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ABSTRACT 

 

Universities are faced with decisions on how to resume campus activities while mitigating 

SARS-CoV-2 risk. To provide guidance for these decisions, we developed an agent-based 

network model of SARS-CoV-2 transmission to assess the potential impact of strategies to 

reduce outbreaks. The model incorporates important features related to risk at the 

University of California San Diego. We found that structural interventions for housing 

(singles only) and instructional changes (from in-person to hybrid with class size caps) can 

substantially reduce R0, but masking and social distancing are required to reduce this to at 

or below 1. Within a risk mitigation scenario, increased frequency of asymptomatic testing 

from monthly to twice weekly has minimal impact on average outbreak size (1.1-1.9), but 

substantially reduces the maximum outbreak size and cumulative number of cases. We 

conclude that an interdependent approach incorporating risk mitigation, viral detection, and 

public health intervention is required to mitigate risk.  

 

Keywords: COVID-19, prevention, modeling 
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INTRODUCTION 
 

In order to mitigate the spread of SARS-CoV-2 and enhance the safety of their students, 

staff, and faculty, higher educational institutions are considering a number of strategies, 

including adjusting on-campus living arrangements, limiting the maximum number of 

students in a class, and conducting large-scale asymptomatic testing. As universities and 

colleges develop reopening policies, there is a need to provide guidance on the potential 

impact of each COVID-19 mitigation strategy separately as well as in combination when 

multiple modalities are under study.  

 

In advance of the Fall term in 2020, UC San Diego launched the Return to Learn program, 

which incorporates three interdependent pillars to reduce the risk of SARS-CoV-2 on 

campus: risk mitigation, viral detection, and public health intervention. Risk mitigation 

strategies include masking [1-3], social distancing [1], sanitation, and ventilation [4], along 

with structural interventions such as reducing density of individuals in research and 

residential campus buildings as well as offering hybrid and remote class instruction, with 

limits to class size. Viral detection strategies incorporate symptomatic and asymptomatic 

testing along with other measures to detect outbreaks early such as wastewater and other 

environmental (e.g. surfaces and air filter) monitoring. Public health interventions include 

traditional case notification, isolation, contact tracing [5], quarantine, and digital exposure 

notification technologies [6]. The Return to Learn strategy is multi-pronged and adaptive, 

with the intention to revise the strategy as more data arise.  

 

A key feature of the UC San Diego Return to Learn program is its foundation on a data-

driven quantitative framework. To guide this program and inform campus decisions related 
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to relative benefits of particular risk mitigation, viral detection, and public health 

intervention strategies at UC San Diego, we developed an agent-based model (ABM) that 

simulates SARS-CoV-2 transmission among a university campus population (of students, 

faculty, and staff); ABMs are ideal for informing policy decisions that influence complex 

social systems—such as the spread of infectious diseases in a population—as they 

incorporate interactions among individuals [7]. The model incorporates on- and off- campus 

residential information, and course schedule data. We used this model to investigate the 

relative impact of the following strategies in isolation or combined: campus housing de-

densification, classroom caps and hybrid instruction, asymptomatic testing with various test 

sensitivities, and masking and social distancing, as well as isolating positive individuals, 

tracing their contacts, and quarantining these contacts.  

 

METHODS 
 

Agent-based network transmission model 

 

Model Structure: The ABM consists of four primary components: (1) the UC San Diego 

population, (2) structure of contacts among members of the population, (3) transmission of 

SARS-CoV-2, and (4) disease progression of COVID-19. Below we provide further details for 

each of these components. 

 

UC San Diego population: We simulated 38,798 students (30,285 undergraduates and 8,513 

graduates) who live either on or off campus and an estimated 8,000 faculty and staff who 

will work on campus in Fall 2020 (the remainder of faculty/staff are working remotely and 

are not simulated). Prior to the implementation of structural interventions, approximately 
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51% of students live in on-campus housing; the remaining students, staff, and faculty live 

off-campus. Each on-campus student is assigned a room in a residential hall based on their 

undergraduate or graduate student status. The number of rooms and their occupancy for 

each residential hall was based on UC San Diego housing data. Bedrooms reside in suites, 

where groups of bedrooms may share a bathroom and common area. Based on status as 

undergraduate or graduate, each student was assigned classes using UC San Diego's Fall 

2019 class registration or alternative instructional scenarios detailed below. Faculty were 

each assigned to teach one class. See Supplementary Section S1 for additional details on the 

UC San Diego class and residence information. 

