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Abstract: Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related
diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug
candidates. In the present review, we describe the common kinetic models of fibril formation and
classify known inhibitors by the mechanism of their interactions with the aggregating protein and
its oligomers. This mechanism determines the step or steps of the aggregation process that become
inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of
numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the
search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or
the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors
stabilizing the native state can be promising for the structured proteins while designing the drug
candidates targeting disordered proteins is challenging.

Keywords: amyloid fibrils; fibril formation inhibitors; protein aggregation kinetics; kinetic
models; protein misfolding; protein–protein interactions; protein–ligand interactions; drug discovery;
Alzheimer’s disease

1. Introduction

Amyloid fibrils are insoluble aggregates of proteins comprising monomers non-
covalently cross-linked through beta sheets. They can be formed by a huge number of pro-
teins and peptides of different sizes, structures, and functions [1]. In humans and animals,
amyloid structures are related to numerous severe disorders, including Alzheimer’s [2].
The inhibition of fibril formation with the chemical species is considered a possible amyloi-
dosis treatment strategy. Thus, it is important to understand the mechanisms of fibrillation
and its inhibition. At present, many examples of compounds showing inhibitory activity
in experiments with various proteins and peptides are known, including small organic
molecules [3–6], other peptides [7–10] and proteins [11–13], polysaccharides [14,15], syn-
thetic polymers [16,17], carbon nanomaterials [18–20]. Fibril formation is a multistep
process with a complicated kinetic mechanism. There are several different ways for the
inhibitor molecules to retard this process. The rational design of fibrillation inhibitors
requires a deep understanding of their interactions with the protein and its aggregates.
Therefore, in the present paper, we review the previous studies of various inhibitors act-
ing on different proteins in light of the molecular mechanism of action and kinetics of
aggregation. A number of other reviews have also been published focusing on the various
aspects of fibril formation inhibition, namely on the diversity of the chemical structure of
inhibitors [3,21,22], on polymer materials showing inhibitory activity [17,23], on peptide-
based inhibitors [24], or particularly on human beta-amyloid inhibitors and treatment
strategies of Alzheimer’s disease [25–27] and transthyretin amyloidogenesis inhibitors [28].

The first part of the paper is dedicated to the kinetic description of the fibril assembly
process, which is necessary to understand how the inhibitors can change the time course of
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fibril formation. The second part describes substances found or intentionally developed
to inhibit fibril formation classified by the molecular mechanism of their interaction with
protein and/or growing fibrils.

2. Kinetics and Thermodynamics of Amyloid Fibril Formation
2.1. Kinetic Models of Fibril Formation

The fibril formation process most commonly features a sigmoidal time course
(Figure 1), which can be obtained in ThT fluorescence experiments or by any other means.
It can be characterized using the lag time τlag defined as the onset point of the curve jump,
aggregation half-time τ50 corresponding to the moment when fibril concentration reaches
half of its maximum and the maximum fibril growth rate rmax at the inflection point of a
sigmoid. When we speak about the inhibition of fibrillation, it means at least one of the
following: an increase of τlag, an increase of τ50, or a reduction of rmax.
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while the mechanisms of their formation and inhibition can be treated similarly. 
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suggest a mechanism involving at least primary nucleation and fibril elongation stages, 
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an increase in the number of fibril termini, saturated elongation and some other processes. 
These mechanisms lead to different dependencies of τ50 and τlag on the protein concentra-
tion, which can be used to distinguish between them using experimental data. The possi-
ble inhibition mechanisms are diverse; however, we can also try to deduce them based on 
the observed kinetic curves at different concentrations of an inhibitor and knowledge 
about the molecular nature of inhibitor interactions with the protein and its aggregates. 

Figure 1. Typical time dependence of protein concentration converted into fibrils ([F]) and the
quantities used to describe this curve.

While some proteins readily form long and straight fibrils, others form shorter and
often curved protofibrils that slowly convert into mature fibrils. Some proteins are shown
to assemble into semi-flexible or “worm-like” beta-structured aggregates [29]. The same
protein may form several types of fibrils under different conditions. For simplicity, we do
not pay much attention to the differences between fibrils, protofibrils, and various types of
“loose” or “amyloid-like” fibrils since these differences are mainly morphological, while
the mechanisms of their formation and inhibition can be treated similarly.

Kinetic curves of amyloid formation can be successfully described using nucleated
polymerization models viewing a fibril as a one-dimensional crystal [30]. These models
suggest a mechanism involving at least primary nucleation and fibril elongation stages, with
a possibility to account for secondary nucleation occurring when the surface of the already
formed fibril acts as a nucleus, fibril fragmentation into smaller pieces leading to an increase
in the number of fibril termini, saturated elongation and some other processes. These
mechanisms lead to different dependencies of τ50 and τlag on the protein concentration,
which can be used to distinguish between them using experimental data. The possible
inhibition mechanisms are diverse; however, we can also try to deduce them based on the
observed kinetic curves at different concentrations of an inhibitor and knowledge about
the molecular nature of inhibitor interactions with the protein and its aggregates.

The link between the parameters of elementary steps and the observed fibrillation
time course is not apparent. For example, it is incorrect to say that the increase in the
lag time necessarily means inhibition of the nucleation stage [31]. Below we consider the
model of nucleated fibril formation developed by Knowles et al. [32] and validated on
many different systems [33–37]. The kinetic curves were calculated according to this model
using our home-written program.
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The kinetic equations for the considered model can be written in the general form:

d[P]
dt = kn[m]nc + k2[m]n2 [F] + k−[F];

d[F]
dt = 2k+[m][P]− 2ko f f [P].

