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Abstract: In this study, nanocrystalline ZnNdxFe2−xO4 ferrites with x = 0.0, 0.01, 0.03 and 0.05 were
fabricated and used as a catalyst for dye removal potential. The effect of Nd3+ ions substitution
on the structural, optical and photo-Fenton activity of ZnNdxFe2−xO4 has been investigated. The
addition of Nd3+ ions caused a decrease in the grain size of ferrites, the reduction of the optical
bandgap energies and thus could be well exploited for the catalytic study. The photocatalytic activity
of the ferrite samples was evaluated by the degradation of Rhodamine B (RhB) in the presence of
H2O2 under visible light radiation. The results indicated that the ZnNdxFe2−xO4 samples exhibited
higher removal efficiencies than the pure ZnFe2O4 ferrites. The highest degradation efficiency was
98.00%, attained after 210 min using the ZnNd0.03Fe1.97O4 sample. The enhanced photocatalytic
activity of the ZnFe2O4 doped with Nd3+ is explained due to the efficient separation mechanism
of photoinduced electron and holes. The effect of various factors (H2O2 oxidant concentration and
catalyst loading) on the degradation of RhB dye was clarified.

Keywords: zinc ferrite; neodymium-doping; photo-Fenton; Rhodamine B

1. Introduction

It has been proved that the discharge of organic compounds, including dyes, from
manufacturing plants led to growing contamination in the aquatic ecosystem [1,2]. There
are numerous impacts of color pollution, so more and more techniques have been found
to address this environmental problem [3]. Among them, photocatalysis, which relies on
semiconductors and irradiation-based degradation of organic substances, is an effective
method [4,5]. The benefits of this approach include environmental friendliness, the poten-
tial to entirely decompose organic pollutants into inorganic molecules, i.e., CO2 and H2O.
TiO2 [6–8], WO3 [9–13], and BiVO4 [14,15] are typical photocatalysts that have been well
studied for dyes degradation. Nano ferrites, another material, have recently received a great
deal of interest due to their high stability, strong magnetic properties, and high catalytic
performance. In particular, such nanoparticles may be used as a photocatalyst under visible
light in wastewater treatment thanks to their narrow band gap [16,17]. In addition, the
method used for ferrite synthesis may differ depending on the desired characteristics, and a
number of synthesis routes have been investigated so far, like solvothermal [18], sol-gel [19],
coprecipitation [20], and combustion method [21]. For example, Xiaojun Guo et al. [17]
reported that the NiFe2O4 hollow nanospheres synthesized by solvothermal method had
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a high photoactivity for methylene blue (MB) degradation, which achieved the removal
efficiency of approximately 98.5% only within 50 min in the presence of 5 mM H2O2
and 0.06 g·L−1 H2C2O4. In other extensive studies on ferrite, ZnFe2O4 nanomaterial has
been documented to be effective in removing a wide range of organic compounds, such
as Orange II [22], Red 88, Acid Orange 8, Malachite Green [23], Congo red [24], methy-
lene blue [25] and tetracycline [26]. Besides, MnFe2O4, CoFe2O4, CuFe2O4 and MgFe2O4
nanospinels have been reported to show effective photocatalytic activity to eliminate dis-
tinct categories of dyes [19,20,27,28]. Because of the fact that ferrite catalysts can be easily
recoverable using an external magnetic field, these promising potentials have rendered any
successful effort to improve their photocatalytic efficiency in substantiating their practical
system uses [29].

It was previously noted that the structural features and magnetic, electrical charac-
teristics and catalytic activity of ferrites could be dependent on the metals in the ferrite
lattice structure [30]. In addition, several studies have reported the enhancement in the
catalytic activity of ferrites with different metal substitution and change in cation dis-
tribution. For instance, the photocatalytic activity of cobalt zinc ferrite systems on Mn
substitution has been documented by Santosh Bhukal et al. [31], showing that the decol-
orization ratio of methyl orange is enhanced along with increasing Mn3+ ions content. In
another study, MgFe2O4 doped with Co2+ ions by modified sol-gel combustion method
exhibited higher degradation efficiency for methylene blue in comparison with that of pure
MgFe2O4 sample [32]. Similar results were obtained with nickel ferrite when substituted
with Zn [33].