 

Contact structure: The structure of a contact network—the set of contacts within a 

population capable of spreading SARS-CoV-2—can have profound effects on both the 

spread of infectious disease and the effectiveness of control programs [8-12]. The structure 

of the contact network differs between students living on- compared to off-campus. On-

campus students have three types of contacts: (1) residential, (2) classrooms, and (3) 

campus encounters (contacts outside of residence and classrooms).  

 

The contacts within on-campus residences are modeled such that on-campus students have 

connections with their roommates, suite-mates, and building-mates. Students also have 

contacts with other students in classrooms. Both the residential and classroom contact 

networks are static, meaning that no connections are formed or dissolved during the 

simulation. By contrast, the campus encounters network is dynamic; that is, relationships 

form and dissolve daily. The number of daily campus contacts for each individual follows a 

negative binomial distribution (r = 5, p = 0.1). Figure 1 illustrates the contact network for an 
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on-campus student. The model assumes that students living on-campus do not have contact 

with individuals outside the university. 

 

Due to lack of data, we do not explicitly simulate the residential contact network for off-

campus students; off-campus students (along with faculty and staff) have a daily rate of 

becoming infected due to outside community interactions. Off campus students with in-

person classes have associated classroom network interactions, and all students are 

assumed to have campus population encounters. 

 

SARS-CoV-2 Transmission: Transmissions among students, staff, and faculty occur through 

interactions defined by the contact network. The rate of SARS-CoV-2 transmission depends 

upon the type of contacts. For contacts within a residence, the probability of transmission is 

highest among roommates, decreases for individuals who are only suite-mates, and is 

lowest between individuals who are solely building-mates; these transmission probabilities 

were derived from secondary attack rates for frequent, moderately frequent, and rare 

contacts, respectively [13]. These secondary attack rates were rescaled by a factor of four to 

generate a basic reproduction number (R0) for on-campus residents (individuals with the 

highest risk in the model) of 6.2 without intervention and between 1.3 and 3.6 with 

interventions (Table 1), which are comparable to estimates in the literature. Sanche et al. 

(2020) estimated an R0 value of 5.7 [14], while Gressman and Peck (2020) assumed an R0 of 

3.8 prior to inclusion of residential contacts in their university model [15]; the inclusion of 

residential contacts would increase the R0. Paltiel et al. (2020) investigated R0 values from 

1.5 to 3.5 for their university model [16]; however, their model only included 4990 students; 

by contrast, UC San Diego has over 30,000 students, including potential classes exceeding 
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400 students and residential suites that accommodate up to 18 roommates in a single suite. 

Therefore, we believe our R0 calibration to be reasonable given the literature. The rescaling 

also ensures that—to aid in planning—especially adverse scenarios are examined. See 

Supplementary Section S2 for additional details on the transmission probabilities.  

 

Airborne transmission of SARS-CoV-2 is known to be an important source of transmission 

[3], but the precise association between proximity and transmission probability in enclosed 

classrooms is not known [17].  Therefore, we modeled the probability of transmission as 

being the same for all individuals enrolled in a given in-person course. The probability was 

set as the mid-point between the secondary attack rates for moderately frequent and rare 

contacts. The probability of transmission is constant for on-campus interactions and based 

on the secondary attack rates for rare contacts. The background daily incidence rate in the 

community was set at 15 per 100,000, as informed by the UCSD-COVIDReadi (COVID-19 

Resource Allocation Decisionmaking Information model) county-level transmission model, 

which estimated the true case rate at 2-3 fold the observed case rate due to asymptomatic 

transmission and undiagnosed infection in August 2020. Additional details regarding the 

UCSD-COVIDReadi model can be found at the application website [18].  

 

Disease progression: The model simulates an individual’s progression through seven stages 

of COVID-19 infection: (1) uninfected, (2) incubation period, (3) infectious but 

asymptomatic, (4) infectious with symptoms, (5) hospitalized, (6) recovery, and (7) death. 

Figure 2 depicts these stages and possible transition pathways. 
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Transitions between stages occur in daily increments. The daily probability of an exposed 

person with SARS-CoV-2 transitioning from Stage 2 to Stage 3 (asymptomatic but infectious) 

follows a geometric distribution with mean 4.6 days [19]. From Stage 3, individuals can 

recover (Stage 6), develop symptoms (Stage 4), or remain in Stage 3. We assume 70% of our 

population (predominantly college-aged individuals) are asymptomatic for the duration of 

infection [20], lasting on average 14 days [21]. Symptomatic individuals in Stage 4 can 

recover (Stage 6), require hospitalization (Stage 5), or remain in Stage 4. Death can only 

occur during hospitalization. Transition probabilities associated with hospitalization and 

death are conditional on age; see Supplementary Section S3 for additional details on 

transition probabilities.  

