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SUMMARY
The Columbia Cancer Target Discovery and Development (CTD2) Center is developing PANACEA, a resource
comprising dose-responses andRNA sequencing (RNA-seq) profiles of 25 cell lines perturbedwith�400 clin-
ical oncology drugs, to study a tumor-specific drug mechanism of action. Here, this resource serves as the
basis for a DREAMChallenge assessing the accuracy and sensitivity of computational algorithms for de novo
drug polypharmacology predictions. Dose-response and perturbational profiles for 32 kinase inhibitors are
provided to 21 teams who are blind to the identity of the compounds. The teams are asked to predict
high-affinity binding targets of each compound among �1,300 targets cataloged in DrugBank. The best per-
formingmethods leverage gene expression profile similarity analysis aswell as deep-learningmethodologies
trained on individual datasets. This study lays the foundation for future integrative analyses of pharmacoge-
nomic data, reconciliation of polypharmacology effects in different tumor contexts, and insights into
network-based assessments of drug mechanisms of action.
INTRODUCTION

Non-canonical drug targets are known to contribute to clinical

toxicity due to off-target effects. More recent work, however,
This is an open access article under the CC BY-NC-ND IG
suggests that off targets may contribute to clinical efficacy.1,2

Systematic, de novo elucidation of compound mechanisms of

action (MoAs), including polypharmacology, is thus emerging

as a critical, yet still highly elusive, problem in clinical oncology.
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Availability of methodologies for the comprehensive assessment

of on- and off-target drug binding could help discriminate be-

tween targets driving efficacy or toxicity and those producing

non-relevant clinical effects.3

Traditionally, the molecular targets of a drug that comprise its

MoA have been defined by detailed thermodynamic (binding

strength) and crystallographic (binding structure) characteriza-

tion of a drug’s interaction with individual proteins.4 This

approach is quite effective, as it directly facilitates structure-

based drug design. Unfortunately, such a ‘‘one-drug/one-

target’’ paradigm is often insufficient tomechanistically elucidate

clinical phenotypes induced by even classical drugs, such as

aspirin.5,6 As a result, there is an urgent need to systematically

re-assess drug MoAs in terms of their proteome-wide polyphar-

macology, which is defined as their ability to inhibit or activate

proteins across a comprehensive, proteome-wide landscape.7

An increasing number of efforts have emerged to leverage

large-scale perturbational profiles—e.g., mRNA profiles of

cell lines and tissues before and after perturbation with a small

compound—to predict both high-affinity binding targets and

context-specific effectors.8–11 The key assumption behind

the use of perturbational profiles for this purpose is that differ-

ential gene expression is controlled by transcription factors

and co-factors that represent the key downstream effectors

of a compound’s high-affinity binding targets (Figure 1A).12,13

For example, the drug lapatinib inhibits EGFR (Epidermal

Growth Factor Receptor), which induces gene expression

changes via downstream transcription factors, including

MYC and E2F family proteins (effectors).14,15 As a result,

drug-induced differential expression of MYC and E2F tran-

scriptional targets may help distinguish EGFR inhibitors from

inhibitors with a different downstream effector repertoire (Fig-

ure 1A). By extension, compounds targeting the same proteins

should induce similar transcriptional signatures, which in turn

can shed insight into its MoA (Figure S1).

The availability of compound- and tissue-specific dose-

response curves (DRCs) further improves target assessments.

First, it allows perturbational profile generation at high, yet

sub-lethal, concentrations, thus preventing an emergence of

cell-mediated responses, such as apoptosis or cellular stress,

that would confound the trueMoA. Second, the availability of dif-

ferential cell viability in multiple molecularly distinct tissues

further informs on compound activity based on distinct cellular

and pathway architectures.16

Protein kinases represent one of the most thoroughly studied

drug target classes. Protein kinase inhibitors are designed to

target some of the most frequently mutated oncogenes, whose

inhibition has been the hallmark of the oncogene addiction hy-

pothesis.17 Moreover, ATP-competitive pull-down assays

enable effective and systematic binding affinity measurements

across comprehensive protein kinase repertoires. The most

comprehensive such evaluation to date, the Kinome-Binding

Resource (KBR), measured the affinity of 230 clinically relevant

kinase inhibitors across 255 kinases.18 While restricted to this

protein class, this dataset is well-suited to benchmarking

methods aimed at predicting drug polypharmacology by

providing criteria for the evaluation of systems pharmacology

approaches (Figure S2).
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To assess the research community’s ability to predict kinase

inhibitors’ MoAs from drug perturbation profiles, we designed

a DREAM Challenge19,20 using KBR to provide ground-truth

compoundMoAs and PANACEA (Pan-cancer Analysis of Chem-

ical Entity Activity)—a large-scale resource comprising genome-

wide RNA sequencing (RNA-seq) profiles and matched DRCs of

multiple cell lines following perturbation with hundreds of clini-

cally relevant compounds—to provide data that may be used

to predict compound MoAs. This significantly extends previous

computational and systems pharmacology DREAM challenges

by shifting the question from drug sensitivity to MoA prediction.