On the other hand, the substitution that gained attention in doping ferrite iron was
rare-earth ions [34–38]. Since these metals have a strong spin-orbit coupling of angular mo-
mentum due to the presence of unpaired electrons in the 4f orbitals, their interaction with
ferrites occurs in 3d-4f coupling, resulting in magneto-crystalline anisotropy and thus influ-
encing magnetic, electrical and catalytic features of substituted ferrites [39]. Mariosi et al.
found that cobalt ferrite nanoparticles substituted by La3+ ions exhibited structural changes
in terms of cationic arrangement of the spinel structure [38]. This change resulted in
a decrease in coercivity values and an increase in the surface area. The substitution of
other rare-earth ions such as La3+, Nd3+, Gd3+ and Dy3+ into the [B] sites containing iron
has been shown to displace Fe3+ into (A) sites, thus altering the structure and electrical
and magnetic characteristics the ferrites [34,35,37,39]. Sharma et al. have carried out one
prominent study showing the ability of rare-earth doping to boost catalytic activity [40].
Specifically, rare-earth (La3+, Ce3+) substituted CoFe2O4 exhibited higher efficiencies in
the elimination of five model pollutants, possibly due to the presence of Ce3+/Ce4+ re-
dox pair. The synthesis of samarium (Sm3+) substituted manganese ferrite nanoparticles
(MnFe2-xSmxO4) using oleic acid as a surfactant was reported by Rashmi et al. [41]. Such
synthesized nanomaterials were tested for photocatalytic degradation of colors under
visible light irradiation. Such synthesized nanomaterials were tested for photocatalytic
degradation of colors under visible light irradiation. The result indicated that samarium
replacement significantly increased the photocatalytic activity of MnFe2O4 nanoparticles.
The value of x varied from 0, 0.5, 1.0, 1.5 and 2.0, and the best results were obtained at
x = 1.5. The higher activity of x = 1.5 was related to its minimum band gap energy value
(1.64 eV). After that, Patil et al. [42] synthesized Gd3+ doped ZnFe2O4 (ZnFe2−xGdxO4)
nanoparticles via coprecipitation method. Synthesized photocatalysts were checked for
MB photo-degradation, resulting in enhanced degradation of MB, from about 95 to 99% in
the presence of photocatalysts ZnFe2−xGdxO4 (x = 0, 0.3, 0.5 and 0.7) along with 8 ppm of
H2O2. The efficiency level was found higher than that of the pristine ZnFe2O4 and could be
attributable to the fact that Fermi energy levels of substituted catalyst were just below the
conduction band within the energy band gap. In addition, formation of lattice strains due to
the difference between ionic radii of Gd3+ (0.94 Å) and that of Fe3+ (0.78 Å) is also partially
responsible for the enhancement. However, the impact of rare earth substitution (e.g., Nd)
on the photo-Fenton activity of ferrites for dye degradation is still a gap in the literature.
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The present study aims to investigate the structural and catalytic properties of ferrites
by the doping substitution of Nd3+ ions. ZnFe2O4 was incorporated with various Nd3+

molar ratio (0–0.05 mol%) using urea as a fuel additive. The as-synthesized ferrite was then
characterized using several techniques (XRD, SEM, TEM, EDX, and FT-IR before being
tested for photocatalytic activities toward Rhodamine B. The effect of catalyst loading, H2O2
concentration, and contact time on the photo catalytic activity of ZnFe2O4 nanoparticles
was surveyed meticulously.