 

Simulated interventions 

 

Risk mitigation: To investigate the impact of risk mitigation interventions, we assessed four 

scenarios with varying housing, instructional, and behavioral characteristics. 

 

 Double housing occupancy and in-person class instruction with no class size cap 

(DI). This scenario assumes on-campus residents reside in doubles or singles and the 

university has all instruction in-person without a class size limit (based on 2019 

enrollment data).  

 Double housing occupancy and in-person class instruction with a class size cap (DI-

Cap). Similar to DI, with maximum in-person class size capped at 50. 

 Single housing and hybrid instruction with in-person class size cap (SH-Cap). This 

scenario assumes on-campus residents reside only in singles and instruction is 
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mostly remote (12% of sections in-person) with a maximum in-person class size 

capped at 50. Students who are unable to be accommodated with on-campus 

housing instead reside off campus. 

 Single housing and hybrid instruction with in-person class size cap and behavioral 

intervention with masking and social distancing (SH-Cap-Mask). Similar to SH-Cap, 

but additionally assume students wear masks and socially distance everywhere 

except within their bedrooms, leading to an effective reduction in transmission of 

50%. 

 

Isolation and quarantine: We assume diagnosed individuals move to on-campus isolation 

housing (if on-campus residential students) or isolate in their own residences (if off-campus 

students, faculty, or staff). We assume individuals who are isolating are not at risk of 

transmission to others.  

 

For confirmed positive students, we simulate contact tracing efforts performed by the 

public health team. We assume contact tracing identifies close contacts among an infected 

individual's room- and suite- mates, as well as students in their classroom who sit adjacent 

based on an assumed grid sitting assignment. Close contacts are assumed to adhere to 

quarantine, and we assume those in quarantine are not at risk of transmission to others. If 

close contacts are confirmed to have SARS-CoV-2 and are an on-campus resident, they are 

relocated to isolation housing and their contacts traced.  
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Asymptomatic testing: We simulate entry testing at term start as planned by UC San Diego. 

All students are tested on residential move in (two weeks prior to class start) and again on 

day 12. Off-campus students are required to test before class start. After the start of classes, 

individuals with in-person classes or who reside on-campus (referred to as campus testing) 

are tested at differential rates compared to individuals with no in-person classes or are non-

resident (referred to as non-campus testing). We investigated on-campus testing rates of 

monthly, every 2 weeks, every week, 2x weekly. We assumed non-campus populations test 

monthly.  

 

Model outcomes 

 

We assess the basic reproduction number (R0), outbreak size (number of linked infections 

per each viral introduction), peak isolation housing, and cumulative hospitalizations and 

infections across an 80-day term. The R0 is measured for the average on-campus index case 

without the impact of isolation and quarantine. 

 

RESULTS 

 

Structural interventions such as hybrid instruction, class size caps, and de-densification of 

housing can substantially reduce the R0 on campus (Table 1). With doubles and in-person 

instruction (DI), the R0 is 6.2; implementing a class size cap of 50 reduces this to 3.6 (DI-

Cap), which is further reduced to 2.7 for singles with hybrid instruction (SH-Cap). The SH-

Cap-Mask scenario indicates that masking and social distancing is important in reducing the 

R0 further; for instance, to 1.3 if these interventions reduce transmission by 50%. Reducing 

R0 to below 1 likely requires strict adherence to masking and social distancing guidelines.  
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These structural interventions similarly have a strong impact on reducing the number of 

individuals infected for each viral introduction (defined as the outbreak size). The average 

outbreak size could exceed 60 with the DI scenario, halving to below 30 for the DI-Cap, and 

further reducing to below 20 for SH-Cap. Masking and social distancing dramatically reduce 

the average outbreak size, leading to an average outbreak size of 1.9 for the SH-Cap-Mask 

scenario (Table 1). 

