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Breast cancer is a complex and heterogeneous disease that arises from epithelial cells lining the breast ducts and lobules. Correct
adhesion between adjacent epithelial cells is important in determining the normal structure and function of epithelial tissues,
and there is accumulating evidence that dysregulated cell-cell adhesion is associated with many cancers. This review will focus on
one cell-cell adhesion complex, the tight junction (TJ), and summarize recent evidence that TJs may participate in breast cancer
development or progression. We will first outline the protein composition of TJs and discuss the functions of the TJ complex.
Secondly we will examine how alterations in these functions might facilitate breast cancer initiation or progression; by focussing
on the regulatory influence of TJs on cell polarity, cell fate and cell migration. Finally we will outline how pharmacological targeting
of TJ proteins may be useful in limiting breast cancer progression. Overall we hope to illustrate that the relationship between TJ
alterations and breast cancer is a complex one; but that this area offers promise in uncovering fundamental mechanisms linked to
breast cancer progression.

1. Introduction

Breast cancer is the most common form of cancer among
women in North America and the majority of European
nations. Each year, it is diagnosed in an estimated 1 million
women worldwide, and is the cause of death of over 400 000
[1]. The incidence of breast cancer increases with age and
doubles every 10 years until the menopause, supporting a
link with hormonal status [2]. Specific life events associated
with an enhanced breast cancer risk include reproductive
factors, nulliparity, radiation exposure, hormonal status,
obesity, family history, and many others [3, 4].

Breast cancer is a heterogeneous disease in which genetic
and environmental factors interact to initiate carcinogenesis.
However, 10% of all breast cancer cases have a strong
hereditary component in which half carry a deleterious
mutation in the high penetrance genes BRCA1 or BRCA2.
These account for over 50% of familial breast cancer cases
and confer a lifetime risk of 60–80% [5]. In its simplest
forms, breast cancer can be subclassified into preinvasive
and invasive disease categories. Neoplastic conversion to

invasive cancer likely occurs sometime during the preinvasive
histological phases of usual hyperplasia, atypical hyperplasia,
and ductal carcinoma in situ (DCIS) [6–11]. One hypothesis
suggests the existence of genetically distinct subgroups of
DCIS, only some of which subsequently progress to inva-
sive ductal carcinoma (IDC) [12–14]. An alternate theory
proposes that DCIS progresses from low to high grades and
then to invasive cancer with progressive accumulation of
genomic changes. However, the large extent to which the
genome is altered in DCIS indicates that genomic instability
most likely precedes phenotypic evidence of invasion, and
highlights the importance of environmental components on
the development of invasive cancer [6].

Recent data have shown significant reductions in the
mortality rates of breast cancer, which have been mainly
attributed to improved screening techniques, improved sur-
gical and radiotherapy interventions and also the utilization
of traditional chemotherapies in a more efficacious manner.
Large-scale translational research studies have also identified
many important new biomarkers predictive of poor progno-
sis in breast cancer patients [15–17]. However, much remains
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to be understood about the development and progression of
breast cancer. Our review will address the contribution of
altered epithelial cell-cell adhesion to the development and
progression of breast cancer, with particular emphasis on the
role of the tight junction (TJ) adhesion complex in these
processes.

2. TJs and Physiological Cell-Cell Adhesion

Cell-cell adhesion is necessary for the assembly of coherent
sheets of barrier-forming epithelial cells that line the breast
ducts and lobules. However cell-cell contacts are far from
being static structures which maintain barriers by simply
holding cells together. In fact cell-cell contacts undergo
constant remodelling to allow the extrusion of apoptotic cells
as well as the incorporation of newly differentiated epithelial
cells, derived from progenitor cells, without loss of barrier
function [18]. Cell-cell contacts must also be remodelled
depending on the developmental stage of the breast, whether
in response to increased proliferative demands of puberty
and pregnancy, increased differentiation during lactation, or
increased apoptosis in conjunction with gland remodelling
during involution [19]. Finally, during wound healing,
epithelial cells can undergo coordinated movement and
proliferation to bridge the wound, and establish new cell-cell
contacts with epithelial cells from the opposing side of the
wound [20].

Epithelial cell-cell contacts consist of three main adhe-
sive structures: tight junctions (TJs), adherens junctions
and desmosomes, as well as gap junctions for cell-cell
communication (Figure 1). In polarized epithelial cells the
tight junction and adherens junction are asymmetrically
distributed at the apical region of the lateral membrane
forming the apical junctional complex, which encircles the
apex of the cells and marks the border between the apical
and basolateral membrane domains [21]. These adhesive
structures are composed of integral membrane proteins
that link the neighbouring cells through homophilic and
heterophilic interactions, and the presence of cytoplasmic
scaffolding proteins that organise signalling complexes and
anchor cell-cell contacts to the actin cytoskeleton (or inter-
mediate filaments in the case of desmosomes) [22].

In this review we will first outline the protein compo-
nents of the TJ and discuss the biological roles of the TJ
complex, review how alterations in these roles could facilitate
breast cancer initiation or progression, and finally mention
pharmacological approaches towards targeting TJ proteins
that could have value in limiting breast cancer progression.

2.1. Protein Components of the TJ. Proteins within TJ can
be grouped into integral membrane proteins, scaffolding
proteins, or signalling proteins as outlined in what follows.

2.1.1. Integral Membrane Proteins. The first protein to be
discovered at the tight junction, occludin [23], is a 68 kDa
transmembrane protein with two extracellular loops and
a long cytoplasmic tail containing several protein-binding
domains. It exists in unphosphorylated and serine/threonine
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Figure 1: Epithelial cell-cell adhesion complexes.

and tyrosine phosphorylated forms, with the degree of phos-
phorylation affecting tight junction assembly, transepithelial
resistance, and localisation of occludin to the tight junction
[24, 25]. Several enzymes are involved in regulating these
phosphorylation events, including PKC [26], CK2 [27], and
the nonreceptor tyrosine kinase c-Yes [24].

