to the Parvoviridae family that cause reproductive failure 

in pregnant gilts. Pseudorabies virus, or suid herpesvirus 1, is a large double-stranded DNA virus belonging to the Herpesviridae 

family and Alphaherpesvirinae subfamily. Recent findings including general as well as genetic classification, virus structure, 

clinical syndromes and the host immune system responses and vaccine protection are described for all four swine DNA virus 

classes. 
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Introduction 

The genetic material of DNA viruses is either 

single-stranded (ss) or double-stranded (ds) deoxyribonucleic 

acid. Virus DNA genomes are variable in size, ranging 

from small with a size of 1 kilobase pairs (kbp) to large 

examples of several megabase pairs. DNA viruses use 

host cells for replication and subsequent infection.  

The first viral genes to be expressed, which are made by 

larger viruses, are called early genes. Genes encoding 

DNA polymerase and proteins incorporated in DNA 

replication often belong in this group. After DNA 

replication, viruses change the expression profile to the 

so-called late genes. Those genes are essential for the 

production of structural proteins used for coating the 

replicated DNA genome and forming new viral particles. 

At the end of the proliferation process, viral particles are 

released from the cell to infect new sites. In this article, 

the four main groups of DNA viruses significantly 

affecting swine are reviewed: porcine circoviruses, 

African swine fever virus, porcine parvoviruses, and 

pseudorabies virus. The genetic diversity inside  

a particular group and family classification, the 

structures of virus particles, the clinical syndromes, the 

course of infection, and recent progress in vaccine 

development as an effective means of protection against 

infections with swine DNA viruses are described. 

Porcine circoviruses (PCVs) 

Porcine circoviruses are the smallest autonomously 

replicating swine viruses containing circular single-

stranded DNA (ssDNA) with a size of 1.76 kbp (73, 75). 

PCVs were first discovered by Tischer et al. (113) in 

1974 when PCVs were mistaken for picornavirus-like 

particles in a contaminated PK-15 pig kidney cell line. 

Those circoviruses were non-pathogenic, and after they 
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were classified into the Circoviridae family, their 

apparent harmlessness caused them to merit little 

attention so only a few articles concerning the topic were 

written until around 20 years later, when a new 

pathogenic type of porcine circovirus appeared called 

PCV2 (75). In 2015, PCV3 was discovered and 

associated with porcine dermatitis and nephropathy 

syndrome (PDNS) (90), and in 2019, a new type of PCV 

(type 4) was found in China (124). 

Virus structure. PCV virions are small isometric 

particles with a diameter of 17 nm containing circular 

ssDNA which only contains three protein-coding genes 

(114). The virus particle of both PCV1 and PCV2 is 

composed of a single structural protein called the capsid 

protein (Cp), with a molecular mass of 30 kDa and 

which is responsible for spontaneous capsid formation 

(62) (Fig. 1). 

PCV1. This was the first identified porcine circovirus. 

It was designated PCV PK-15 after its discovery and 

characterisation as a contaminant in the PK-15 porcine 

kidney cell line (113). Interestingly, it was also found in 

lymph nodes from piglets affected by a wasting syndrome 

in France (4, 60). 

PCV2. In 1998, Meehan et al. (74) observed that 

monoclonal antibodies raised to circoviruses causing 

post-weaning multisystemic wasting syndrome 

(PMWS) were different from those raised to the PCV 

PK-15 isolate. They also published the first nucleotide 

sequences of the circoviruses associated with PMWS, 

which showed less than 80% identity with the PCV PK-15 

isolate, and they thus provided evidence for a new 

pathogenic type of porcine circovirus, referred to as 

PCV2 (74). Based on the results of the phylogenetic 

study using the capsid protein gene region as a marker, 

PCV2 sequences were divided into two main groups: the 

first group, which subdivides into three clusters 1A to 

1C, and the second group, which branches into five 

clusters 2A to 2E (40, 85). There is also another grouping 

method considering the geographic localisation of  

the virus, dividing PCV2 into PCV2a for the North 

American-like isolates (which also fall into the first 

capsid protein gene region-differentiated group of 

PCV2), and PCV2b for the European-like isolates (also 

in the second capsid protein group of PCV2) (86). 