(1)

Here [P] is the concentration of fibril particles, [F] is the total concentration of protein
monomers in the fibrils and [m] is the concentration of free protein monomers. The rate
constants correspond to kn, primary nucleation, k+, elongation, k2, secondary nucleation, k–,
fragmentation, koff, depolymerization. Following previous works, we assume the nucleation
exponents nc = n2 = 2. In all our calculations, a set of the rate constants taken from the
literature [38] for in vitro aggregation of the Aβ42 peptide is used: kn = 10−4 M−1s−1,
k+ = 3 × 106 M−1s−1, k2 = 8 × 103 M−2s−1, k– = 3 × 10−8 s−1; koff = 2 s−1 (this one was
chosen arbitrarily for demonstration purposes, close to the value for Aβ40 reported in [39]).
Except for kn and k+, any other rate constant can be substituted by zero. The initial protein
concentration is 3 µM.

Let us consider the effect of the rate constants of individual stages of fibril formation
on the time dependence of fibril yield. The simplest nucleation-elongation model leads
to the kinetic curves depending on the product knk+ of the rate constants of nucleation kn
and elongation k+. The decrease of any of these constants leads to an increase of both τlag
and τ50, as well as a decrease of rmax (Figure 2). The analytical solution [40], as well as

numerical simulation, show that rmax is proportional to [m]0
nc
2 +1(k+kn)

1
2 , while τ50 and

τlag are proportional to [m]0
− nc

2 (k+kn)
− 1

2 .
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In the model with secondary nucleation, the slowing down of primary nucleation 
leads to an increase of the lag time and τ50 while rmax and the difference τlag–τ50 remain 
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well as a decrease of rmax (Figure 3b). Slower secondary nucleation leads to a similar trend 
of changes but lowering its rate constant k2 leads to smaller changes than lowering the 

Figure 2. Dependence of the fibril formation time course on (a) nucleation (kn), (b) elongation (k+)
rate constant for the model considering only nucleation and elongation.

In the model with secondary nucleation, the slowing down of primary nucleation
leads to an increase of the lag time and τ50 while rmax and the difference τlag–τ50 remain
almost constant (Figure 3a). Slower elongation results in an increase of both τlag and
τ50, as well as a decrease of rmax (Figure 3b). Slower secondary nucleation leads to a
similar trend of changes but lowering its rate constant k2 leads to smaller changes than
lowering the elongation rate constant k+ (Figure 3c). In addition, at k2 → 0, the kinetic
curve becomes the same as for the model without secondary nucleation (Figure 2). Here,

the value of rmax is proportional to [m]0
3
2 (k+k2)

1
2 , τ50 and τlag are proportional to k+−

1
2 ,

while their dependence on [m]0, kn and k2 is more complicated (roughly proportional to

[m]0
− n2+1

2 (k+k2)
− 1

2 ) [40].
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and (c) secondary nucleation (k2) rate constant for the model with secondary nucleation.

In the model with fibril fragmentation (without secondary nucleation) allowing spon-
taneous splitting of a fibril into two parts, variation of the fragmentation rate constant k–
also changes all three quantities τlag, τ50, and rmax (Figure 4a). Fragmentation is thought to
be a reason for speeding up fibril formation upon agitation of the solution [41,42]. Interest-
ingly, this model’s variations of kn and k+ lead to changes in time courses similar to those
in the model with secondary nucleation and no fragmentation (Figure 4b,c). The magni-

tude of rmax in this model is proportional to [m]0
3
2 (k+k−)

1
2 ; τ50 and τlag are proportional to

k+−
1
2 and also depend on [m]0, kn and k– (being roughly proportional to [m]0

− 1
2 (k+k−)

− 1
2 ).

At k– → 0, the kinetic curve becomes the same as for the model without fragmentation
(Figure 2).

Other possible processes and the dependency of the rate constants on the aggregate
size not considered in the described models can also affect the time course of fibrillation. For
example, Kuret et al. found that end-to-end annealing, a process opposite to fragmentation,
occurs upon tau protein aggregation [43]. A different kinetic behavior is observed in the
systems with off-pathway aggregation leading to amorphous or globular aggregates [44,45].
Some other specific cases are considered in the following sections, including fibril formation
without a lag period that cannot be described by Equation (1).

2.2. Fibril Formation from the Particular Form of Protein

Proteins with ordered native structures often form fibrils at denaturing conditions,
suggesting that only the partially or fully unfolded form of protein monomer participates
in this process [46,47]. This form (U) exists in thermodynamic equilibrium with the native
monomeric protein (N). More generally, there can be several forms of protein in equilibrium,
only one of which participates in fibril formation. Let the fraction of this form be denoted as
α. For the simplest case, α = [U]

[U]+[N]
= [U]

[m]
. When α < 1, both the nucleation and elongation

rates are smaller than in the case when any protein molecule can participate in fibrillation.
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Assuming a rapidly establishing equilibrium between the protein forms, we can rewrite
Equation (1) as:

d[P]
dt = kn(α[m])nc + k2(α[m])n2 [F] + k−[F];

d[F]
dt = 2k+α[m][P]− 2ko f f [P].