 

Variations in asymptomatic testing frequency (from monthly to twice-weekly) had relatively 

little impact on average outbreak size assuming a SH-Cap-Mask scenario, ranging from 1.9 to 

1.1 (Figure 3a). However, despite the small size of the large majority of outbreaks (<10 

infections, Figure 3b), a small number of outbreaks could be large (>20); there was more of 

an effect of asymptomatic testing on maximum outbreak size. The maximum outbreak size 

was predicted to be 158 (90% interval 45-345) with monthly testing in the SH-Cap-Mask 

scenario, reducing to 65 (16-142) for every 2 weeks testing, 14 (7-29) with every week 

testing, and 7 (5-13) with twice weekly testing (Figure 3c).  

 

Under the SH-Cap-Mask scenario, the model estimated a peak isolation housing need of 

approximately 200 beds. Slightly more isolation beds were required when moving from 

monthly testing to testing every 2 weeks (Table 2). The additional testing identifies more 

infections requiring isolation, but this is offset by prevention of infections with increased 

testing. More frequent testing decreases the cumulative hospitalizations and associated 

hospital resource need (Table 2). 
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More frequent testing can reduce the cumulative number of infections predicted across an 

80-day term (Figure 4); testing markedly reduced the number of cumulative infections which 

occur due to transmission on campus (blue bars). However, the model predicts that a 

fraction of total infections (from 34% with monthly testing to 78% with twice weekly testing) 

occurs from the community, with the number of community infections not affected by 

campus testing (yellow bars). Finally, Figure 4 indicates that the benefits of testing at a 

higher frequency with less sensitive tests (70% sensitivity compared to 80% sensitivity) 

offsets the loss in individual test sensitivity. 

 

DISCUSSION 
 

Universities are grappling with how to resume on-campus educational and research 

activities while mitigating the risk of SARS-CoV-2 transmission and morbidity. Our modeling 

study indicates that structural interventions (through housing de-densification and hybrid 

instructional approaches with class size caps), viral detection (through asymptomatic and 

symptomatic testing), public health intervention, and masking and social distancing can 

work together to reduce the risk of transmission and large outbreaks on a university 

campus. We find that even with structural interventions, adherence to masking and social 

distancing are critical to reducing the transmission rate and ensuring average outbreak sizes 

are small. Asymptomatic testing plays an additional role in detecting outbreaks early and 

preventing the risk of very large outbreaks. 

 

Our findings informed the UC San Diego Return to Learn program, which invited students to 

return in the Fall 2020 term in singles housing with hybrid instruction with a maximum class 
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size cap of 50 for in person courses. Asymptomatic testing every two weeks is mandatory for 

students living on campus or coming on to campus, and highly recommended for all others 

every two weeks (students living off campus who are not coming on to campus, faculty, and 

staff). Additionally, the Return to Learn program incorporates other elements not captured 

yet in our modeling, including: wastewater and surface monitoring for early viral detection, 

digital exposure notification through our participation as a pilot site for the Apple/Google 

CA COVID Notify program [6], and molecular sequencing, among other efforts. A key 

element to the Return to Learn approach (and modeling within) is our adaptive strategy. We 

are continually collecting data, refining our understanding of the situation (and associated 

modeling), and adapting the approach accordingly to ensure we enact a data-driven strategy 

for SARS-CoV-2 prevention. 

 

Our modeling is consistent with other studies examining asymptomatic testing [16] and 

combination intervention approaches [15, 22] to reduce transmission on university 

campuses. Our study advances these studies by leveraging classroom and housing network 

data to examine the impact of interventions on the predicted distribution of outbreak sizes. 

 

Our study has several limitations. First, there is substantial uncertainty in many parameters, 

most notably the transmission rate on campus. This rate is determined by a number of 

factors, including behaviors which have not yet occurred. As such, our model is most useful 

in assessing the relative benefits of different scenarios rather than making absolute 

predictions. Collection of behavioral data (in terms of masking, social distancing, and 

contact rates) will aid in refinement of the model and reduction in uncertainty. Second, as 

mentioned above, our model does not incorporate additional activities that may serve to 
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additionally reduce risk on campus, such as wastewater monitoring and digital exposure 

notification. As we collect data on the effectiveness of these activities, future iterations of 

the model will incorporate the impact of them. Third, our model does not account for 

superspreading events. Despite the fact that such events play an important role in SARS-

CoV-2 transmission [23, 24], much is still unknown about the dynamics of these events and 

the mechanisms that contribute to them. In particular, the relative importance of individual-

level factors (in transmissibility between individuals) and structural factors (in setting 

ventilation, air flow, population density, etc.) that contribute to superspreading events is 

not well understood. Should such events occur at UC San Diego, we will investigate these 

dynamics from the data to be collected and our modeling approaches. Large-scale studies 

assessing the implications of superspreading events on transmission are urgently needed. 