PCV3. This is a recently discovered type, and yet it 

has been detected and characterised in many countries 

throughout the world, including China (55), Italy (31), 

Brazil (115), and Sweden (121). PCV3 was first 

identified in 2015 in North Carolina (USA) in isolates 

from sows showing high mortality, low conception rates 

and typical signs of PDNS (90). Therefore, PCV3 was 

associated with PDNS and reproductive failure (90) and 

it has also been linked to congenital tumours in piglets 

as well after Chinese PDNS cases were investigated 

(21). This new type of PCV shares only a small 

percentage of homology in genomic DNA sequence with 

those of PCV1 and PCV2 (90). The homology between 

PCV3 and PCV2 found by sequencing in the rep gene 

sequence is 55% and in the cp gene only 37% (90). In 

China, PCV3 was divided into two groups (a and b) and 

five subgroups (a1–a3, b1, and b2) by a phylogenetic 

study using full-length sequences of PCV3 DNA (22). 

In a phylogenetic study conducted in Germany where 

only open reading frame (ORF) 2 (coding for the Cp 

protein) was used for grouping, the number of subgroups 

differed; group a was not divided but group b was, into 

three subgroups (22, 39). The difference is caused by the 

usage of whole-genome sequences in the Chinese study, 

while ORF2 was considered a critical phylogenetic 

marker in Germany (85). 

PCV4. This type was only discovered in April 2019 

(124). Type 4 contains 1.77 kbp long DNA and shares 

67% homology with mink circovirus, which is the 

highest homology across circoviruses, and 43–52% 

homology with other porcine circoviruses (124).  

The size of two crucial genes was predicted at 891 

nucleotides for the rep gene and 687 nucleotides for the 

cp gene (124). For the understanding of porcine 

circovirus’ pathogenicity and infection, further 

investigations will be necessary. 

Clinical syndromes. Postweaning multisystemic 

wasting syndrome was first described in 1996 and a year 

later was associated with PCV2 (46). The precise 

definition of PMWS was proposed by Sorden in 2000 

(109). For pigs to be diagnosed with PMWS, they must 

show all of the following conditions: firstly, clinical 

signs like wasting, weight loss or failure to thrive; 

secondly, histological lesions, which are signs of 

depletion of lymphoid tissues and organs, and 

inflammation of the lungs and lymphoid tissues in usual 

cases and less often the liver, kidneys, pancreas or 

intestine; and thirdly, PCV2 infection inside the lesions. 

The effect of PMWS on the host immune system is 

pronounced, causing virus-induced lymphocyte 

depletion. In the work of Mandrioli et al. (69), the 

presence of activated macrophages was described as  

an essential factor for the development of the syndrome. 

Although mainly CD4+ T-lymphocyte counts were 

decreased during the infection, a dramatic decline in CD8+ 

and CD4+/CD8+ T-lymphocyte and B-lymphocyte 

numbers was also observed, associated with the loss  

of lymphoid follicles (69). The reduced proliferation  

of lymphocytes thus results in a reduction of cytokines 

as positive growth factors, which can affect the further 

expression of major histocompatibility complex I 

antigens type I and II (MHC I and MHC II) and thus 

impair the immune response (72). Interestingly, 

apoptosis was not observed in lymphoid tissues that 

showed a decreased rate of virus proliferation (69). 

However, the work of Shibahara et al. (106) showed that 

apoptosis occurred only in B-lymphocytes and not in 

macrophages (106). This can be explained by the yet-

unknown cause of the apoptosis in lymphoid tissues of 

PMWS in swine (69). 

Another disease associated with porcine 

circoviruses is PDNS. Pigs affected by this syndrome are 

slightly febrile, depressed, and have ventrocaudal 

subcutaneous oedema (100). The incubation time of this 
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disease is very short, and most swine die within three 

days. There are some similarities between PMWS and 

PDNS, such as lymphoid depletion and the presence of 

syncytial cells and others, suggesting that PCV2 may be 

responsible for this disease. Typically, this disease leads 

to skin lesions on the hind legs, however PCV2 has not 

been confirmed as the causative agent of this 

phenomenon (100). 