(2)
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The dependence of the time course on α value at the same initial protein concentration
for secondary-nucleated fibril growth (without fragmentation) is shown in Figure 5. Again,
all three quantities, τlag, τ50, and rmax, change. Taking into account that introducing
α into kinetic Equation (1) is equivalent to multiplying the rate constants by α in the

respective powers, we deduce that rmax scales as α
n2+1

2 (α
3
2 if n2 = 2), while τ50 and τlag

scale approximately as α−
n2+1

2 .
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2.3. Thermodynamic Equilibrium of Fibril Formation

The process of amyloid fibril formation is reversible, although the equilibrium
monomer concentration is small for many proteins [48]. This concentration equals the ther-
modynamic equilibrium constant of fibril dissociation KF if only one form of the monomer
is present and participates in aggregation. Thus, the degree of conversion of protein into
fibrils after prolonged incubation is not strictly equal to unity and is governed by this
constant. The simplest way to account for the reversibility of aggregation in a kinetic
model is to introduce the depolymerization rate constant ko f f of the detachment of protein
monomers from the fibril termini. From Equation (1), it follows that at an infinite time when
fibrils concentration becomes constant, the equilibrium monomer concentration equals the
ratio of depolymerization and fibril elongation rate constants:

[m]eq =
ko f f

k+
= KF (3)

Figure 6a shows the dependence of fibril formation kinetics on the value of ko f f for the
model with secondary nucleation. With increasing depolymerization rate, the equilibrium
conversion degree decreases and τ50 increases. The decrease of elongation rate constant in
the case of significantly reversible fibrillation also lowers the fibril yield but leads to larger
changes of τlag and τ50 (Figure 6b). In contrast, the change in the nucleation rate constant
does not affect the fibril yield (Figure 6c).
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If the protein exists as an equilibrium mixture of two conformers, e.g., the folded and
unfolded states, and only one conformer with its equilibrium molar fraction α participates
in reversible fibril formation, then the fibril yield becomes lower with decreasing α even at
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the constant values of k+ and koff. In such a case, the total (folded and unfolded) monomer
concentration at equilibrium is given by:

[m]eq =
KF
α

=
ko f f

αk+
(4)

The kinetic curves for different values of α are given in Figure 7. The scaling exponents
of τlag, τ50, and rmax with respect to α depend on the value of ko f f .
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2.4. Fibril Formation without a Lag Period

There are also numerous examples of systems in which fibril formation occurs with-
out a lag period. Such behavior is typical for certain proteins like transthyretin [49,50],
human [51] and bovine [52] serum albumin, chicken egg-white ovalbumin [38], αs2- and
κ-casein [53,54], acylphosphatase [55], mouse prion protein [56,57], bacterial lipase [58],
disulfide cross-linked dimers of human beta-amyloid [59,60], antimicrobial peptide uperin
from frog skin [61] or 22-residue K3 peptide of β2-microglobulin [62]. Other proteins can
show no lag when forming fibrils under specific conditions, e.g., human beta-amyloid
in the presence of sodium dodecylsulfate [63] or a small concentration of hexafluoroiso-
propanol [64], β2-microglobulin at certain pH value [65,66]. It should also be noted that
fibrillation without a lag sometimes leads to fibrils or protofibrils with a morphology
different from classical long and straight aggregates, e.g., worm-like assemblies of β2-
microglobulin [66] or mouse prion [57].

One possibility to explain such kinetics is the very rapid formation of fibril nuclei. This
can be seen by comparing the curves corresponding to the different kn values in Figure 2.
Large values of the primary nucleation rate constant lead to the essentially unnoticeable
lag. However, for many systems that show lag-free fibrillation, there is strong evidence that
fibril formation proceeds without nuclei formation: no lag is observed even at very low
protein concentrations, and the process does not accelerate in the experiments involving
seeding with preformed fibrils. This appears to be the case for albumins in physiological
conditions [51,52]. It was also hypothesized that the surface of the sample container can
be saturated with fibril seeds on which fibrils subsequently grow [38]. In such a case, the
initial rate of fibril formation is given by:

v0 = 2k+[P][m]0 (5)

i.e., scales linearly with monomer concentration, which was observed in many systems.
Another possibility is a slow rate-limiting conformational change of a protein succeeded by
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fast aggregation, which also leads to first-order kinetics. Alternatively, a different kinetic
mechanism of fibril growth could be responsible for such behavior [67]. The crystallization-
like model (CLM) suggested by Martins et al. [67] is able to describe both sigmoidal and
lag-free hyperbolic aggregation kinetics with a single equation (given using our notation):

[F]
[F]max

= 1− 1
kb

(
ekgσ0t−1

)
+1

;

σ0 =
[m]0−KF

KF
.

(6)

Here, σ0 is the supersaturation of protein solution relative to the equilibrium with
fibrils,

[F]max = [m]0 − KF, (7)

which is the maximum possible (equilibrium) concentration of protein in the fibrils, and
kg and kb are the growth and nucleation-to-growth rate constants, respectively. The main
difference between the fibril formation mechanism serving as the basis of this model from
the models considered above is the adsorption of protein monomers by the whole surface
of the fibrils and their fast migration to the fibril ends instead of a direct interaction of the
fibril ends with monomers. Thus, the rate of fibril growth becomes proportional to the
total concentration of protein monomers in the fibrils ([F]) and not the concentration of
fibril particles ([P]). The resulting differential equation can be integrated analytically, which
leads to Equation (2). The time dependence of fibril concentration is sigmoidal at kb > 0.5
and hyperbolic otherwise. In hyperbolic mode, the maximum aggregation rate is observed
at t = 0 and equals

rmax = v0 = [F]maxkbkgσ0 =
kbkg

KF
([m]0 − KF)

2 (8)

At low KF values, this rate scales as the square of initial protein concentration and is
proportional to both fibril growth and nucleation-to-growth rate constants. The value of
τ50 is given by

τ50 =
1

kgσ0
ln
(

1
kb

+ 1
)

(9)

and should be approximately reciprocal with respect to the initial protein concentration.
The hyperbolic aggregation curves are also observed in seeded experiments in which

a certain concentration of the preformed fibrils is added to the protein solution at the initial
moment of time. The curve becomes hyperbolic only at high seed concentrations when the
nucleation processes do not change the number of fibril particles significantly. The initial
rate of fibril growth here is also given by

v0 = 2k+[P][m]0 (10)

Such a simple dependence provides a convenient way for experimental characteriza-
tion of the effect of various inhibitors or other factors on fibrillation kinetics.