The claudin family of TJ transmembrane proteins con-
sists of 24 members between 20 and 27 kDa in size, mostly
with short cytoplasmic tails which bind to the PDZ (PSD-
95, Dlg, and ZO-1) domains of other TJ proteins including
ZO-1, -2, and -3 [28]. Various claudins are expressed in
a tissue-specific manner, with the subtle differences in
their extracellular loops determining ion selectivity of the
paracellular pathway [29, 30].

The junctional adhesion molecule (JAM) family consists
of “JAM-A, -B, -C, -L and JAM-4, . . .” which are found at TJs
of epithelial/endothelial cells and on various hematopoietic
cells [31–33]. They contain an extracellular region with two
Ig-like domains, a single transmembrane domain, and a
short intracellular tail with a PDZ binding motif through
which JAM-A interacts with the PDZ proteins AF6, Par-3,
CASK, MUPP1, and ZO-1 [34–38].

The coxackie and adenovirus receptor (CAR) is a 46 kDa
integral membrane protein with one transmembrane region,
a long cytoplasmic tail, and an extracellular region composed
of two Ig-like domains. The carboxyl terminal domain of
CAR contains a PDZ binding motif which interacts with ZO-
1, MUPP-1, MAGI, and PICK1 [39–41]. CAR is required for
MUPP1 localization at the tight junction [39].

Crumbs3 (CRB3) is a single-pass membrane protein
located at the apical cell membrane with a small fraction
in the upper part of tight junctions of epithelial cells. It is
involved in the establishment of cell polarity in mammalian
epithelial cells and regulates the morphogenesis of tight junc-
tions. CRB3 interacts with PAR6, PALS1, and PATJ [42–45].
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Tricellulin is a 66 kDa membrane protein which has
multiple phosphorylated states but exists predominantly in
its unphosphorylated form. It is enriched only at tricellular
tight junctions, where it enforces the barrier function of
epithelial cell sheets [46].

2.1.2. Scaffolding and Signalling Proteins. Zona occludens
(ZO) family members ZO-1, ZO-2, and ZO-3 belong to
the MAGUK family of TJ-associated scaffolding proteins.
ZO proteins interact with each other [47, 48] as well as
with cingulin [49], claudin-1–8 [28], actin [47], α-catenin
[50], and occludin [47]. Interactions vary between family
members, as illustrated by the fact that ZO-3 can interact
with PATJ [51] while only ZO-1 can interact with JAMs A-C
[34, 37], EGFR [52], and AF-6 [53]. In addition, ZO-1 binds
the Y-box transcription factor ZONAB and the heat shock
protein Apg-2 [54, 55].

Afadin (AF-6) is a Ras-binding, PDZ domain-containing
scaffolding protein which interacts with nectin, JAM-A, ZO-
1, profilin, ponsin, Rap1, and signal-induced proliferation-
associated protein 1 (SPA-1, a Rap1 GTPase activating
protein) [35, 56–58]. The nectin-AF-6 complex is involved
in the formation of adherens and tight junctions.

The membrane associated guanylate kinase inverted
(MAGI) family consists of MAGI-1, MAGI-2, and MAGI-
3. MAGI-1 was first identified in mouse as a protein
interacting with k-RasB [59]. MAGI-2 was initially identified
in rat as a protein interacting with N-methyl-D-aspartate
receptors (NMDA-Rs) and neuronal cell adhesion proteins
[60]. MAGI-3 was identified in a two-hybrid screening as a
protein interacting with the tumour suppressor PTEN [61],
and Receptor Tyrosine Phosphatase beta [62].

Cingulin is a 140–160 kDa protein consisting of a
globular “head” domain, a coiled-coil “rod” domain, and a
globular “tail” domain. In vitro binding studies have revealed
that cingulin interacts with various components of tight
junctions including JAM, ZO-1, ZO-2, ZO-3, myosin and
F-actin, suggesting a role for cingulin as a linker between
the TJ membrane and F-actin [49, 63–65]. Cingulin also
functions to sequester and inactivate the RhoA activator
GEF-H1 at TJs, resulting in inhibited RhoA signalling and
G1/S phase transition [66, 67]. Loss or mutation of cingulin
does not perturb the formation of tight junctions, but results
in increased claudin-2 expression and cellular proliferation,
which are dependent on increased RhoA activity [68].

Amot is a scaffolding protein with a coiled-coil region
and a PDZ binding motif [69], which forms a complex with
the Rho GTPase-activating protein Rich1 and is targeted to
the tight junction interaction with PATJ or MUPP1 [70, 71].
Two Amot-like proteins, JEAP and MASCOT, have also been
identified as TJ proteins [72, 73] which interact with MUPP1
[70].

Atypical protein kinase C is located at the TJ and plays
a crucial role in maintaining tight junction structure and
cell polarity through phosphorylation and stabilization of
junction-associated proteins [74, 75]. Activation of classical
protein kinase C and novel protein kinase C has been shown
to disassemble TJs [76].

2.2. Biological Functions of the TJ Complex

2.2.1. Gate and Fence Function. In polarized epithelial cells
the TJ forms a belt-like structure at the apical-most region of
the lateral membrane, and represents a boundary between
apical and basolateral membranes [77]. The main func-
tions attributed to TJs are the regulation of paracellular
permeability (gate or barrier function), and the formation of
a physical barrier preventing intramembranous movement
of lipids and proteins (fence function). Gate function
regulates the passage of ions and solutes across epithelial
sheets in an organ-specific manner, and can be modified
depending on the specific requirements of the organ [30,
78]. Fence function is required to maintain asymmetric
distribution of membrane components and to develop
membrane polarity [77]. Epithelial barrier function relies
heavily on the claudin family of TJ proteins, which form
strands controlling selective permeability by forming size-
and charge-selective aqueous pores [30, 78, 79]. Epithelial
fence function on the other hand is not solely reliant on one
subset of integral membrane proteins but instead requires
cooperation between integral membrane proteins and several
TJ scaffolding proteins and signalling molecules [80].