Porcine respiratory disease complex (PRDC) is  

a disease that affects mainly 2–8-month-old pigs. PRDC 

is characterised by poor appetite, weight loss, or weak 

growth accompanied by clinical signs like anorexia, 

fever, cough and dyspnoea (19, 52, 86). 

Development of vaccines. PCVs are highly 

resistant to conventional detergents and disinfectants, 

which makes decontamination problematic (4). To cope 

with the negative impacts on pig livestock, scientists 

have developed vaccines for combating these viruses. 

The first step in producing an efficient vaccine against 

pathogenic PCV2 is creating and characterising 

monoclonal antibodies against the pathogen. In 2001, 

McNeilly et al. (72) prepared and characterised 

monoclonal antibodies against six PCV2 isolates. One 

year later, Fenaux et al. (32) reported the first 

construction of a DNA clone containing an inserted 

infectious PCV2 genome and its subsequent use for  

in vivo transfection of pigs. The results from transfection 

testing showed that the cloned PCV2 genomic DNA 

could be used for future pathogenesis testing, replacing 

the virulent virus for greater safety (32). The same 

research group observed that not only PCV2 genomic 

DNA could enhance the production of specific 

monoclonal antibodies, but also that a DNA clone 

containing a capsid gene from PCV2 inserted into the 

backbone of PCV1 could achieve the same (34). This 

DNA clone was further tested as a live attenuated 

vaccine, which enhanced cell-mediated immune 

response and thus protected pigs against a pathogenic 

PCV2 challenge (33). 

The first preparation which came onto the market 

(Circovac®, now produced by Ceva, France) 

successfully vaccinated sows and piglets older than three 

weeks (87). Interestingly, the two-dose vaccine was 

observed to enable the transfer of specific PCV2 

antibodies from sow to offspring via colostrum (66). 

This type of vaccination was named dam vaccination. 

Another preparation used for immunisation of pregnant 

sows was a baculovirus-expressed PCV2 vaccine 

(Ingelvac CircoFLEX®, Boehringer Ingelheim, 

Germany). Only a single dose of the vaccine could 

develop neutralising antibodies against PCV2, but 10% 

of the piglets born to those vaccinated sows contracted 

in utero infection (67, 68). These studies also suggest 

that the timing of vaccination is crucial, selection of the 

life stage for administration depending on the desired 

result. For example, if a farm with sows wants to prevent 

in utero infection in the next generation, they will 

specify pre-breeding and post-farrowing vaccinations 

(66, 68). As another example, in the case of protecting 

piglets in the early stage of growth, the vaccination 

should be administered pre-farrowing, when colostrum 

contains more specific antibodies (66). The two vaccines 

described are currently used frequently for controlling 

PCV2 infection. 

A useful way of combating PCV can also be the 

application of vaccines or drugs which could block the 

attachment of viral particles to host cells. Recently  

two studies have reported two different components  

which can accomplish that. Li et al. (63) found that 

epigallocatechin gallate from green tea can inhibit the 

infection of PCV by interfering with the capsid protein 

and thus inhibiting its binding to the host cells. Another 

option could be therapeutically neutralising antibodies. 

In the study of Huang et al. (49), a new neutralising 

monoclonal antibody was prepared capable of blocking 

the capsid protein attachment to PK15 cells. These 

findings can provide useful information for the 

development and synthesis of new vaccines and drugs 

against porcine circoviruses. 

Recent approaches to vaccines mostly target the 

sole capsid protein (Cp), recognising it as the most 

important. This protein was either expressed in  

bacterial strains (Lactobacillus lactis) (116) or viruses 

(adenoviruses) (127) or used to produce PCV2 virus-like 

particles in insect cells in a baculoviral expression 

system (18, 70). 

African swine fever virus (ASFV) 

ASFV is a large DNA virus that is the sole member 

of the Asfivirus genus within the Asfarviridae family 

(64) affecting all species of swine and predominantly 

vectored by ticks from the Ornithodoros genus (37). 