3. Effect of Inhibitor Binding on Amyloid Fibril Formation

The models considered above greatly help to understand the influence of various
compounds on the fibril formation kinetics. It should be understood, however, that the
addition of an inhibitor is not just an alteration of the rate constant values. Most of them
bind non-covalently to a protein or its aggregates, thus changing the kinetic scheme of fibril
formation. Below, we consider different possible molecular mechanisms of inhibitor action
with experimentally confirmed examples.
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3.1. Inhibitors Influencing the Protein Monomer

This is likely the broadest group of systems. The simplest option is a 1:1 binding of
a monomeric protein with an inhibitor I leading to the formation of a complex unable
to participate in both nucleation and fibril growth processes. Let us assume that the free
inhibitor and protein quickly reach equilibrium with the complex, and this equilibrium
cannot be shifted by the fibril formation process. This is reasonable since fibril formation
takes tens of minutes, even for the fastest aggregating proteins, and, in some cases, may
take many days. Then the fraction of unbound monomeric protein

α =
1

1 + Ka[I]
(11)

where Ka is the binding constant, and [I] is the equilibrium inhibitor concentration. The
kinetics of fibril formation can be described by Equation (2), where the protein monomer
concentration [m] from Equation (1) is replaced with α[m]. In general, α can change
during the course of aggregation with changing monomer concentration, but at sufficiently
large concentrations of inhibitor, only a small part of its molecules bind to the protein,
so [I] ≈ [I]0 and α can be assumed to be constant ([I]0 is the concentration of inhibitor
initially added to the system). Then, the dependence of kinetic curves for the secondary-
nucleated process without fragmentation and depolymerization on α is like what is shown

in Figure 5, and the scaling laws are as discussed above (rmax scales as α
n2+1

2 , τ50 and

τlag scale approximately as α−
n2+1

2 ). In seeded experiments, the initial rate should be
proportional to α. The inhibitor-bound protein may also participate in fibril growth with
different (likely lower) rate constants (k′+). Then, the growth rate in Equation (1) can be
written as 2(k+α + k′+(1− α))[m][P], which can also be regarded as the modification of
the rate constant value. The same is true for the nucleation involving complexes, but the
expressions relating kn and k2 to α will be more complicated, as well as the scaling laws
for the kinetic curve parameters. Moreover, the magnitude α can be introduced when the
protein binds any number of inhibitor molecules with any values of binding constants.

As mentioned above, natively folded proteins usually form fibrils from their partially
or completely unfolded form, which is in equilibrium with the native form. The native
or, less commonly, the unfolded form can bind the inhibitor. In this case, we can also use
Equation (2), with α being the fraction of the free unfolded form of monomeric protein,
which can be expressed through the inhibitor concentration and the equilibrium constants
of binding and unfolding.

Change in the value of α always affects the thermodynamics of equilibrium fibril
formation, decreasing the fibril yield as shown in Figure 7; nevertheless, this can leave
unnoticed in experiments in the case of weak binding or low KF values. Hence, monomer-
binding species act as thermodynamic inhibitors of fibrillation [68], but of course, they also
affect the kinetic parameters of this process. Strong binders changing the fibril yield should
be able to disrupt the preformed fibrils at least partially. In reality, this can be a very slow
process due to their huge kinetic stability (very low koff values) [69].

3.1.1. The Effect of Inhibitor Binding to the Protein Monomer

Fibrillation of a number of natively disordered proteins is linked to currently incurable
diseases, including human beta-amyloid peptides Aβ42 and Aβ40 involved in Alzheimer’s
disease. Hence, the development of efficient inhibitors of the fibrillation of these proteins
attracts the biggest attention. While the native form of folded proteins can be stabilized by
tight binding with both other proteins and small organic molecules, disordered proteins
usually show no high affinity to the small molecules. There are no approved small-molecule
drugs targeting such proteins.

One well-characterized example of Aβ42 inhibitors [70] is biphenyl-2-yl-(7-nitro-benzo
[1,2,5]oxadiazol-4-yl)-amine (10074-G5) with a 6 µM affinity to the monomer determined
using biolayer interferometry, which is considerably weaker affinity than of many drugs
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targeting structured proteins. Nevertheless, it was shown to influence the kinetic parame-
ters of the microscopic steps of fibril formation and decrease the fibril yield in agreement
with the kinetic model discussed above. Lysine-specific molecular tweezers [71,72] were
designed and shown to inhibit fibrillation of different disordered proteins, including beta-
amyloid, tau protein, α-synuclein, islet amyloid polypeptide (IAPP), as well as structured
proteins, such as β2 microglobulin, insulin, and transthyretin. Disaggregation of the pre-
formed fibrils was also reported. These anionic molecules bind the lysine residues in
protein monomers, impeding the processes of fibril nucleation and growth. Their binding
to the lysines in the fibrils likely leads to the destabilization of favorable contacts with other
residues.