2.2.2. Regulation of Adhesion and Migration. Epithelial cells
control adhesion to the basement membrane and extracellu-
lar matrix to maintain an intact barrier that can reseal quickly
in response to injury. Breaching of the epithelial barrier
stimulates cells to extend protrusions into the wound space,
which can result in TJ disruption and release of proteins
such as PATJ, Par3, aPKC [81], Cdc42, and Par6 [82] from
their scaffolds. Retargeting these (and other) proteins to the
migrating edge helps polarize migrating cells in the direction
of movement via reorientation of the Golgi, centrosome and
the microtubule cytoskeleton along the axis of migration
[82, 83].

2.2.3. Regulation of Polarity and Differentiation. TJs regulate
epithelial polarity by controlling the assembly of three main
polarity complexes; the CRB3 complex, the Par complex, and
the Scrib complex, which will be discussed in the following
section. The apical junctional complex serves to restrict the
movement of these complexes in order to form distinct
apical and basolateral domains. Apico-basolateral polarity
allows for terminal differentiation of epithelial barriers by
apical orientation of the trans-Golgi network, which can
sort membrane proteins toward either apical or basolateral
membranes. Specialized membrane trafficking leads to the
accumulation of receptors and channels in either apical or
basolateral membranes, allowing electrochemical gradients
to develop across epithelial sheets [84, 85].

From the afore-mentioned information, it can be
observed that TJ proteins exert fundamental influences over
cellular processes that regulate polarity, differentiation and
migration; all of which are processes central to cancer pro-
gression. Therefore, TJ and other cell-cell adhesion proteins
are gaining increasing attention in breast cancer research
[86–89]. Most work to date has focused on adherens junction
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proteins (such as cadherins) in breast cancer progression;
and in fact loss of E-cadherin is a defining feature of lobular
breast carcinoma [90, 91]. However, TJ proteins have also
been found to be dysregulated in several human cancers
including breast, and have been suggested as promising
targets for cancer detection, diagnosis, and therapy [88]. In
this review, we will attempt to summarize current knowledge
on the impact of TJ proteins on breast cancer progression;
based on the ability of TJs to control polarity, differentiation,
and migration.

3. The Contribution of TJ Alterations to
Breast Cancer

Our review will focus on three aspects whereby functional
alterations in TJs may impact breast cancer progression by
altering cell polarity, cell fate, and cell migration. For a
broad overview of TJ alterations in cancer metastasis of other
tumours, the reader is directed to a recent review [92].

3.1. TJ-Mediated Alterations in Polarity—Role in Breast Can-
cer Progression. Formation of the TJ adhesion belt allows the
targeting of scaffolding proteins which regulate the cellular
polarity machinery. This machinery is composed of three
polarity complexes which identify separate regions of the
cell. These polarity complexes were originally identified in
C. elegans and Drosophila, but have been found to be highly
conserved in mice and higher mammals. The CRB complex
identifies the apical region due to apical concentration of
CRB3 [93], which is targeted to the tight junction by PATJ
and ZO-3 [51, 94]. The Par complex localizes at TJs through
interactions between Par-3 and JAM-A [38]. Finally, the
Scribble (Scrib) complex identifies the basolateral region
of the cell, and is targeted to adherens junctions through
interaction of Scrib and Dlg with E-cadherin [95–98].

The CRB complex is the most apically located polarity
complex in epithelial cells, and acts as an apical anchor for
the targeting of cytoplasmic proteins during polarisation
[93]. It is composed of the transmembrane protein CRB3
and the scaffolding proteins PALS1 and PATJ. Several
components of the CRB complex are reportedly dysregulated
in breast cancer. For example, CRB3 and PATJ expressions
were shown to be repressed by the transcription factor
ZEB1, which is upregulated in invasive ductal and lobular
breast cancers [99]. ZEB1 has been implicated in epithelial
to mesenchymal transition (EMT), a dedifferentiation pro-
gramme associated with cancer metastasis in which epithelial
junctions and cell polarity are disrupted, contributing to
increased cell motility [100]. PATJ also binds a negative
regulator of mTOR called TSC2, which regulates survival,
apoptosis, and cell cycle progression [101–103]. The mTOR
pathway has been shown to be frequently deregulated in
various cancers including breast [16, 18]. Massey-Harroche
et al. reported that PATJ knockdown in intestinal epithelial
cells resulted in the upregulation of the mTOR pathway
[104]; and it is possible that loss of PATJ in cancers such
as breast could facilitate tumour progression by allowing
the prosurvival effects of mTOR activation to go unchecked.

PATJ is also important for the proper localisation of claudin-
1, ZO-3, CRB3, occludin, aPKC, and ZO-1 at TJs [51, 94,
105]. Loss of PATJ could, therefore, also promote “leaky”
junctions, resulting in increased access of luminal growth
factors to the basolateral epithelial surface. It is intriguing
to speculate that this leakiness could promote tumour
progression by feeding the developing tumour, as proposed
in the nutritional model of carcinogenesis [106]. This along
with the dysregulation of aPKC has the potential to induce
substantial increases in proliferation as well as a loss of
polarity, all of which are hallmarks of cancer progression.

Other members of the CRB polarity complex could also
play a role in breast cancer progression. Knockdown of
the PALS1 binding partner lin-7 in renal epithelial cells
was shown to reduce expression levels of PALS1, PALS2,
Dlg2, Dlg3, and PATJ [107]. A resulting failure to recruit
aPKC to TJs resulted in reduced epithelial barrier function,
delayed polarization, and impaired lumen clearance in three-
dimensional morphogenesis models [107, 108]. Loss of
PALS1 also resulted in defects in E-cadherin trafficking [109],
which, taken together, suggests that analagous disruption of
the CRB3 complex during breast cancer could impair barrier
function and polarity, and potentially facilitate occlusion of
breast duct lumens with tumour cells.