ASFV causes a highly infectious disease called African 

swine fever (ASF). Even though ASF was first identified 

in 1921, its first occurrence had already been observed 

in 1910 in British East Africa (the Kenya Colony) as  

an infectious disease affecting domestic pigs (78). 

Virus structure. ASFV is a large virus, of which 

the viral particle has icosahedral symmetry (Fig. 1).  

The size of ASFV derives from the trilayer viral 

envelope protecting the core that contains linear dsDNA. 

Each of the layers is composed of different structural 

proteins playing not only a protective role but also  

an infective one. A brief description of each envelope 

layer and the most important structural proteins follows. 

Outer envelope. The outer layer is composed of 

the structural proteins p12 (pO61R), p22 (KP177R) and 

CD2v (EP402R) (3, 17, 98). The p12 protein (pO61R) is 

a late structural protein which attaches the viral particle 

to the host cell (3), and the p22 (KP177R) protein is  

an early structural protein which is localised on the outer 

envelope of the viral particle (17). CD2v is a more 

complex protein which plays different roles during ASFV 

infection. It is a transmembrane protein containing 402 

amino acids showing a high degree of similarity to CD2, 

an adhesion receptor of T lymphocytes, particularly 
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sharing the immunoglobulin Ig domain with 28–30 

highly glycosylated sites (76, 99). This protein functions 

in the adsorption of red blood cells on the surface of 

infected host cells (13, 99) and was found to interact 

with an adaptor protein complex (AP-1) through the 

diLeu motif in the C-terminal domain (91). Adaptor 

protein complex 1 is a group of cytosolic heterotetramers 

which sort membrane proteins to endosomes by the 

formation of clathrin-coated vesicles using clathrin as  

a scaffold protein (80). In this way, CD2v helps ASFV 

to enter into the host cells. 

Capsid envelope. The major capsid p72 protein 

(encoded by the viral B646L gene) is knowable by its 

assembly in the area of the inner core matrix and outer 

capsid layer of the viral particle (24). This assembly is 

mediated by a chaperone encoded by B602L and takes 

place on the membrane of the endoplasmic reticulum, 

where the process of envelopment is localised (24). 

Another crucial structural protein is p49 (B438L), which 

forms the icosahedral shape of the viral particles by 

localising in the vertices of the capsid (29). 

Inner envelope. The inner envelope contains five 

structural proteins: the abundant transmembrane p17 

(D117L); the late structural pE248R (E248R), j5R 

(H108R) and j18L (E199L); and p54 or j13L (E183L) 

(15, 96, 97, 111, 112). Their functions have also been 

characterised, and it was learned that j5R and j13L/p54 

are involved in the assembly of viral particles in which 

j13L is accumulated on the endoplasmic reticulum 

membrane, and involved in recruiting viral membrane 

precursors (15, 98). Protein p17 is also involved in 

recruiting viral precursors (111). Although the function 

of pE248R is not precisely known, it has been 

ascertained that it is an actor in the early phase during 

virus entry into the host cell (97). 

Core layer. The first step in forming the viral 

particle is protecting the genomic DNA with a core layer 

of proteins. This layer is composed of structural proteins, 

which originate from polyproteins pp62 (CP530R) and 

pp220 (CP2475L) (107, 108). Both polyproteins are 

processed by SUMO-like protease (S273R) yielding 

different structural proteins, which in the case of pp62 

are p15 and p35 and in the case of pp220 are p14, p34, 

p37 and p150 (107, 108). 

Genomic DNA. ASFV genome is 170 kbp long and 

contains 151 ORFs (20, 120). The genome contains multiple 

genes with different functions. There are genes involved 

in DNA replication, genes encoding enzymes and factors 

involved in transcription and processing, genes encoding 

structural proteins and proteins involved in the assembly 

of viral particles, genes encoding proteins involved in 

host defences, and last but not least, multigene families, 

which correspond to the 30% of the genome (29). 

Genetic classification. Distinct ASFV genotypes 

were identified based on the p72 structural protein. 