Finally, we do not include the effect of vaccination strategies nor do we incorporate the 

potential impact of therapeutics that may reduce hospital utilization and mortality rates as 

these were unavailable during our study. 

 

In the absence of an effective vaccine, universities and the broader society may face the 

challenge of reopening activities while attempting to reduce SARS-CoV-2 transmission for 

years. Our study provides a flexible modeling approach which can be used to inform 

adaptive, data-driven decisions on how to reduce SARS-CoV-2 outbreaks through risk 

mitigation, viral detection, and public health intervention strategies. 
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FIGURE LEGENDS 

 

Figure 1: An illustration of a contact network for an on-campus student.  An on-

campus student, which is denoted as the red circle, has residential connections 

(denoted as lines) with roommates (orange triangle), suite-mates (green diamonds), 

and building-mates (yellow squares). The student also has contacts with other 

students/faculty in classrooms (blue pentagons); the illustration shows the student is 

enrolled in three classes (classes A to C). Both the residential and classroom 

connections do not change during the simulation. The student also has contacts with 

other university individuals outside the residential building and classroom, referred to 

as campus encounters; these individuals are denoted by gray hexagons and change 

every day. 
 

Figure 2: Schematic of the natural history of infection in the model. The agent-

based model simulates an individual’s progression through seven stages of SARS-CoV-2 

infection: (1) uninfected, (2) incubation period, (3) infectious but asymptomatic, (4) 

infectious with symptoms, (5) hospitalized, (6) recovery, and (7) death. Each day, an 

individual either remains in the current stage or transitions to another stage. The figure 

depicts these stages (blue circles) as well as possible transition pathways between 

stages (blue arrows). 
 

Figure 3: Predicted outbreak characteristics with various testing frequencies for 

students residing on or coming to campus for classes (monthly to twice weekly). 

Plots present (A) the average outbreak size; (B) a histogram of outbreak sizes; and (C) 

the maximum outbreak size. All plots assume an 80-day term and with the scenario with 

single housing, hybrid instruction with an in-person class size cap of 50, adherence to 

behavioral interventions (masking and social distancing), and test sensitivity of 80%. 
 

Figure 4: Cumulative number of infections predicted across an 80-day term for 

various testing frequencies (monthly to twice weekly) and test sensitivities (70% 

and 80%). Results shown for the scenario where residents live in single housing, have 

hybrid instruction with in-person class size cap, and adhere to behavioral interventions 

(masking and social distancing). The infections are stratified by location of 

transmission: community (yellow) or campus (blue).   
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TABLES 

 

Table 1: The on-campus basic reproduction number (R0) and average outbreak 
size (average number of individuals infected for each viral introduction) for four 
scenarios that include structural interventions such as hybrid instruction, class 
size caps, and de-densification of housing. The 90% prediction intervals are 
presented within the parentheses.  
 

Scenarios On-campus basic 
reproduction number (R0) 

Average outbreak size, 
mean (90% prediction 

interval) 
Doubles and in-person 
instruction 

6.2 65.3 (64.8 – 65.9) 

Doubles and in-person 
instruction with in-person class 
size cap of 50 

3.6 28.8 (27.2 – 28.4) 

Singles and hybrid instruction 
with in-person class size cap of 
50 

2.7 16.9 (15.7- 17.9) 

Singles, hybrid instruction, in-
person class size cap of 50, and 
masking/distancing reducing 
transmission by 50% 

1.3 1.9 (1.4-2.3) 
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Table 2: Predicted peak isolation housing and hospitalizations across an 80-day 

term for various testing frequencies for students residing on or coming to campus 

for classes (monthly to twice weekly). All scenarios assume the scenario with single 

housing, hybrid instruction with an in-person class size cap of 50, adherence to 

behavioral interventions (masking and social distancing), and test sensitivity of 80%. 

The 90% prediction intervals are presented within the parentheses. 
 

Outcome 
Testing frequency 

Monthly Every 2 weeks Every week 2x week 

Peak isolation 
housing 

169 (130-242) 196 (143-264) 194 (165-223) 191 (168-215) 

Cumulative 
hospitalizations 

7 (3-11) 6 (3-10) 5 (3-8) 5 (3-8) 
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Figure2 
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Figure3 

 

  



Acc
ep

ted
 M

an
us

cri
pt

24 
 

Figure4 

 