The PANACEA data used in this challenge includes matched

DRCs and perturbational RNA-seq profiles representing 11 cell

lines following perturbation with approximately 400 clinical

oncology drugs in replicate—including US Food and Drug

Administration (FDA)-approved and late-stage (phase 2 and 3)

compounds (Figure 1B). From the challenge, we specifically

selected a subset of 32 kinase inhibitors that were also repre-

sented in the KBR (Figures 1C and 1D).

Challenge participants were provided with perturbational pro-

files and DRCs for each drug (blinded) and cell line (Figure 1E)

and were asked to predict high-affinity binding targets for the

32 selected drugs by developing and training machine-learning

algorithms using these data. Teams were further encouraged

to use public data sources, such as the Cancer Cell Line

Encyclopedia,21 the Genomics of Drug Sensitivity in Cancer

database,22 and the CMap L1000 database,23 and to leverage

insights and models developed in previous DREAM

Challenges.8,19,24,25

Previous projects, such as the IDG-DREAM Drug Kinase

Binding Challenge25 and the Multi-targeting Drug DREAM

Challenge,26 challenged the community to develop computa-

tional methods that leveraged publicly available chemical (e.g.,

chemical fingerprints, protein structures) and kinase binding

data to predict drug-target interactions without using compound

treatment data in a biological context. In contrast, this challenge

asked the community to develop methods that could rank the

proteins most affected by a compound using publicly available

biochemical data. In order tomake the challenge realistic, partic-

ipants were blinded to the compound identity and to the fact that

they were selected from the KBR collection. The challenge oper-

ated fromDecember 2019 to February 2020 and led to the devel-

opment and assessment of state-of-the-art approaches for

inferring drug MoAs from perturbational profiles, as described

herein.

RESULTS

Challenge requirements and data
In the CTD2 Pancancer Drug Activity DREAM Challenge, partic-

ipants were asked to use DREAM-provided and publicly avail-

able pharmacogenomic datasets—including cell-line-matched

DRCs and gene expression profiles of drug-naive and -per-

turbed cells (perturbational profiles)—to predict compound

binding proteins (high-affinity targets) of 32 anonymized drugs

(Figure 1A, Table S1). The DREAM-provided dataset comprised

704 DRCs andmatched perturbational profiles of these 32 drugs

(Table S2) in 11 cell lines representing molecularly distinct tumor



Figure 1. Underlying data and structure of

polypharmacology community challenge

(A) Drug mechanism can be divided into direct

binding targets and downstream effectors.

(B) The PANACEA-database-given transcriptional

profiles of cell lines perturbed by clinical oncology

drugs.

(C) Kinome-binding profiles of 32 kinase inhibitors.

(D) Transcriptional Hallmark programs induced by

32 kinase inhibitors (this data represents the

average of two technical replicates where the same

cell line was perturbed and sequenced on 2 different

days).

(E) Challenge structure: participants are given per-

turbed RNA-seq and dose response data and asked

to predict protein targets.

(F) Challenge evaluation: participant predictions are

evaluated based on the enrichment of <mM binders

within each drug target prediction vector.
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subtypes in replicate (Figure 1E). All drugs used in the challenge

had perturbational profiling in PANACEA and high-affinity bind-

ing characterization in the Kinome-Binding Resource (KBR).18

While the full PANACEA manuscript is being published indepen-

dently, all data related to this challenge is made contextually

available with the publication of this manuscript (see Data and

code availability).

Participants were encouraged to combine these data with

additional publicly available resources to infer high-affinity bind-

ing targets of the 32 drugs from a repertoire of �1,300 potential

drug targets, defined as the union of all DrugBank-reported tar-

gets and the 255 kinases profiled in the KBR. Drug names were

obfuscated to prevent trivial training of the algorithm on the KBR

data (Figure 1F), and participants were not aware that the KBR
Cell Repo
data would be used as a gold standard

for performance assessment.