Phylogenetic analysis of the C-terminal end of the p72 

gene showed the presence of 22 different genotypes  

(I–XXII) (14). Recently two new genotypes were added, 

XXIII and XXIV (2, 94), of which XXIII shares  

a common ancestor with the genotypes IX and X (2).  

In Europe, two types of genotypes caused outbreaks: 

genotype I on Sardinia and genotype II in Eastern 

Europe (11). 

Clinical syndromes. The clinical signs caused by 

ASFV infection include lesions, high fever, skin 

haemorrhages and neurological diseases (117). 

Although these clinical signs may be similar to those of 

other diseases like classical swine fever virus and 

porcine reproductive and respiratory syndrome, African 

swine fever is manifested by additional symptoms 

including depression, apathy, anorexia, vomiting, and 

red skin on the ears, abdomen and chest (117).  

ASFV and host immune system. The primary 

target cells of ASFV include macrophages and 

monocytes (45). ASFV uses macropinocytosis and 

clathrin-mediated endocytosis as two different 

mechanisms to enter the host cells (47). When the virus 

enters the cell, the lower pH inside late endosomes 

causes the disruption of the outer envelope and capsid 

(47). Thus, the inner envelope is exposed and 

subsequently fused with the endosomal membrane to 

release the viral genome into the cytosol (6). This fusion 

is mediated by the pE248R transmembrane protein of the 

inner envelope (6). Cholesterol from the endosome is 

also essential for the ASFV genome release to the 

cytosol (26). The further transport of the genome is 

mediated by p54 protein, which interacts with the light 

chain of dynein until it reaches the perinuclear spot near 

the microtubular organizing centre (MTOC), where DNA 

replication and transcription take place (5). Interestingly, 

the ASFV genome replicates independently on the host 

cell (29). The next step of ASFV infection is forming 

viral factories. These are formed near the nucleus at the 

MTOC, where virus proteins and DNA are assembled to 

form new viral particles (41). The integrity of the 

microtubules is necessary for the formation of viral 

factories (41). The last step is the release of completed 

viral particles outside the cells. The pE120R virus 

protein helps in the microtubule-mediated transfer of 

viral particles from the viral factory to the plasma 

membrane (7). The protein is attached to the surface of 

intracellular virions by binding to the p72 major capsid 

protein, which helps to incorporate pE120R into the viral 

particle (7). 

Evasion from the host immune system. ASFV 

contains multiple genes that inhibit the function of 

interferon type I (IFN I), which results in inhibition of 

the antiviral state in infected host cells (30). One study 

suggests that the MGF 360 and 505 multigene families 

are involved in evasion from the antiviral state, due to 

the sensitivity of the virus to IFN I when MGFs were 

deleted (42). The essential part of the escape from the 

host immune system includes inhibition of cell death by 

apoptosis. Here, many proteins from ASFV can disable 

the apoptosis mechanism of the host cell. One of these is 

a protein encoded by the A179L gene, which belongs to 

the B-cell lymphoma Bcl2 family (10). This family is 

characterised by an anti- or pro-apoptotic function 
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depending on the type of homology region (BH1–BH4) 

and the protein interactions (56, 122). This protein is 

known for its interaction with proteins containing the 

BH3 domain (such as Bak and Bax) and resultant 

inactivation of them (10). Bak and Bax are primary 

gatekeepers, which upon activation by apoptosis 

inducers cause disruption of mitochondrial membranes, 

and the subsequent release of cytochrome c activates the 

caspase cascade resulting in apoptosis (56, 122). However, 

their inactivation by the A179L gene–encoded protein 

causes the inhibition of apoptosis in infected host cells. 

Another protein which can inactivate apoptosis is that 

encoded by the A224L gene. This protein belongs to the 

inhibitors of apoptosis protein family, which is recognised 

by the BIR motif, and uses tumour necrosis factor alpha 

(TNF-α) as a stimulus for inhibition of apoptosis (30). 