The affinity of disordered proteins to other proteins can be much higher. Stahl et al.
engineered a disulfide-linked dimeric affibody protein ZAβ3 [73] with a 17 nM affinity to
Aβ40. It stabilizes a beta-amyloid in β-hairpin conformation, blocking it from two sides,
and preventing further β-sheet extension (Figure 8). The affibody was shown to inhibit
Aβ40 fibrillation, with almost no fibrils forming at a 1:1 inhibitor/beta-amyloid molar ratio.
Later engineering attempts led to an even more potent binder, ZSYM73, with a 300 pM
affinity [74].
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There are also reports of a negatively charged ulvan polysaccharide [14,75] and posi-
tively charged poly- and oligosaccharides derived from chitosan [76–78], thus inhibiting
fibril formation of Aβ40, Aβ42, or α-synuclein, and in some cases, disaggregating pre-
formed mature fibrils. It is possible that this effect is caused by the interactions with the
Aβ monomer. At the same time, other polysaccharides, especially sulfated glycosaminogly-
cans, promote the fibrillation of beta-amyloid [17,76]. This was attributed to the different
spatial charge distribution making some polysaccharides able to serve as scaffolds facil-
itating the fibril assembly, while others just sequester protein monomers [76]. Synthetic
polymers can also show different effects on fibril formation. Inhibitory activity against
the aggregation of disordered proteins, such as beta-amyloid, α-synuclein, and IAPP, was
observed for some anionic and cationic aromatic polymers [16], including PAMAM [79–81]
and poly(propylene imine)-maltose [82] dendrimers, polymer-coated inorganic nanopar-
ticles [83,84] and other polymeric molecules and materials [17]. In most studies, their
activity is explained by sequestering protein monomers; fibril disaggregation ability was
also reported for some polymers. The inhibitory and disaggregating effect of graphene
oxide, graphene, carbon nanotubes, and fullerene derivatives on the fibrillation of beta-
amyloid [18–20,85–87], IAPP [88], α-synuclein [89,90] is linked to the binding of protein
monomers, despite carbon nanoparticles also binding to oligomers that hamper their
elongation and secondary nucleation [89].

For the structured proteins, fibril formation can be inhibited by almost any ligand or
other protein binding to their native state, which leads to a decrease in the equilibrium
amount of the unfolded state prone to aggregation. For proteins composed of several chains,
ligands may stabilize the quaternary structure and prevent the dissociation of monomeric
chains that can convert into fibrils. Numerous studies report examples of the native
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state-stabilizing inhibitors for different proteins, including lysozyme [91–93], acylphos-
phatase [94], prion protein [95,96], immunoglobulin light chain variable domain [97],
insulin [98,99], albumins [100,101], and others. Good prospects of the native state stabiliz-
ers as drug candidates can be shown in the example of transthyretin, a natively tetrameric
protein that can dissociate into monomers. The latter was shown to form fibrils [102] en-
gaged in the pathogenesis of amyloid polyneuropathy and cardiomyopathy. The inhibition
of its aggregation by various nonsteroidal anti-inflammatory drugs [103], phenols and
polyphenols [104–107] and a number of other compounds [108–111] is caused by their
binding to the tetrameric state. The studies of transthyretin binders culminated in the
discovery of the clinically approved drug, tafamidis [112], a first-in-class medication with
2 nM affinity to the tetramer (see Figure 9 for the structure of complex).
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An interesting example of inhibitors binding the unfolded state of structured proteins,
such as bovine serum albumin [113] or lysozyme [114,115], and preventing its further
aggregation is graphene oxide and graphene nanoparticles.

3.1.2. The Effect of Protein Stabilizers and Denaturants

A special case is the shift of equilibrium between the native and unfolded form
of protein under the action of non-binding substances, which can be protein denatu-
rants (numerous organic solvents [116,117]), stabilizers (sugars, polyols, some inorganic
salts [118,119]), crowding agents, or micelle-forming detergents. In the case of fibril forma-
tion from the unfolded form of the natively structured protein, the addition of denaturants
leads to the increase of α value, which is a technique sometimes used to accelerate this
process. Since such compounds are added at rather large concentrations, they may also
change the rate constants of any step of fibrillation. In addition, some of them can change
the values of pH and ionic strength, which also influence the rate and equilibrium con-
stants. For some proteins, conformation equilibria between different fully or partially
unfolded forms become shifted, some of which cannot be prone to aggregation or produce
non-fibrillar aggregates. As a result, it is difficult to predict whether some well-known
denaturant promotes or prevents the fibril formation of a particular protein without the
experimental study.

Vice versa, stabilizers decrease the fraction of the unfolded forms. In most cases,
they inhibit the fibril formation of globular proteins with a well-defined definite native
structure. Mono- and disaccharides, such as sucrose, trehalose, or glucose and polyhy-
dric alcohols, inhibit aggregation of hen egg-white lysozyme [120,121], insulin [121,122],
α-lactalbumin [123], bovine serum albumin [124], Vλ6 protein [125] by stabilizing their
native state. Another well-known osmolyte, trimethylamine N-oxide (TMAO), inhibits
insulin [126,127] fibril formation. The effect of osmolytes on the fibrillation of intrinsically
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disordered proteins is often the opposite. Various sugars are shown to induce β-amyloid fib-
rillation [128,129] while fructose does not [129], and trehalose inhibits it and even dissolves
preformed Aβ40 amyloid aggregates [130]. In the presence of moderate concentrations
of TMAO, α-synuclein greatly enhances the rate of formation and yield of fibrils, while
at high concentrations, fibrillation becomes suppressed in favor of the formation of glob-
ular oligomers [131]. TMAO also accelerates the aggregation of beta-amyloid [132] and
tau protein [133]. Disordered proteins exist as ensembles of different conformations with
different populations. These populations change upon the addition of osmolytes which
generally favor more compact and structured states that can be more prone to nucleation
and attaching to fibril ends [121], but there can be some exclusions.