The PAR complex is made up of Par3, Par6, aPKC, and
Cdc42/Rac1. Recently, Par6B was reported to be transcrip-
tionally upregulated in breast cancer tissues by quantitative
PCR [110]. Interestingly, MCF-10A breast epithelial cells
overexpressing Par6 polarized normally in three-dimensional
culture models, but showed higher proliferation rates which
were dependent upon Par6 interactions with aPKC and
Cdc42 [110]. Increased Par6 signalling has also been reported
in MCF-10A cells overexpressing activated ErbB2 [111,
112], the growth factor receptor which is amplified in 25–
30% of breast cancers and which identifies a subtype of
highly aggressive tumour [113]. Activation of ErbB2 in
these cells induces the formation of multiacinar structures
with abnormal filled lumens, in a manner dependent on
interactions of ErbB2 with the Par6-aPKC complex [112].
Mutation of Par6 in cells overexpressing activated ErbB2
was observed to restore lumen formation, suggesting an
inhibitory tone of Par6-ErbB2 interactions on apoptotic
clearance of developing lumens [112]. The role of Par6
in apoptosis is suggested to be due to the activation of
aPKC by Par6 [114]. Par6-aPKC interactions have also been
shown to activate Rac1 in non-small cell lung cancer cells,
resulting in anchorage-independent growth and invasion
through activation of matrix metalloproteinase-10 (MMP-
10) expression [115, 116]. Thus dysregulation of Par6 in
cancer cells has the potential to impact tumour progression
via direct effects on polarity, migration, and even apoptosis.

In contrast to Par6, Par3 expression has been found
to be reduced in oesophageal squamous cell carcinomas in
association with lymph node metastasis and poor differen-
tiation [117]. Certain forms of EMT have also been shown
to downregulate Par3 expression, with Par3 overexpression
capable of rescuing the loss of E-cadherin during EMT in
a rat kidney epithelial model [100]. Given the putative link
between EMT induction and breast cancer progression, it
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will be interesting to uncover whether Par3 expression might
also be lost in breast cancer. Since Par3 regulates Par6, loss of
Par3, in turn, is likely to exert an influence over the control
of proliferation, polarity, and apoptosis resistance by Par6
signalling in cancer cells.

The scribble complex is an evolutionarily conserved
complex consisting of three members, Scrib, lethal giant
larvae homolog (LGL), and discs large homolog (DLG). Loss
of function mutations of scrib, DLG, and LGL in Drosophila
have demonstrated abnormal cell polarity with increased
proliferation without tumour cell overgrowth, possibly due
to increased apoptosis [118–120]. Scrib has been shown to
colocalise with DLG and E-cadherin at adherens junctions
[98], and is required for formation of this junction and
proper localisation of DLG and LGL as well as apical
targeting of CRB3 [97, 121]. Scrib staining was shown by
immunohistochemistry to be reduced and mislocalized in
human breast cancer tissues [98, 122]. Zhan et al. have
suggested a role for Scrib in breast cancer development by
reducing apoptosis in c-myc over-expressing breast epithelial
cells [122]. Activation of c-myc enhanced the formation of
a Scrib complex which activated the small GTPases Rac and
Cdc42 and increased the expression of a proapoptotic protein
Bim. Conversely, loss of Scrib suppressed the ability of c-myc
to induce Bim expression [122]; suggesting a mechanism for
reduced apoptosis and increased resistance of breast cancer
cells to cytotoxic stresses in the event of Scrib loss.

LGL is a cytoplasmic protein which is targeted to the
lateral epithelial membrane during polarisation [123]. Like
CRB3 and PATJ, LGL1 is repressed by the transcription factor
ZEB1, whose expression is upregulated in several forms of
breast cancer [99]. Therefore, dysregulation of LGL may
play a role in EMT events associated with breast cancer
progression. Alterations in the final member of the Scrib
complex, DLG, may also play a role in cancer progression.
DLG3 has been shown to be reduced in gastric carcinoma
[124]; whilst overexpression of DLG1 and DLG3 inhibits
cellular proliferation via a block in G1/S phase transition
of the cell cycle [125, 126]. DLG4 interacts with Frizzled
proteins to regulate the WNT signalling pathway [127],
inappropriate activation of which has been implicated in
oncogenesis due to myriad influences on cell adhesion,
migration, proliferation, and cell death [128]. DLG1 and
DLG3 also regulate WNT signalling through DLG3-mediated
β-catenin degradation and the binding of DLG1 to APC
and by modulating the antiproliferative effects of APC [125,
126, 129]. In unpolarized cells, DLG1 is ubiquitinated and
degraded, and only upon junctional formation is it hyper-
phosphorylated and stabilised [130]. This indicates that the
integrity of cell-cell contacts regulates the Scrib polarity
complex and that disruption of this complex promotes
dysregulated growth and resistance to apoptosis.

As illustrated above, alterations in CRB3, Scrib, and
Par polarity complexes can promote proliferation, cell cycle
progression and evasion of apoptosis as a result of disrupted
apical-basolateral polarity in a variety of models. Although
several of the seminal observations were originally made
in Drosophila and C. elegans, many findings have since
been confirmed in higher mammals and during in vitro

studies on human breast and other carcinoma cell lines.
Thus insights from simple organismal models of polarity
are highly relevant not only to the control of normal
human physiology by the polarity machinery but also to
the development of many cancers including breast. However,
abnormalities in the polarity machinery are only one of
several ways in which TJ dysfunction can impact upon breast
cancer progression. The role of TJ-mediated alterations in
cell fate will be discussed in the following section.

3.2. TJ-Mediated Alterations in Cell Fate—Role in Breast Can-
cer Progression. Although cancer is frequently considered
as a disease of abnormal proliferation, cancer progression
is not determined solely by proliferative advantage within
tumour cells. Other factors such as apoptosis resistance and
the ability to bypass senescence pathways contribute to an
environment supporting breast cancer progression. The role
of individual TJ proteins in modulating these aspects of
breast cancer progression will be addressed in what follows.