2. Materials and Methods
2.1. Synthesis of ZnNdxFe2−xO4 Nanoparticles

Firstly, urea coprecipitation method was adopted to fabricate nanocrystalline ZnN
dxFe2−xO4 (x = 0, 0.01, 0.03, 0.05) ferrites according to a previous publication with a mod-
erate modification [34]. Analytical grade zinc nitrate tetrahydrate [Zn(NO3)2·4H2O, 98%
pure, Sigma-Aldrich, Darmstadt, Germany], iron(II) nitrate nonahydrate [Fe(NO3)3·9H2O,
99.9% pure, Sigma-Aldrich], and neodymium(III) nitrate hexahydrate (Nd(NO3)3·6H2O,
99.9% pure, Sigma-Aldrich) were used as oxidizer and urea (CH4N2O, >99% pure, Sigma-
Aldrich) was used as a fuel additive. A number of proper ions: Zn2+ (1 mmol) combined
with Fe3+ [(2−x) mol] and Nd3+ (x mol) (x = 0, 0.01, 0.03, 0.05) were dissolved in distilled
water. The final pH of the solution was adjusted at 5.0, and then was heated to 100 ◦C for
1 h. The precipitation was collected, washed with distilled water (3 × 20 mL) to eliminate
metal ion and anion traces and then calcinated up to 500 ◦C for 2 h (ramping rate of
10 ◦C/min). The product was ground and stored at a vacuum container.

2.2. Characterization

The as-synthesized particles were characterized using a number of techniques includ-
ing X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning
electron microscope (SEM), transmission electron microscopy (TEM), energy dispersive
X-ray spectroscopy (EDX) and UV-Vis absorption spectroscopy. Respective instruments for
those analyses include D8 Advance diffractometer (Brucker, Madison, WI, USA) with CuKα

radiation (λ = 1.5406 Å) in a 2θ angle ranging from 20◦ to 70◦ with a step of 0.03◦ source,
FTIR Affinity-1S (Shimadzu, Kyoto, Japan), Hitachi S-4800 (Tokyo, Japan), JEOL-JEM-1010
(Tokyo, Japan), JEOL JED 2300 Analysis Station (Tokyo, Japan) and U-4100 (Hitachi, Tokyo,
Japan) operating in the wavelength range of 200–800 nm.

2.3. Photocatalytic Degradation of Rhodamine B

In this study, Rhodamine B (RhB) was used as target pollutant to assess the photo-
catalytic potential of as-synthesized ferrite samples. Accordingly, the RhB degradation
reaction was carried out in a reactor containing the ZnNdxFe2−xO4 (x = 0, 0.01, 0.03, 0.05)
nanoparticles and RhB dye under visible light irradiation (using 30 W Led lamps, Philips,
Amsterdam, Netherlands). In a typical experiment, 0.1 g of catalyst was introduced into
200 mL of RhB aqueous solution (10 mg·L−1) and suspended on a shaker table at 200 rpm.
The suspension was first stirred in the dark for 30 min to attain the adsorption-desorption
equilibrium state between the catalyst and RhB. Afterwards, the reaction was stirred and
H2O2 30% (w/w) in H2O (Sigma-Aldrich) was added to the mixture, which was then
irradiated under visible light for 210 min. To determine the RhB concentration in the
mixture, 5 mL of each aliquot was taken out periodically, then centrifuged to remove the
solid catalyst. The effect of two factors including H2O2 concentrations (0.02 M, 0.04 M and
0.06 M) and the catalyst dosages (0.5, 0.75 and 1.0 g/L) on the photo-degradation efficiency
was studied.

The efficient degradation of RhB (H) was calculated according to the formula
Equation (1).

H =
Co −Ct

Co
× 100 (1)
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where Co and Ct are the concentration of RhB (mg·L−1) at the time 0 and t. The samples
were measured by scanning at the maximum wavelength λ = 553 nm.

3. Results
3.1. Characterization

Figure 1 illustrates XRD patterns of ZnFe2O4 and different ZnNdxFe2−xO4 (x = 0.01,
0.03, 0.05) samples synthesized at 500 ◦C. The formation of zinc ferrite (JCPDS number
022-1012) was evidenced by reflection peaks corresponding to the characteristic spacing be-
tween (220), (311), (400), (422), (511) and (440) planes of a cubic spinel structure. Employing
Scherrer’s equation, average crystallite size of the samples could be calculated as follows:

DXRD =
kλ

β cos θ
(2)

where λ, k, β and θ wavelength of the X-ray (0.1504 nm), the Scherrer’s constant (k = 0.89),
the full width at half maximum observed in radians and the angle of diffraction of the (311)
peak with the highest intensity, respectively.
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Figure 1. X-ray diffraction patterns of ZnNdxFe2−xO4 nanoparticles (x = 0.0–0.05) annealed at 500 ◦C.