Consistent with past DREAM studies,

the challenge included a leaderboard

round followed by a final validation

round.20 During the former, teams were al-

lowed to submit up to five predictions for

the 32 compounds, which were scored

and posted to a public leaderboard. The

purpose of this round was to enable exper-

imentation and conceptual flexibility in

model development by providing rapid

feedback on the accuracy of the model

while also encouraging competition

among participants. A limit of 5 submis-

sions was chosen to allow model refine-

ment without compromising the statistical

independence of the training and testing

model, thus minimizing the potential for

over-fitting. In the final validation round,

participants were asked to submit their

final model’s predictions with the accom-

panying source code, thus allowing for

objective validation of their methodology.
Model performance was evaluated according to each team’s

ability to prioritize bona fide targets of the 32 drugs, with the latter

defined as having a dissociation constant Kd < 1 mM in the KBR,

according to two complementary metrics, which were summa-

rized by two sub-challenges:

Sub-challenge 1 (SC1) was designed to assess the ability of

each submitted prediction to identify high-affinity binding tar-

gets (Kd < 1 mM) of each of the 32 compounds among the top

10 highest-scoring predicted targets. The rationale for select-

ing the top 10 targets was to represent the number of predic-

tions that could be realistically validated using experimental

assays. For each submitted drug prediction, a p value was

calculated by filtering the prediction list to consider only
rts Medicine 3, 100492, January 18, 2022 3



Table 1. Number of additional datasets used by participants for training and algorithm class

Team SC1 SC2

No. of drug-AUC

datasetsa
No. of drug-mRNA

datasetsb No. of drug-target datasetsc
Total training

datasets Algorithm class

Netphar 12.6 70.9 6 1 4 11 similarity

SBNB 11.7 59.2 6 3 2 11 similarity

Xielab 13.8 50.3 6 2 1 9 similarity

Atom 17.4 49.3 – 2 4 6 NN

DMIS_PDA 13.8 35.2 – 2 1 3 NN

Theragen 15.1 17.3 – 2 1 3 similarity

Signal 6.3 6.1 – 1 2 4 regression

TeamAxolotl 6.2 1.1 – – 2 3 NN

AMbeRland 3.3 1.1 – – – 0 unsup.

SenthamizhaV 7.4 0.9 – – – 0 unsup.
aDrug sensitivity (AUC) databases include: NCI60,27 GDSC,22 CTRP,28 gCSI,29 CCLE,21 and other manually curated data.
bDrug mRNA perturbation databases include: L1000-drugs, L1000-shRNA,23 and CREEDS.30

cDrug target datasets include: DrugBank,31 ChEMBL,32 KEGG,33 and MATADOR.34
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targets in the KBR and comparing the number of bona fide

targets (Kd < 1 mM in the KBR) in the top 10 predicted targets

to a null model generated from all possible targets and was

similarly filtered to consider only targets in the KBR. A final in-

tegrated score was computed by averaging the -log2(p value)

for each drug across all 32 drugs.

Sub-challenge 2 (SC2) was designed to assess the ability of

each submitted prediction to accurately rank all the (for the

participants) unknown bona fide targets (Kd < 1 mM in the

KBR) of each of the 32 compounds by computing their enrich-

ment—and associated p value—within the ranked list of pre-

dicted targets. The rationale for this second metric was to

provide a more comprehensive and fine-grained comparison

of the different methodologies (Figure 1F). Similar to SC1, a

final integrated score was computed by averaging the

-log2(p value) for each drug across all 32 drugs.

Challenge results
During the leaderboard phase, 21 teams contributed 86 predic-

tion matrices of which 39 (45%) showed a geometric mean

(across drugs for each team) p value of <0.01 for both SC1

and SC2. Interestingly, SC1 and SC2 scores revealed distinct

distribution profiles: on average, most predictions were statisti-

cally significantly enriched on the top 10 target metric (SC1)

but not on the entire list enrichment (SC2) (Figures S3A and S3B)

Consistent with previous DREAM Challenges, we assessed

whether the performances across teams were statistically

different for both sub-challenges by estimating a Bayes factor

using a bootstrap analysis (see STAR Methods). The Bayes fac-

tor is ametric used to compare two (ormore) statistical models; a

model with a Bayes factor BF%3 indicates that the model is sta-

tistically indistinguishable from the top-ranked model. Figures

S3C and 3D summarize the results of this analysis, with each

box showing a team’s bootstrapped scores, and the color of

the box indicating the Bayes factor relative to the top performer.