Occludin expression is known to be downregulated in
several cancers including breast [131]; its loss correlating
with glandular dedifferentiation and progression of human
endometrial, colorectal, and lung carcinomas [132–134].
In recent studies, occludin overexpression was found to
promote detachment-induced apoptosis (anoikis) in AC2M2
murine breast carcinoma cells, while endogenous occludin
re-expression correlated with downregulation of apoptosis-
inhibitory genes (bcl-2, survivin) and upregulation of
apoptosis-inducing genes (apaf-1, bax) [135]. TUNEL assays
also revealed that HeLa cells constitutively overexpressing
wild-type occludin exhibited increased sensitivity to oxidant-
induced apoptosis. Occludin overexpression was also shown
to induce premature senescence in AC2M2 cells, as assessed
by increased senescence-associated β-galactosidase enzy-
matic activity and the upregulation of negative cell cycle
regulators such as p16INK4A, p21Waf1/Cip1, and p27Kip1
but not p53 [131]. The ability of cells to autoinduce growth
arrest based upon the expression of TJ proteins such as
occludin could has a profound inhibitory effect on tumour
growth, and illustrates how significant a loss of such proteins
could be for tumour progression.

Similarly to occludin, claudin-1, -4, -6 have also been
reported as downregulated in breast cancer [131, 136–139].
Suppression of endogenous claudin-6 expression by siRNA
in MCF7 breast cancer cells increases resistance to oxidant-
induced apoptosis and anoikis, thereby promoting colony
formation in two- and three-dimensional cultures [140]. In
a complementary approach, forced induction of claudin-1
expression in MDA-MB-361 breast cancer cells resulted in
elevated apoptosis in three-dimensional cultures. Enhanced
apoptosis correlated with increased spheroid size, suggesting
a positive effect of nutrient and growth factor diffusion into
spheroids [136]. This supports the hypothesis that cancer
formation may be promoted in premalignant epithelial
tissues that have become chronically leaky to growth factors
[141]. Claudin-1 may also play a role in the control of cell
fate, with observations of increased expression in senescent
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breast epithelial cells [139] and reduced expression in
invasive breast cancers.

In an interesting contrast, expression of claudin-3, -4
and -7 have actually been observed to increase in both
breast and ovarian cancers [88, 142–145]. Overexpression
of claudin-3 and -4 in HOSE-B ovarian cells enhanced cell
survival in clonogenic assays [88], further supporting a role
for either upregulation or downregulation of key claudins in
the controlling cancer cell fate.

Occludin-interacting proteins ZO-1 and ZO-2 have
also been shown to be repressed with cancer progression
[52, 146, 147], where decreased ZO-1 staining correlates
with decreased glandular differentiation of breast tumour
specimens [146]. ZO-1 and ZO-2 regulate cell cycle progres-
sion and proliferation in a cell density-dependent manner
[148–151] through transcription factors such as ZONAB.
ZONAB localizes to the nucleus and the TJs in proliferating
MDCK cells [151], but is not detectable in the nucleus of
nonproliferating high-density cells [148]. Evidence indicates
that cytoplasmic ZONAB immunoprecipitates with both
CDK4 and cyclin D1 and assists in the nuclear accumulation
of cdk4, promoting G1/S phase transition and cell cycle
progression [148]. ZONAB also upregulates ErbB2 expres-
sion [151], which (as discussed earlier) could profoundly
impact progression of a subset of breast cancers. ZO-2
blocks cell cycle progression by downregulating cyclin D
transcription and inhibiting cdk2 and cdk4 [150, 152].
ZO-2 also controls cyclin D expression and interacts with
the transcription factors jun, fos, and C/EBP to regulate
proliferation [150]. Thus, it can be observed that ZO proteins
control cellular proliferation in a density-dependent manner
by sequestering transcription factors at the tight junction.
Loss of ZO proteins during breast cancer may, therefore,
promote proliferation via a loss of control over cell cycle
progression.

Finally, in addition to the many TJ structural proteins
which exert regulatory control over cell fate, signalling
proteins affiliated with the TJ complex could also play
a part in breast cancer progression. For example, many
small GTPases have been described to affiliate with the TJ
complex [153]. As key signalling molecules which regulate
actin dynamics, GTPases profoundly impact processes that
are central to cancer initiation and progression [154]. For
example, RhoA promotes cell cycle progression through the
regulation of p21 and p27 levels [155]. TJs regulate RhoA
activity by cingulin-mediated sequestration of the RhoA
activator GEF-H1 and inhibition of G1/S phase transition
[67]. Increased GEF-H1 levels can arise by mutations in p53
[156], a frequent genetic alteration observed in breast cancer.

These alterations suggest a relationship between TJ alter-
ations and the malignant potential of several carcinomas,
via deficits in controlled proliferation, regulated cell cycle
progression and apoptosis. This suggests that the dysregu-
lation of cell-cell contact machinery may be a prerequisite
for cancer progression in order to turn off specific epithelial
regulatory pathways. The loss of membrane polarity via
tight junction abnormalities may also alter cell-cell and
cell-extracellular matrix interactions, and might, therefore,

facilitate migration, invasion, and the development of
metastasis, which will be reviewed in the following section.

3.3. TJ-Mediated Alterations in Cell Migration—Role in
Breast Cancer Progression. As discussed earlier, altered cell-
cell adhesion contributes to a loss in polarity and contact
inhibition, culminating in uncontrolled proliferation during
breast cancer initiation. There is also evidence that altered
cell adhesion plays a fundamental role in breast cancer
progression by freeing tumour cells from both neighbouring
cells and the underlying matrix; and in parallel by conferring
a motile or migratory advantage to cells during invasion and
metastasis [19, 157, 158]. In this section, we will attempt to
summarize current knowledge on the impact of TJ proteins
on breast cancer progression.