To determine the lattice constant (a) at the most intense peak (311), following formula
was used

a = dhkl

√
h2 + k2 + l2 (3)

where d is interplanar distance and h, k, l are Miller indices. The change in crystalline
structure with doping of Nd3+ ions could be observed from the XRD data given in Table 1.
It clearly indicates that the average crystallite sizes significantly decrease from 22 mm to
12 nm with increasing the content of Nd3+ from 0 to 0.05 mol, which was in good agreement
with a previous publication [36]. Moreover, the lattice constants for the samples of zinc
ferrites nanoparticles increase slightly from 8.43 to 8.45 Å as the amount of Nd3+ added
increases. This outcome can be due to the difference of the radius of ferrites, or more
specifically, metal ions radius (Nd3+, Zn2+, Fe3+). Indeed, the ionic radius of Nd3+ ion
(0.98 Å) is larger than the ionic radius of Zn2+ (0.74 Å) and Fe3+ (0.67 Å); hence Nd3+ ions
prefer to occupy more octahedral sites (B-sites) than Fe3+ ions [36]. It is likely for Nd3+ ions
to be distributed in the grain boundaries, thus contributing to the improvement of energy
barrier of Zn2+ or Fe3+ movement [38]. As a result, the growth of ferrites nanoparticles
grains and the crystallite size of zinc ferrites tends to decrease while their crystal lattice
constant increases. The same phenomena in decreasing crystallite size due to increasing
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rare-earth ions content have been observed previously in cobalt ferrites [38,39], nickel
ferrites [37] and zinc ferrites [36]. To sum up, the dope of Nd3+ showed a significant effect
on the crystalline nanostructure of origin zinc ferrites.

Table 1. Average crystallite size (DXRD), lattice parameter (a), unit cell volume (V) and wave number,
ν1 and ν2 for the tetrahedral and octahedral of the ZnNdxFe2−xO4 samples, respectively.

Samples DXRD
(nm)

a
(Å)

V
(Å3)

ν1
(cm−1)

ν2
(cm−1)

ZnFe2O4 22 8.43 599.08 522.7 447.5
ZnNd0.01Fe1.99O4 21 8.44 601.21 528.5 451.3
ZnNd0.03Fe1.97O4 18 8.45 603.35 526.0 418.5
ZnNd0.05Fe1.95O4 12 8.45 603.35 526.6 420.5

Chemical bonds diagnosed from the FT-IR spectra in Figure 2 can suggest two most
characteristic bands for the as-synthesized ZnNdxFe2−xO4 nanoparticles. The first band is
located at 522.7−528.6 cm−1 (Table 1), which corresponds to the stretching vibration in the
tetrahedral bonding of Zn-O [26,37]. The other band appeared at 418.5–451.3 cm−1, which
is attributable to the stretching frequency of the octahedral bonding of Fe−O and Nd−O.
The change in the lattice parameters can reflect the shift of the band vibrations. The position
and intensity of ν1 and ν2 tend to change with increasing Nd3+ ions content. Finally, the
frequency change confirms the presence of the Nd3+ ions occupying the octahedral sites in
the ferrites lattice.
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Figure 2. FT−IR spectrum of ZnNdxFe2−xO4 nanoparticles.

To better understand the structure of samples, the morphology of ZnNdxFe2−xO4
nanoparticles is observed by SEM technique. The samples including pure ZnFe2O4 and
synthesized ZnNdxFe2−xO4 nanoparticles (x = 0.01; 0.03 and 0.05) all display a type of
uniform sphere (Figure 3). The crystallite size of the zinc ferrites decreases with increasing
Nd content, which is consistent with the result of XRD analysis.
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Figure 3. SEM photomicrography of ZnNdxFe2−xO4 nanoparticles: (a) x = 0, (b) x = 0.01, (c) x = 0.03,
(d) x = 0.05.