That inhibition by this protein is accomplished by 

inhibition of caspase 3 and activation of the NF-κB 

nuclear factor (30), which then activates the expression 

of cFLIP, an inactivated caspase 8 homologue that 

subsequently blocks caspase 8 activity (30). However, 

this protein is not essential for growth or viral virulence 

(81), which suggests that inhibition of apoptosis by 

TNF-α is not necessary for the replication of ASFV. 

Development of vaccines. The development of 

vaccines for combating ASFV began in the 1960s (9). 

During those early years, multiple vaccines were 

developed, but none of them proved effective enough for 

commercial purposes. There are three main types of 

vaccines which were designed against ASFV: 

inactivated vaccines with a killed virus, live attenuated 

vaccines and subunit vaccines. Inactivated vaccine 

approaches were not successful at all; such vaccines 

could not enhance the immune response in pigs, even 

with the addition of different types of adjuvants (12). 

Live attenuated vaccines (LAVs). These 

vaccines, containing viruses with deleted genes 

responsible for host invasion, infectivity or immune 

system inhibitors, were found to enhance cellular and 

humoral immunity and further protected pigs against the 

virulent virus type (102). There are three successful 

LAVs, which derive from the OURT88/3, NH/P68 and 

BA71ΔCD2v isolates (61, 77, 79). The OURT88/3 

strain has been observed to enhance the production of 

CDβ8+ lymphocytes, the part of CD8+ lymphocytes 

confirming the importance of cellular immunity in the 

resistance to ASF (89). Interestingly, using the 

OURT88/3 isolate, it has been found that deletion of 

genes involved in virulence such as DP71L, DP96R and 

the IFN I interferon modulators MGF 360 and 

MGF530/505 weakened the infectivity of and conferred 

subsequent protection against the OURT88/1 virulent 

strain (1, 95). However, MGF360/505 and 9GL deletion 

in the ASFV Georgia 2007 isolate also reduced the 

virulence of the isolate but without affording protection 

against the parental virus (84). A similar result was 

observed using the Georgia isolate with the deletion of 

the thymidine kinase gene involved in the virulence of 

ASFV (104). It has also been noted that cross-protection 

provided by the non-virulent OURT88/3 isolate and 

virulent OURT88/1 isolate used in combination induced 

protection against two isolates, Benin 97/1 and genotype 

X Uganda 1965 (53). Interestingly, the mutant virus 

BA71ΔCD2v conferred protection to both parental 

BA71 and heterologous E75 virulent strains, which are 

two genotype I strains (77). Furthermore, pigs also 

survived a lethal challenge with the virulent Georgia 

2007/1 genotype II strain (77). In the study of Sánchez-

Córdon et al. (103), the immunisation technique was 

observed to be crucial for protection against ASFV: 

vaccination through the intranasal route was markedly 

more effective than the intramuscular route (103). 

Subunit vaccines. Subunit vaccines use 

biomacromolecules for immunisation, such as DNA or 

protein antigens. DNA vaccines have one main 

disadvantage, which is their reduced immunogenicity in 

large animals. This fact was confirmed by failed 

immunisation with a DNA vaccine containing ASFV 

genes (8). The study of Argilaguet et al. (8) attempted 

the construction of a new DNA clone encoding ASFV 

genes fused with a fragment of an antibody specific to  

a swine leukocyte antigen II and yielded the observation 

that targeting antigens to the antigen-presenting cells 

induced an immune response in pigs. Unfortunately, 

protection against lethal challenge was not achieved (8). 