3.3.1. TJ Integral Membrane Proteins. Occludin has been
linked with cancer progression in endometrial carcinoma;
where decreasing expression was correlated with increasing
grade, myometrial invasion, and lymph node metastasis
[132]. Forced expression of occludin in breast cancer cells has
been shown to decrease cancer cell migration and invasion
both in vitro and in vivo [135]. Interestingly, the occludin
gene can be silenced by hypermethylation, and it may be that
the methylator phenotype promotes tumourigenic, invasive,
and metastatic properties of cancer cells [135].

A wealth of evidence has also implicated the claudin
family in breast cancer cell migration. Tumours with low
expression of claudin-3, -4 and -7 and high expression of
stem cell and epithelial-mesenchymal markers were recently
shown to associate with poorer overall survival [159], as
mirrored in other studies [160]. Like occludin, claudin-1
protein levels are reportedly reduced in breast tumours and
breast cancer cell lines [161]. Importantly, claudin-1 has
been detected in the membranes of normal breast ductal
epithelial cells and in some DCIS tumour cells, but is fre-
quently absent from invasive tumours [142]. Furthermore,
claudin-1 expression has been demonstrated as a good
predictor of disease recurrence and malignant potential in
breast cancer. Morohashi et al. demonstrated that recurrent
breast tumours displayed significant reductions in claudin-1
expression compared to primary tumours; while reduced
claudin-1 expression has also been associated with lymph
node involvement and decreased disease-free survival [162].
Taken together, these data suggest a role for claudin-1 in
invasion and metastasis. Furthermore, MDA-MB-361 breast
cancer cells deficient in claudin-1 grow as multicellular filled
spheroids in three-dimensional cultures and re-expression of
claudin-1 induces central lumen formation [136]; perhaps by
nutritional deprivation of innermost cells inducing apoptosis
as already discussed [141].

Other than claudin-1, the loss of several other family
members has been reported in breast cancer [142, 162–
166]. Osanai et al. demonstrated that decreased expression
of claudin-6 in breast cancer cells (by siRNA or epigenetic
silencing) increases MMP activity, likely facilitating increased
cancer cell migration and invasion [140]. Subsequent rein-
troduction of claudin-6 increased cellular adhesion and
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abrogated enhanced invasion and migration. Expression of
claudin-7 has been shown to be reduced in IDC cells com-
pared to those of the normal breast [164], and reduced in fine
needle aspirates from IDC patients [166]. In both studies,
loss of claudin-7 expression also correlated with increasing
tumour grade and metastatic disease. In an intriguing study,
treatment of MCF7 breast cancer cells expressing high
levels of claudin-7 with HGF/scatter factor (which decreases
cell-cell adhesion) led to a dramatic decrease in claudin-
7 expression, further linking the loss of claudin-7 and
cell cohesion in breast cancer [164]. Most recently, forced
expression of claudin-16 in MDA-MB-231 breast cancer
cells has been reported to induce junctional formation and
concurrently reduce aggressive and motile behaviour in vitro
and in vivo [165].

In contrast to the reduced expression of several claudins,
claudin-3 and -4 have in fact been found to be elevated
in breast cancer at both mRNA and protein level [143–
145, 167]. Interestingly, overexpression of either claudin-
3 or claudin-4 in human ovarian epithelial cells has been
reported to increase migratory and invasive capabilities [88].
As discussed later in this review, the ability of both claudins-
3 and -4 to function as receptors for Clostridium perfringens
enterotoxin (CPE) [168] may provide a unique targeting
mechanism to eliminate cancer cells overexpressing these
proteins.

JAM proteins regulate numerous cellular adhesive pro-
cesses including intercellular junction assembly [169], cell
morphology [170], and leukocyte migration [171, 172];
while JAM-A dysregulation has recently been implicated
in breast cancer [173, 174]. JAM-A has been shown to
regulate epithelial cell morphology and enhance β1-integrin
expression through modulation of Rap1 GTPase activity
[170]. Since loss of tissue architecture and cell polarity
is a prerequisite for breast cancer invasion and metastasis
[175], disruption of JAM proteins may, therefore, play key
roles in disease progression. Indeed, disruption of JAM-
A in a colonic carcinoma cell line was shown to convert
cells from a stationery, polarized state to a migratory
phenotype [176]. Recently, Naik et al. reported that JAM-A
overexpression decreased migration and invasion in breast
cancer cell lines, while knockdown of JAM-A expression
enhanced invasiveness [174]. It was hypothesized, therefore,
that the loss of JAM-A may correlate with poor clinical
prognosis. However, a subsequent study by McSherry et
al. revealed a significant association between high JAM-A
gene and protein expression and poor survival in 2 large
cohorts of human invasive breast cancer tissue specimens
[173]. Furthermore, knockdown or antagonism of JAM-
A significantly decreased migration in MCF7 breast cancer
cells expressing high endogenous levels of JAM-A. The
apparent conflict between these two studies may be resolved
by the fact that underexpression of JAM-A is likely to
impair cellular adhesion and polarity (favouring tumour
initiation), whereas overexpression of JAM-A could promote
integrin-mediated migratory events that favour tumour
progression. These data clearly implicate an imbalance of
JAM-A expression patterns in breast cancer, and, as discussed
later, may also form an interesting therapeutic target.

3.3.2. TJ Adaptor and Signalling Proteins. Few studies have
specifically focussed upon the involvement of TJ adaptor and
signalling proteins in breast cancer progression. However,
ZO-1 loss has been linked to poor prognosis in breast
cancer, with significantly reduced levels of TJ-associated ZO-
1 in patients with metastatic disease compared to those
remaining disease-free [177]. Polette et al. also showed
that expression of the matrix metalloproteinase MT1-MMP
in invasive breast tumour cell lines is correlated with
cytoplasmic localization of ZO-1 and with occludin loss
[178]. ZO-1 has also been shown to be reduced or lost
in ductal breast cancer tissues, in parallel with increased
dedifferentiation [146]. Reduced ZO-1 expression has been
significantly associated with reduced E-cadherin expression;
whose loss is inextricably linked with lobular breast cancer
[86]. Furthermore, ZO-1 has been reported to play an
important role in controlling expression of the ErbB2 gene
[179]. Downregulation of another family member, ZO-2, has
also been reported in breast carcinoma [180]. In addition,
ZO-2 has been reported as crucial for the tumour-inducing
capabilities of the Adenovirus type 9 E4 protein. Expression
of mutant ZO-2 protein lacking the E4 binding site inhibits
E4-mediated tumour initiation in mammary glands [180,
181]. Taken together, it can, therefore, be considered that
ZO proteins play important roles in the migratory events
associated with breast cancer progression.