Figure 4 displays the TEM photomicrography of the pure ZnFe2O4 and ZnNd0.03Fe1.97O4
annealed at 500 ◦C. Both samples ZnNd0.03Fe1.97O4 and ZnFe2O4 exhibit mostly homogeneous
microspheres. In particular, the agglomeration or clustering of these microspheres is rarely
observed. Although the effect of Nd3+ ions on the morphology is almost inconsiderable, the
particle size of ZnNd0.03Fe1.97O4 sample is smaller than that of the ZnFe2O4 sample. The grain
size from TEM studied is the close agreement with the XRD data and SEM photomicrography.
Moreover, the chemical composition of samples was confirmed by EDX spectra. The presence
of all elements in the XRD profile indicates that synthesized material was of high purity
(Figure 5).
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Figure 5. EDX spectra of ZnNdxFe2−xO4 nanoparticles: (a) x = 0; (b) x = 0.03.

The band gap of the spinel nanoparticles was determined by DRS. Kubelka-Munk
model was used to calculate band gaps (Eg) of zinc ferrites nanoparticles with the absorp-
tion coefficient (α) obtainable from DRS spectra as Equation (4).

F(R) = α =
(1− R)2

2R
(4)

where, F(R) represents the Kubelka-Munk function, α is the absorption coefficient and R is
the reflectance. The following relationship could be used to determine the band gap energy
(Eg) as shown in Equation (5).

αhν = A(hν− Eg)
n (5)

where, hν: energy of the photon, α: the the absorption coefficient, A: material parameter
and n: transition parameter, n = 2 represent indirect transitions. The slope of plotting
(αhν)2 against hν could be used to measure the band gap energy for the absorption peak,
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as shown in Figure 6. The band gap values of ZnNdxFe2−xO4 (x = 0, 0.01, 0.03, 0.05)
nanoparticles are found to be 1.75, 1.57, 1.50 and 1.42 eV, respectively. This indicates that
the Nd3+ ions concentration affected the band gap energy of zinc ferrites nanoparticles.
The band gap energy value decreased with increasing the Nd3+ ions concentration. Due
to the larger ionic radius, the crystal lattice is bound to distort leading to generation of
interface defects [38]. In zinc ferrites nanoparticles, the orbital overlapping between O-2p
and Fe-3d energy levels caused the formation of the energy band gap. There is the 4f Fermi
energy level of Nd in ZnNdxFe2−xO4 samples, thus resulting in decreased band gap energy
value [42,43]. The optical band gap of the CoFe2O4 samples doped with La decreases from
1.35 to 1.1 eV [38].
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3.2. Photocatalytic Activity
3.2.1. Influence of Experimental Conditions

The photo-Fenton catalytic degradation activities of ZnFe2O4 catalyst occurring at
different experimental parameters are illustrated in Figure 7. The lowest RhB removal
efficiency is 13.87%, reached only when there is only H2O2 existed in the solution. Under
ZnFe2O4/Visible-light system, the decolorization ratio achieved 25.35%. This figure was
enhanced to 31.51% when ZnFe2O4 combined with H2O2. However, the removal rate of
RhB reaches to 85.14% under irradiation and in the presence of ZnFe2O2 and H2O2. The
high removal rate could be explained by the h+ in the valence of ZnFe2O4 and photode-
composition of H2O2 that produce more •OH. Both of which contributed to the improved
oxidation of dyes [22]. On the other hand, the production of •OH could also be pro-
moted by decreased recombination of electrons and holes, caused by the participation of
photo-induced electrons in the Fe3+/Fe2+ cycle reaction [26].
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Figure 7. The photocatalytic degradation of RhB in different conditions: curve (1), 10.0 mg/L RhB + 0.04
M H2O2 + light; curve (2), 10.0 mg/L RhB + 0.1 g ZnFe2O4 + light; curve (3), 10.0 mg/L RhB + 0.1 g
ZnFe2O4+ 0.04 M H2O2 + dark; curve (4), 10.0 mg/L RhB + 0.1 g ZnFe2O4 + 0.04 M H2O2 + light.