There was also protection by a DNA vaccine containing 

ASFV genes encoding p54, p30 and the HA extracellular 

domain fused to ubiquitin against challenge with the 

virulent E75 strain (57). Protein antigens are, however, 

more effective than DNA vaccines; even if they do not 

confer protection in all cases. For example, 

immunisation with baculovirus-expressed p30, p54, p72 

and p22 ASFV antigens showed only a temporal delay 

in the onset of disease and reduced viremia (82). It has 

been observed that neutralising antibodies were raised to 

p54 and p72 antigens inhibiting virus attachment to the 

surface of the host cells (44). Neutralising antibodies 

specific to the p30 antigen, which is the most 

immunogenic among ASFV antigens, were found to 

inhibit virus internalisation (44, 92). Recently, new  

p30-specific monoclonal antibodies were prepared, and 

their binding epitopes were mapped (92). It was found 

that immunisation with either p30 or p54 recombinant 

antigen was not successful because pigs were not 

protected and eventually died. However, when the 

antigens were used together as a cocktail, immunisation 

was successful and pigs raised neutralising antibodies, 

which delayed the disease and even stopped the infection 

(43). The study of Ruiz-Gonzalvo et al. (101) conducted 

in 1996 showed that immunisation with recombinant 

CD2v antigen inhibited the haemagglutination, 

restricted the infection temporally and in some cases also 

conferred protection against lethal disease. A more 

recent study from 2016 reports a similar result, which 

was that serotype-specific CD2v or C-type lectin 

induced haemadsorption-inhibition serotype-specific 

protective immunity. This shows that these antigens 

could be used for future vaccine development (16). 
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Fig. 1. Structural characteristics of viruses of interest 
 

 

Porcine parvovirus (PPV) 

PPV (58, 65) is a small ssDNA icosahedral 

nonenveloped virus (Fig. 1) with 5 kbp-long genomic 

DNA, which belongs to the Parvoviridae family, 

Parvovirinae subfamily and Protoparvovirus genus. 

PPV was first isolated in 1965 as a cell-culture 

contaminant (71) and this first isolate is designated 

PPV1. From 1965 onwards, different genotypes were 

identified, and recorded as PPV2 to PPV7, which were 

further classified based on their different 

characterisation as a separate genus within the family 

Parvoviridae. 

Genetic classification. PPV1 genotype is the first 

identified genotype that was classified as the Parvovirus 

genus (65). PPV2 and PPV3 were both sorted into the 

Tetraparvovirus genus (27). PPV2 was identified for the 

first time during a study of the hepatitis E virus in swine 

sera collected in Myanmar in 2001 (48). The PPV3 

genotype is closely related to human parvovirus 4 

(PARV4) and porcine hokovirus that was identified for 

the first time in Hong Kong in 2008 (59). PPV4, PPV5 

and PPV6 were classified in the Copiparvovirus genus 

(83, 110). Even though PPV4 belongs to the 

Copiparvovirus genus, it is closely related to the 

Bocavirus genus, containing an additional ORF3 (23) as 

Bocavirus does. The PPV5 and PPV6 genotypes were 

first identified in 2013 and 2014 in the USA and China, 

respectively (83, 105, 118). The first occurrence of 

PPV6 in Europe was observed in Poland in 2017 (28). 

The last identified genotype was PPV7, which was 

found in the USA, China and Korea in 2016 and 2017 

(88, 119). 

Clinical syndromes. The pathogenicity of PPV1 is 

the best known among the genotypes. PPV1 causes  

a reproductive failure disease in pregnant sows with 

clinical signs called SMEDI, an acronym of stillbirth, 

mummification, embryonic death and infertility (54). 

The route of infection in gravidity can influence the 

pathogenesis of the virus. The study by Joo et al. (50) 

shows that the intramuscular route facilitated the transfer 

of the virus from the dam through placenta and caused 

infection of foetuses earlier than oral routes of infection. 

However, the natural PPV entry path is oral, and such 

infections occur only when dams are exposed in the first 

part of the middle trimester of gestation (50). 

PPV and host immune system. Induction of  

a cellular immune response to infection with PPV was 

observed (58). More specifically, CD4+ CD8+ T-cells 

were found to proliferate, while the activity of cytotoxic 

T-lymphocytes (CTL) was weak during the infection, 

indicating the role of humoral activity (58). The invasion 

by PPV also causes cell death by apoptosis, probably as 

a result of reactive oxygen species formation, which 
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activates the Bax apoptosis regulator and translocates it 

to near the mitochondrial membrane, triggering the 

subsequent release of cytochrome c and a caspase 

cascade (128). A recent study discovered that the NS1 

PPV non-structural protein is responsible for the 

induction of apoptosis and thus involved in placental 

tissue damage and reproductive failure (125). 