Consequently, denaturants are more likely to inhibit than accelerate fibril formation
from disordered proteins. Aβ42 fibrillation is inhibited by urea [134,135] and guanidinium
chloride at concentrations above 1 M [135,136] due to a decrease in the rate of both primary
and secondary nucleation. Interestingly, at low concentrations, guanidinium chloride act as
an osmolyte, increasing the rate of beta-amyloid fibrillation, likely due to the electrostatic
interactions with the ions formed upon its dissociation. α-synuclein fibrils undergo full
depolymerization to monomers after prolonged incubation in a solution containing more
than 3.5 M of urea [137]. Urea also suppresses tau protein fibrillation [138]. In the presence
of fluorinated alkanols, such as 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoro-2-
propanol (HFIP), a bell-shaped dependence of the rate of fibril formation on denaturant
concentration is observed for Aβ40, Aβ42 [136,139,140], and α-synuclein [140,141]. At mod-
erate concentrations of these alcohols, partially folded intermediates are formed, which
form fibrils quicker than the disordered states. At such conditions, fibril formation becomes
more favorable thermodynamically. Beta-amyloid was shown to aggregate even at nanomo-
lar concentrations, which is below the equilibrium monomer concentration for its fibrils in
the absence of additives (KF) [139]. High concentrations of fluorinated alcohols stabilize
α-helical conformation making fibril formation unfavorable both thermodynamically and
kinetically. Methanol, ethanol and propanol can also stabilize a partially folded state and
decrease the fibrillation lag time of α-synuclein at moderate concentrations, while at higher
concentrations, they promote the formation of non-fibrillar oligomers [140]. Pure TFE and
HFIP are known to disaggregate fibrils of beta-amyloid and other proteins [142–144].

Natively folded proteins can accelerate fibril formation under the action of denat-
urants at moderate concentrations. Lysozyme fibrils can be obtained in the presence of
2–4 M guanidinium chloride within several hours instead of several days at 50 ◦C [145]
due to the increase in the fraction of the unfolded form. At the concentration of 5 M and
higher, lysozyme becomes completely unfolded. The unfolded state becomes so thermo-
dynamically favorable that concentrated guanidinium chloride prevents the protein from
fibrillation and is able to dissolve preformed fibrils. Fibrils of α-lactalbumin [137] and
many other proteins [146] can also be depolymerized with guanidinium salts. For the fibril
formation of β-lactoglobulin increase in the presence of urea, the maximum yield and the
minimum lag time were observed at 5 M urea concentration [147]. Denaturants methanol,
ethanol, and DMSO [148] were also shown to promote the fibrillation of β-lactoglobulin.
Moderate concentrations of TFE were shown to induce fibrillation of acylphosphatase [149],
human stefin B [150], and insulin [151]; at high concentrations, no fibrils are formed.

On the other hand, FF domain of the URN1 splicing factor, a highly α-helical protein,
loses the ability to form fibrils even at moderate concentrations of TFE, which stabilizes its
native helical structure [144]. The lag time of bovine insulin aggregation at pH 4.0 in the
presence of methanol, ethanol, or isopropanol increases with the alcohol concentration up
to 30–40 volume % and starts to decrease at higher concentrations [152]. The fibril yield
greatly and steadily decreases with increasing alcohol concentration due to the parallel
formation of non-fibrillar aggregates, which was confirmed by AFM imaging. In contrast,
the study of aggregation of insulin in 0.1 M NaCl at pH 1.9 [153] showed the lowest lag
time at 10 weight % of ethanol which increased at its higher concentrations. The addition
of increasing amounts of guanidinium chloride to insulin first increases and then decreases
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the overall rate of fibril formation, as characterized by the lag time [154] and particularly
the rate of elongation [126]. These results are related to the complex equilibria between
insulin hexamer, tetramer, dimer, monomer, and the unfolded forms of monomer shifted
by the organic cosolvent as well as pH value [155,156].

3.1.3. The Effect of Crowding Agents and Detergents

Crowding agents such as polysaccharides (dextran, mannan, glycogen, Ficoll),
polyethylene glycols, or high concentrations of other proteins accelerate fibrillation of both
structured and disordered proteins: β-lactoglobulin [157], lysozyme [158], β-amyloid [158,159],
α-synuclein [160,161], tau protein [162], human prion protein [162], and many others. Unlike
charged polymers, they cannot tightly bind protein monomers or aggregates. Their influence
is usually attributed to the acceleration of fibril nucleation and growth by the excluded vol-
ume effects [163]. However, oligomeric proteins might be stabilized in their native state by
crowding agents and have a reduced aggregation rate [164].

Small-molecule detergents may have opposing effects on fibril formation. Sodium
dodecylsulfate (SDS) micelles prevent fibril formation of Aβ42 and Aβ40 and convert them
into the α-helical structures in a micellar environment [63,165,166], but at lower concen-
trations of SDS, the acceleration of aggregation is possible [167,168]. A similar difference
in the influence of submicellar and micellar concentrations of SDS was also observed for
concanavalin A fibrillation [169] and SCR3(18-34) peptide [170]. Low concentrations of SDS
and sarkosyl detergent induced fibril formation from a prion protein by the destabilization
of its native state [171,172]. Short-chain phospholipids in submicellar concentrations ac-
celerated the fibrillation of apolipoprotein C-II by inducing its conversion into a tetramer
serving as a nucleus for further fibril growth [173]. At the same time, micelles of the same
phospholipid suppressed aggregation due to their favorable interactions with the protein.

3.2. Inhibition of Fibril Growth by Binding to Aggregate Ends

Inhibitor molecules can bind to the ends of fibrils impeding their ability to further
growth. When the inhibitor interacts only with the terminal protein units, we can expect
that the binding constant Kb will not depend on the aggregate size. For equilibrium binding,
the fraction of the termini free from inhibitor molecules is thus given by”

β =
1

1 + Kb[I]
(12)

Since fibrils are quite long and the concentration of fibril particles binding the inhibitor ([P]
in Equation (1)) is small, it can often be assumed that [I] ≈ [I]0, then the β value does not
significantly change during the whole process. In the secondary nucleation model without
fragmentation and depolymerization, this changes only one term in Equation (1), which
becomes 2k+β[m][P] instead of 2k+[m][P]. Thus, such binding is equivalent to a decreasing
k+ (see Figure 3b), rmax scales as β

1
2 , τ50 and τlag scale as β−

1
2 . In seeded experiments,

the initial rate should be proportional to β. We do not explicitly consider binding to both
protein monomers and aggregates here, but it should be understood that this is possible.
Inhibitors may also bind to aggregates with a size-dependent affinity and may just decrease
the rate of monomer addition to the end of fibril but not completely suppress it. All of these
options complicate the kinetic models.