When the ZnFe2O4 crytals are doped with Nd3+ ions, their photocatalytic degradation
of RhB are enhanced. The higher photocatalytic performance at higher Nd3+ introduced
may be due to smaller crystallite sizes from 22 to 12 nm with increasing Nd3+ ions content.
This may be leading to the larger surface area and higher amount of active photocatalytic
sites. Moreover, another effect is band gap energy value decreasing from 1.75 to 1.42 eV
with increasing Nd3+ ions concentration, which aids the formation of ·OH active species
and stimulates oxidative degradation of dye molecules. UV–vis absorption spectra of RhB
during the degradation by ZnNdxFe2−xO4 (x = 0–0.05) at the different irradiation time as
shown in Figure 8. The photocatalytic degradation efficiency of RhB and kinetic constant
after 210 min irradiation are 96.53% and 0.0095 min−1, 98.00% and 0.0189 min−1, 95.46%
and 0.0163 min−1 in the presence of H2O2 and ZnNdxFe2−xO4 with x = 0.01, 0.03 and 0.05,
respectively (Figure 9 and Table 2). This phenomenon can rely on the combination of rare
earth ions and the ions in the crystal lattice of ferrite to generate the energy levels and the
defects, which has been confirmed by XRD and DRS measurements [38,39].
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Table 2. The degradation efficiency (H%) and pseudo first-order rate constant (k) for the photocat-
alytic degradation of RhB in the presence of H2O2 0.04 M using ZnNdxFe2−xO4 nanoparticles.

Samples H (%) k (min−1) R2

ZnFe2O4 85.14 ± 0.99 0.0095 0.952
ZnNd0.01Fe1.99O4 96.53 ± 0.95 0.0189 0.951
ZnNd0.03Fe1.97O4 98.00 ± 0.44 0.0190 0.964
ZnNd0.05Fe1.95O4 95.46 ± 0.91 0.0163 0.972

3.2.2. Influence of H2O2 Concentration

Figure 10 shows the removal efficiency of RhB under different concentrations of H2O2.
When initial H2O2 concentration increased from 0.02 M to 0.04 M, the degradation effi-
ciency increased from 79.4% to 97.42%. However, the degradation efficiency decreased to
93.02% when H2O2 concentration increased to 0.06 M. The initial increase in the degra-
dation could be explained due to the generation of the higher number of •OH active
species which are mainly responsible for the oxidative degradation of dye molecules,
Equation (3). When hydrogen peroxide presents in high concentration, •OH could be
scavenged (Equations (4)–(6)) and reduced [22,26]. Therefore, the degradation efficiency of
RhB dye is greatly reduced. The optimal initial H2O2 content was 0.04 M.

H2O2 → 2•OH (6)

•OH + H2O2 → •OOH + H2O (7)
•OH + •OH→ H2O2 (8)

•OH + •OOH→ H2O + O2 (9)
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3.2.3. Influence of the Catalyst Loading

The effect of the ferrite sample amount on the RhB removal rate is shown in Figure 11.
When the ZnNd0.03Fe1.97O4 dosage increases from 0.5 g/L to 0.75 g/L, the efficient degra-
dation of RhB increases from 62.13% to 98.01% at 180 min. However, the removal rate of
RhB decreased to 93.02% when increasing the ZnNd0.03Fe1.97O4 dosage to 1.0 g/L. This
outcome is because when increasing catalyst dosage, •OH radical amount increases due to
the reaction of h+ in the valence of ferrite sample [22]. However, with a high catalyst dosage,
the degradation efficiency of RhB dye decreases due to increased solution turbidity, in
turn obstructing light irradiation and activating the totality of the catalyst suspension [43].
Therefore, the optimal catalyst dosage was 0.75 g/L.
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4. Conclusions

Nd3+ substituted zinc ferrite nanoparticles were successfully synthesized via solution
combustion technique. The physical and chemical characteristic of the ZnNdxFe2−xO4
samples were investigated by XRD, EDX, FT-IR, SEM and TEM. The average crystallite
size and the optical band gap values reduced from 22 to 12 nm and from 1.75 to 1.42 eV,
respectively, with increasing Nd3+ ions content. The substitution of Nd3+ ions on octahedral
sites was confirmed by the change of ν1 and ν2 frequency. The enhanced photocatalytic
activity of the zinc ferrite samples was observed with increasing Nd3+ ions concentration.
The ZnNd0.03Fe1.97O4 nanoparticles have the highest efficient degradation for Rhodamine
B. The removal efficiency of Rhodamine B dye was affected by the concentration of H2O2,
catalyst amount. The optimal initial H2O2 content was 0.04 M and the optimal dosage of
the catalyst was 0.75 g/L.
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