Development of vaccines. Vaccines designed against 

PPV infection are, in most cases, inactivated virus 

preparations based on PPV genotype 1 strains. It has 

been observed that inactivated vaccines can only prevent 

the disease but not the infection and virus shedding of 

PPV (35). In 2016, the study by Foerster et al. (35) 

showed that this applies both to homologous heterologous 

challenges with virulent PPV. Several approaches in 

vaccine development have been assessed. Vaccines based 

on genotype 1, including PPV-NADL2, PPV-IDT (MSV) 

and PPV-143a, and a vaccine based on the Stendal strain 

(51), are used for combating the disease caused by PPV1 

(51, 123). It has been found that these vaccines were  

able to protect pigs against the disease but not against 

PPV-27a genotype 2 strain infection (51). PPV-27a was 

also used to prepare an inactivated vaccine, which 

likewise was only successful in providing protection 

from the disease and not from the infection and DNA 

replication (35). A vaccine against other genotype 

strains was not designed mainly due to inadequate 

information on the pathogenicity of these strains. 

Pseudorabies Virus (PrV) 

PrV is a large enveloped virus with a size of 

approximately 180 nm containing dsDNA (25). This 

virus was first described by Aujeszky in Hungary in 

1902 as the agent of a disease, and although that disease 

was not related to rabies, its viral agent was named 

pseudorabies virus (the disease being termed Aujeszky’s 

disease). The virus symptoms had already been observed 

previously, however, in the USA in the 1800s (25). 

Virus structure. The viral particle appears in diagram 

form in Fig. 1. It is composed of morphologically 

different layers including a capsid protecting the dsDNA 

in the centre of the particle and thus forming  

a nucleocapsid and a protein matrix known as  

a tegument coated by the outer envelope, which contains 

a lipid membrane with distinct glycoproteins (93).  

A description of all structural proteins and their genes is 

given in detail in the article by Pomeranz et al. (93). 

Genetic classification. Originally called suid 

herpesvirus 1 or Aujeszky’s disease virus, PrV is classified 

into the Herpesviridae family and Alphaherpesvirinae 

subfamily containing a single serotype (36). A phylogenetic 

study based on sequences from the UL44 gene encoding 

glycoprotein C (gC) divides PrV into five genotypes  

(A–E), which are neither country- nor continent-specific,  

in large part as a consequence of swine imports (36). 

Clinical syndromes. Aujeszky’s disease is typified 

by neurological and respiratory disorders resulting in 

weight loss, decreased growth and high mortality of 

piglets (93). Recently, it was found that the coinfection 

with PrV and PCV2 causes severe neurological and 

respiratory symptoms in pigs while damaging brain and 

lung tissue in piglets, resulting in higher mortality (126). 

Development of vaccines. Two different vaccine 

types were developed for combating Aujeszky’s disease. 

Inactivated and live attenuated vaccines were explored 

and live vaccines transpired to show higher efficiency 

and be more genetically stable than inactivated vaccines 

(38). Furthermore, live attenuated vaccines were 

observed to exhibit no or minimal residual virulence, 

suggesting their safety (38). The development of live 

attenuated vaccines against PrV is reviewed in the article 

by Freuling et al. (38). 

The main DNA viruses significantly affecting 

swine are divided into four groups: PCVs, ASFV, PPVs, 

and PrV. Both porcine circoviruses and parvoviruses are 

small viruses having one capsid protein (Cp) and short 

genomic ssDNA. Vaccines against both viruses have 

been developed. However, a new vaccine should be 

designed, as a response to new genetically different 

genotypes having been identified which either have 

demonstrably different or yet unknown pathogenicity. In 

contrast, the African swine fever virus and pseudorabies 

virus are large viruses composed of a trilayer envelope 

and long linear genomic dsDNA. In the case of the 

African swine fever virus, there are many approaches to 

vaccine development. However, the effectiveness of 

every preparation was not sufficient for commercial 

purposes. In other words, there is no commercial vaccine 

for combating the viral infection and its disease. Further 

research is needed in this area to rectify this deficit. In 

the case of the pseudorabies virus, the majority of 

developed vaccines are live attenuated vaccines, due to 

their efficiency. 
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