One possible strategy for the design of fibril growth inhibitors is to develop peptides
containing specific amino acid sequences, making them capable of selective binding with
the ends of fibrils and a disruptive element blocking, thus furthering aggregation [174]. Self-
recognition of the proteins or peptides during fibril assembly allows for the use of specific
parts of their amino acid sequences as the binding element. For beta-amyloid, amyloido-
genic fragment 17–21 KLVFF is itself able to bind to fibril ends with a micromolar affinity
and significantly reduce the fibril formation rate [7]. Its conjugates with polyethylene
glycol or dendrimers containing several copies of the peptide are much more potent in-
hibitors, with up to 100 pM affinity to the fibrils [175,176]. Peptides containing alpha,alpha-
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disubstituted amino acids [177,178], D-aminoacids instead of L-enantiomers [9,179–181],
substituted proline residues [182], N-methyl amino acids in alternating positions [183],
retro-inverso peptides with flipped CO and NH groups [184,185], many different pep-
tidomimetics [186], and glycopeptides [187] were synthesized and shown to inhibit Aβ42
and Aβ40 fibrillation. Modification of the whole aggregating protein is also used. In order
to inhibit α-synuclein aggregation, a chimeric inhibitor comprising a globular protein with
41.5 kDa molecular weight fused to the C-terminus of the α-synuclein monomer has been
developed [188]. α-synuclein, with a preformed hairpin between cysteine residues, was
also shown to inhibit the wild-type synuclein fibril elongation [189]. When the modified
and wild-type proteins were fused, a much more potent inhibitor was obtained. A com-
pletely different aggregation-prone protein can also act as an inhibitor; for example, the
mouse prion protein [190] or the molecular chaperone clusterin [191] binds to the ends of
growing fibrils of beta-amyloid, inhibiting their elongation.

The advantage of inhibitors binding to fibril ends, which are present at very low
concentrations, is that they can be active even at a small molar ratio to the protein. In
contrast, in order to suppress aggregation using the inhibitors binding to protein monomer
or fibril surface—they should be taken in at least a 1:1 molar ratio to protein, even in the
case of strong binding. For example, the fused synuclein-protein inhibitor [188] had one µM
affinity to synuclein fibrils according to the inhibition data. At this concentration, it reduced
the rate of fibril formation of 50 µM synuclein seeded with one µM preformed sonicated
fibrils approximately twice. The value of IC50 in seeded elongation experiments for another
above-discussed fused inhibitor obtained from wild-type and modified synuclein was
11 nM [189], and it was active against the fibrillation of protein with a thousands-times
higher concentration.

Binding to the fibril ends shifts the equilibrium of the protein aggregate mixture to
the side of lower-sized aggregates. At low inhibitor concentrations, this has no effect on
the total yield of aggregates. However, at high concentrations, strong binders may break
the fibril down to the smallest possible fragments or even to monomers if they are able
to bind them. There is experimental evidence that some peptide-based inhibitors at high
concentrations are able to disrupt preformed fibrils [192,193]. Hypothetically, molecules
binding only to aggregates, but not to the protein monomers, may increase the number
of aggregates if the protein has a small degree of equilibrium fibril conversion (large
KF value). In this unusual case, such a molecule will act as a thermodynamic promoter of
fibril formation.

Some small non-peptide molecules can selectively bind to aggregate ends. Since amy-
loidogenic fragments of proteins are often rich in aromatic residues, a hypothesis about the
governing role of π-stacking interactions in amyloid formation was suggested [4] and led
to numerous studies of various aromatic compounds as possible inhibitors. The most atten-
tion was paid to polyphenolic compounds [194] like resveratrol [195–197], epigallocatechin
gallate [196,198,199], curcumin [200,201], rosmarinic acid [202,203], quercetin [204–206],
tetracycline derivatives [207], and other species [208–211] that show significant inhibiting
activity with respect to beta-amyloid fibrillation in vitro. Binding to aggregates can be
proven by the presence of inhibiting activity at a low inhibitor/protein molar ratio [212].
Phenol itself does not inhibit the formation of fibrils; all potent inhibitors comprise at least
two benzene rings with at least three hydroxyl groups attached to them, which allows for
the adoption of the conformations necessary for non-covalent interaction with the β-layers
of amyloids.

In a recent cryo-EM study [198], epigallocatechin gallate molecules were found to
stack on the surface of tau protein amyloid fibrils disrupting the fibril architecture by
curving the fibril stack. This can lead to a decrease in the rate constant of fibril elongation
k+ and an increase in the depolymerization rate constant ko f f . Unfortunately, polyphenols
are characterized by low bioavailability and high reactivity—many of them are so-called
pan-assay interference compounds (PAINs) that interact with numerous biological targets
and appear to be inactive in clinical studies.
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Inorganic ions may also follow this mechanism of inhibition. It was hypothesized
that the Cu2+ ion inhibiting fibril elongation blocks the ends of growing beta-amyloid
fibrils [213]. However, it may also interact with monomeric proteins, as was shown for the
Zn2+ ion [214].