The Par complex (Par3-Par6-aPKC) promotes normal
junction assembly by regulation of actin dynamics and
is known to be altered in many cancers including breast
(reviewed in [111]). Indeed, as previously addressed in this
review, Par6, through association with aPKC and ErbB2,
has been shown to disrupt apical-basal polarity and protect
cells from apoptosis [112]. Other potential links between Par
proteins and breast cancer involve EMT and the regulation of
Rho family small G proteins including Rac [182], Rho [183],
and Cdc42 [184]. For example, Par6 reportedly interacts
with TNFα in inducing EMT and TJ loss via degradation
of RhoA [185]. In vitro experiments have revealed that
the Par complex along with Rac signalling stabilizes front-
rear polarization of noncontacting keratinocytes, thereby
stimulating chemotactic migration [182]. Indeed, important
biological processes such as migration and invasion are
highly regulated by the Rho family. The Rho guanine
nucleotide exchange factor (GEF) Tiam has been shown to
increase with increasing breast tumour grade or cell line
invasiveness [183]; and Tiam-mediated Rac1 activation has
been correlated with tumour cell migration and invasion
in vitro [186]. Integrin-mediated adhesion through Rho
family GTPase activity has been reported as essential in
regulating cell polarity and membrane protrusiveness [41].
Specifically, Rac1 and Cdc42 have been linked with integrin-
mediated motility and invasion through PI3K signalling in
breast cancer cell lines [187]. Furthermore, the Rap GTPase
Rap1 has been identified as a crucial signalling element
downstream of β1 integrin [170], responsible for regulating
breast acinar structure and inducing mammary gland lumen
formation [188]. Yet another signalling protein downstream
of TJs, PKC [189], has also been linked to cancer initiation
and progression. PKC overexpression and altered localization
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has been demonstrated in breast cancer [190], and PKC
signalling is required for EGF-induced chemotaxis of human
breast cancer cells [191].

This wealth of evidence indicates the potential involve-
ment of several TJ adhesion cascades in the migratory events
associated with breast cancer progression. Further studies on
these proteins will allow a more comprehensive understand-
ing of their behaviour and contributions to tumour progres-
sion, ultimately defining candidate breast cancer prognostic
markers. The study of compounds designed to specifically
target and block the action of adhesion proteins involved in
cancer invasion could be of substantial therapeutic benefit in
preventing breast cancer invasion.

4. TJs and Breast Cancer Drug Therapies

Targeted therapeutic agents for breast cancer represent a
growing proportion of new drugs entering clinical testing.
Since carcinogenesis is a multistep process characterized
by alterations in many key growth and development path-
ways, there are numerous opportunities for pharmacologic
targeting. Selection of appropriate drug targets and the
ability to effectively deliver drugs to those targets are pivotal
issues in drug development. This section will review current
knowledge on TJs as breast cancer drug targets, and as targets
for therapeutic modulation of cancer drug delivery.

In spite of the regulatory influences exerted by TJs on
diverse processes relevant to cancer progression (as discussed
in previous sections), there are currently no cancer therapies
on the market which specifically target TJs. However, clues to
potential TJ targets of value have come from many sources,
including translational research studies involving patient
databases. For example, overexpression of claudin-3 and -4
proteins has been demonstrated in over 90% of primary
breast carcinomas in a patient group of 188 [192], and in
60–80% of breast tumours in a tissue microarray of 314
patients [193]. Claudin-3 and -4 overexpression has also
been noted in other neoplasias including ovarian, prostate,
pancreatic, and endometrial [193–196]. These proteins form
an intriguing potential target for cancer therapies, since
both claudin-3 and -4 have been identified as the receptor
for Clostridium perfringens enterotoxin (CPE) and the only
claudin family members capable of mediating CPE binding
and cytolysis [195–198].

CPE is a well-known virulence factor responsible for
the gastrointestinal symptoms associated with C. perfringens
type A food poisoning. By inducing permeability alterations
in host intestinal epithelial cells, CPE induces cell death and
epithelial desquamation. CPE is thus a multifunctional toxin
with cytotoxic, TJ-damaging, and proinflammatory activities
[199, 200]. This ability of CPE to rapidly and specifically
lyse cells expressing claudin-3 or -4 could potentially be
exploited in the treatment of breast cancers overexpressing
these proteins. Accordingly, it has been shown that claudin-
3 and -4 expressing breast cancer cell lines grown in cell
culture and as xenograft tumours underwent rapid and dose-
dependent cytolysis in response to CPE treatment [143].
Even more promisingly, administration of CPE has been

shown to reduce the growth of claudin-4 overexpressing
human ovarian and pancreatic tumours [201]. Thus, local
delivery of native CPE may be useful in the treatment
of preneoplastic lesions such as DCIS and in neoadjuvant
settings such as the locoregional control of locally advanced
breast carcinoma, as well as in tumour downstaging to allow
breast conservation therapy [143]. In addition to this, the
documented ability of CPE to downregulate the epithelial
barrier through interference with claudin-3 and -4 may
enhance local drug delivery for other treatment modalities.
However, at least two caveats must be noted. Firstly (as
discussed in prior sections), loss of TJ-based adhesion may
imbalance cellular polarity which by itself is likely to be
protumourogenic. Secondly, claudin-3 and -4 are expressed
in several normal human tissues including gut, lung, and
kidney; therefore the potential high toxicity of CPE at doses
used for systemic cancer therapy in animal models might
limit its use in humans to local treatments [194, 202].