3.3. Inhibition of Secondary Nucleation by Binding to the Fibril Surface

Inhibitors can bind to the aggregates so that a part of their surface becomes inaccessible
for protein monomers and cannot serve as a center of secondary nucleation. The equilibrium
binding is expected in most cases; however, there is evidence of the non-equilibrium
inhibition of Aβ42 aggregation by a molecular chaperone, which slowly binds to the fibril
surface [215]. The rate of secondary nucleation will then be proportional to the fraction
γ of the fibril surface accessible for nucleation. We can relate γ to the inhibitor and fibril
concentrations using some adsorption models. For example, for Langmuir adsorption with
the assumption that absorbed inhibitor molecules can block all possible nucleation sites,

γ = 1− KL[I]
1 + KL[I]

=
1

1 + KL[I]
, (13)

where KL is the Langmuir constant. In the above-considered model (Equation (1)), this will
change only one term, which becomes equal to k2γ[m]n2 [F]. The concentration of fibrils
and their surface area undergo significant change during their growth, and during the lag
period, they are very small. Thus, the significant inhibition of secondary nucleation can be
achieved by strongly binding inhibitors, even at substoichiometric concentrations. In such
a case, the γ value quickly grows up when the lag time is over due to the depletion of the
unbound inhibitor form. On the other hand, at sufficiently large concentrations of inhibitor,
we can assume [I] ≈ [I]0, as γ does not change during the aggregation and inhibition
of secondary nucleation becomes equivalent to scaling k2 (see Figure 3c). Then, in the
absence of fragmentation and depolymerization, rmax scales as γ

1
2 , τ50 and τlag are roughly

proportional to γ−
1
2 , but at very low γ values when k2 → 0, and these quantities approach

their values for the model without secondary nucleation. In the seeded experiments, the
initial rate should not depend on γ.

A number of examples of secondary nucleation inhibition have been reported. The
molecular chaperone Brichos domain from prosurfactant protein C changed the time course
of human beta-amyloid Aβ42 aggregation in a way that corresponds to a decrease of
k2 [12]. It was proven to bind to the surface of fibrils using TEM and had a 40 nM binding
constant according to the SPR measurements. Triggering receptor expressed on myeloid
cells 2 (TREM 2) slowed the Aβ-peptides fibril formation but was shown not to bind
to the protein monomers [36]. The effect was attributed to the inhibition of secondary
nucleation. Globular aggregates of covalently linked Aβ40 dimer were found to inhibit
secondary nucleation of wild-type Aβ40 by binding to the surface of its fibrils with 160 nM
affinity [45]. A monoclonal antibody aducanumab targeting soluble Aβ oligomers and
binding the N-terminus of peptides shows inhibition of secondary nucleation, while some
other Aβ-binding antibodies do not [216]. Co-chaperonin prefoldin was shown to interact
with both surface and ends of IAPP fibrils [217] based on both kinetic, NMR and cryo-EM
data. Thus, it also affects the elongation rate. Moreover, some species seem to inhibit both
primary and secondary nucleation. Knowles et al. [218] showed the ability of transthyretin
to simultaneously decrease the rates of primary and secondary nucleation of the αβ-peptide.
Primary nucleation was hypothesized to be impeded by the binding of the inhibitor to the
oligomers before their conversion to the shortest fibrils able to elongate. The same group has
also found a number of small molecules inhibiting both primary and secondary nucleation
of human beta-amyloid fibrils [6] and secondary nucleation of α-synuclein oligomers [219].
Binding at the fibril surface is expected for molecular probes of fibril formation, such
as Thioflavin T and other fluorescent dyes [220]. Monitoring the fluorescence signal
of Thioflavin T is the most common method to obtain the kinetic curves of fibrillation.
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Regardless of a quite strong binding to the fibrils with less than a 1 µM affinity for the
fibrils of some proteins [220], Thioflavin T, at the concentrations used in experiments, seems
not to interfere with the fibril formation process significantly [221] because it binds to the
specific sites that are not critical for secondary nucleation or elongation processes and does
not block the whole fibril surface (so Equation (13) cannot be used for Thioflavin T). Other
small molecules can also turn out to be inefficient inhibitors despite the strong binding.

Adsorption of inhibitor on aggregates will normally not reduce the fibril yield (the-
oretically, it even decreases the equilibrium monomer concentration). However, Chatani
et al. [222] reported stabilization of the prefibrillar intermediate of the insulin B chain by
fibrinogen due to binding to its surface. As a result, conversion into mature fibrils becomes
thermodynamically blocked. In general, this is possible if the fibril formation mechanism is
more complicated than the one we considered and includes the intermediate aggregates.

4. Conclusions

Design of novel fibril formation inhibitors can rely on one of three major molecular
mechanisms of action, including binding with fibril-forming protein monomers, blocking
the ends of the growing fibril, or binding to the surface of oligomers preventing nucleation.

Inhibitor-sequestering protein monomers can completely suppress fibril formation and
disrupt the already-formed fibrils. For the structured proteins with well-defined binding
sites, small-molecule ligands binding with high affinity and stabilizing the native state can
be designed. This approach led to the development of the first-in-class clinically approved
drug for the treatment of transthyretin amyloidosis. In the case of disordered proteins,
strong binding with small molecules is less likely, but antibody-like proteins with high
affinity can be designed.

The advantage of the inhibitors blocking fibril ends is their activity at low substoichio-
metric concentrations. Moreover, the design principles of peptides complementary to the
self-recognition motif of pathogenic proteins, such as beta-amyloid, are well understood.
However, these inhibitors do not prevent nucleation processes and lead to the accumulation
of a large number of small aggregates that are feared to be very toxic.

Nucleation inhibitors are quite a novel idea with a limited number of proven examples
and are not fully understood development principles. They can reduce the number of fibril
particles favoring longer chains.
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