Claudin-3 and -4 overexpression in breast cancer
could alternatively be targeted by toxin- or radionuclide-
conjugated antibodies, which would either destroy the cancer
cells directly or target them for attack by the host immune
system. The high sequence identity between claudin-3 and
-4 may allow generation of antibodies recognizing both
proteins. Potential indications for anticlaudin antibody-
based therapeutics include carcinomas of colorectal, breast,
ovarian, and prostate origin [203].

In common with the discovery of claudin-3 and -4 as the
CPE receptor, other TJ proteins are known to be hijacked
as pathogen receptors. The TJ protein CAR acts as the
primary site for adenovirus attachment during infection, a
feature which has been exploited as a delivery mechanism
for gene therapies [204, 205]. CAR expression has been
shown to significantly increase in breast tumour tissue along
with increasing tumour grade [206]. Breast tissue samples
showing elevated CAR expression have been associated with
poor patient prognosis [206]. While the biological roles of
CAR are incompletely defined, emerging evidence suggests
that it may function in regulating cell proliferation [207].
Whether CAR overexpression in breast cancer could be
successfully targeted by nonpathogenic components of the
virus in order to diminish cancer cell proliferation remains
an intriguing question.

Another TJ protein of interest for breast cancer drug
discovery is occludin. Gumbiner et al. showed that occludin
homotypic interactions and turnover, but not synthesis,
could be affected by treating cells with peptides to the
extracellular loop of occludin [208, 209]. Nusrat et al.
also identified occludin peptides capable of binding TJ
structural and signalling proteins [210], and demonstrated
that the second extracellular loop of occludin regulates
cellular transformation by oncogenes such as Raf-1 [211].
Given that occludin has been reported to be dysregulated in
some breast cancers, it is intriguing to speculate that occludin
could be a target for peptide-based cancer drugs.

Another TJ protein implicated in breast cancer pro-
gression is ZO-1, which as noted, has sequence homology
with the Drosophila tumour suppressor Dlg, implying that
ZO-1 could possess similar functions as a tumour suppressor
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Figure 2: The potential influence of TJ proteins on breast cancer development. Breast cancer predominantly begins in luminal epithelial cells
lining the normal breast ducts (a). Alterations in TJ proteins may lead to the initiation of breast tumourigenesis in at least two ways. Firstly,
TJ alterations may favour decreased cellular apoptosis and increased proliferation leading to uncontrolled growth, such as is seen in ductal
carcinoma in situ lesions (b). Secondly, TJ alterations may decrease cell adhesion and increase motility, facilitating cancer cell migration as
seen during invasion and basement membrane breakdown in early primary invasive breast carcinoma (c). Breast carcinoma likely requires
coordinated efforts of both increased proliferation and increased motility to progress to metastatic stages (d).

gene in mammalian epithelia [19]. Martin et al. observed
decreased ZO-1 staining in several invasive breast cancer cell
lines supporting the tumour-suppressive characteristics of
ZO-1 [177].

Even more recently, it has been observed that increased
JAM-A expression in human breast cancer tissues correlates
with poor patient prognosis [173]. Since this mechanism is
thought to involve promotion of integrin-mediated migra-
tory events at the cell-matrix interface, it is, therefore,
interesting to speculate that targeting JAM-A dimerization
to reduce signalling could be a promising and novel target
to reduce breast cancer cell motility during the early stages of
invasion or metastasis.

A final point regarding TJs as breast cancer therapeutic
targets relates to drug delivery. In order for therapeutic agents
to reach their target in vivo, they must cross epithelial and/or
endothelial barriers. Since the TJ is the primary regulator
of paracellular transport across such cells [212], successful
drug delivery may require modulation of TJ proteins to allow
drug molecules to pass [213]. However, as before, it must be
noted that disruption of TJ proteins purely for drug delivery
purposes may itself promote cancer progression by upsetting
homeostatic mechanisms of polarity, differentiation, cell fate,
and migration which are tightly regulated by TJs in normal
tissues.

To conclude this section, we note that therapeutic modu-
lation of breast cancer via selective targeting of tight junction
structural proteins is in its infancy. At present, CPE offers
the best-developed strategy via targeting of claudin-3 and -4.
While many signalling proteins and enzymes loosely affili-
ated with the TJ plaque may prove easier pharmacological
targets, full discussion of this topic is beyond the scope of this
review. Interested readers are directed to a comprehensive
review by Schneeberger and Lynch [214]. It is clear however
that further investigations into the cell biology of tight
junctions are necessary to provide insights into putative
future applications of TJ components as candidates for drug
discovery to prevent or limit breast cancer progression.

5. Conclusions

Finally, we summarize the role of TJs in breast cancer
initiation and progression as follows (see Figure 2). During
the initiation phase of cancer, fundamental alterations in the
TJ complex may impair its functional control over important
cellular processes such as polarity and cell fate determination,
or cell motility characteristics. Dysregulation of either of
these aspects likely contributes to the pathologies which we
recognise as ductal breast carcinoma in situ or invasive ductal
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carcinoma. Further dysregulation of a combination of these
(and other) events is likely to be required for the most
serious step of breast cancer progression, the transition to a
metastatic phenotype.

It must be noted that there is not a simple relationship
between TJ protein loss or gain and breast cancer. As we
have described in this review, both loss and gain of TJ
proteins can impart a growth advantage to breast cancer
cells, as well as increased resistance to apoptosis, loss of
polarity, and increased migratory or invasive characteristics.
Through these important regulatory influences on polarity,
cell fate and cell movement, we suggest that an intact and
functional TJ complex acts as a barrier to the initiation and
progression of breast cancer. However, any imbalance in the
protein components of this complex (whether increased or
decreased) will, in turn, imbalance the strict homeostatic
control required to maintain breast tissue in its differentiated
state, increasing the risk of inducing a pathologically dedif-
ferentiated state such as breast cancer.
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