Using this criteria, Team Atom and Team Netphar were

confirmed as the top performers in SC1 and SC2, respectively

(Figures S3C and S3D), while team SBNB was a close second

in SC2 (Bayes factor 3–5). A description of the algorithms from
4 Cell Reports Medicine 3, 100492, January 18, 2022
teams Atom, Netphar, and SBNB is provided in the STAR

Methods.

When scoring the algorithms for the challenge, we filtered the

predictions to the 255 kinases in the gold-standard dataset (i.e.,

KBR compendium). However, it would be possible in principle for

challenge participants to rank kinase targets in the correct order

but below incorrect targets not included in the KBR, such that

this filtering step would boost their performance relative to par-

ticipants who had ranked kinase targets in the correct order

and above non-kinase targets. To address this issue, SC1 and

SC2 results were re-scored considering the full list of 1,259 tar-

gets. As with the scoring for the main challenge, SC1 evaluated

the top 10 predictions to assess whether any given top 10 over-

lapped with the gold-standard dataset. SC2 looked at the rank of

the gold-standard targets within the submitted predictions. This

analysis (Figures S3E and S3F) changed the ranking of some

teams in SC1, most notably Team Theragen, whose original sec-

ond place fell to ninth place when non-KBR targets were not pre-

filtered. In addition, Team Netphar’s SC1 performance substan-

tially increased, moving from 5th to 1st position.

To better understand the models and the difference in their

performances, we examined sub-challenge scores on an individ-

ual drug basis (Figures S3G and S3H). Two clusters emerged,

which separated teams based on whether they had used addi-

tional training datasets to train their algorithms. (Table 1). In

general, consistent with prior results on the value of evidence

integration,25 overall performance was positively correlated

with the number of additional databases utilized in the analysis,

accounting for 27% of the variance in SC1 and a remarkable

82% of the variance in SC2.

Training data source contribution to model
performances
Both SC2winning teams, Netphar and SBNB, employedmultiple

highly curated datasets for training their algorithm. Netphar

relied on the multi-database resources DrugComb (cytotox-

icity)35 and DrugTargetCommons (drug targets),36 and SBNB

relied on the multi-modality ChemicalChecker database.37 Fig-

ure 2 provides a high-level conceptual summary of the types of



Figure 2. The universe of training data used in this challenge

Drug-perturbation datasets can be divided into two major categories: technology-based and literature-based, each with distinct limitations.
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data sources included in these meta-databases organized by

data type and source.

Overall, the datasets used to train the algorithms could be

divided into twomain categories: experimental screening-based

and literature curation-based (Figure 2). Screening approaches

have the advantages of providing measurements that are quan-

titative, directly comparable, and systematic (i.e., low sparsity).

However, theymay suffer from technological platform bias. Liter-

ature curation has the advantage of reflecting a multi-laboratory

consensus but suffers from the disparate, ad hoc nature of the

measurements and from lack of systematic assessment (high

sparsity) (Figure 2). Team performance was further stratified

based on whether they relied on (1) drug-target databases, (2)

drug-perturbational databases, and/or (3) cytotoxicity data-

bases. As further discussed below, drug-target and -perturba-

tional databases provided the greatest accuracy boost across

all drugs.

Critically, all teams chose to use literature-based datasets for

identifying candidate drug targets (Figure 2). This is an important

detail because while methods were trained on literature-based

‘‘drug-target’’ definitions, they were eventually evaluated based

on objective, high-accuracy ATP-competitive assays (Figure 1F).

To better understand the overlap between literature- and ATP-

based drug targets, we evaluated the overlap between Drug-

Bank and KBR targets (Figure 3). Specifically, we measured

the number of DrugBank-reported protein kinase targets that

were recovered across a range of affinity thresholds from 1 nM

to 10 mM in the KBR (Figure 3A). Encouragingly, almost 80% of

themwere identified in the KBR using a Kd < 1 mM threshold (Fig-

ure 3A), consistent with a common ‘‘rule-of-thumb’’ for drug-lead

development.4

Interestingly, while a 1 mM threshold identified the majority of

DrugBank kinase targets, it also revealed the presence of a

significant number of new targets not reported in DrugBank
(Figure 3B). Overall, this shows that while DrugBank is mostly

recapitulated by the KBR, the reverse is not true, suggesting

that DrugBank may not contain all high-affinity targets of a

drug. A key question raised by this comparison is whether the

winning method’s performance may have been driven entirely

by canonical DrugBank targets. To address this question, we

evaluated the ratio between the scores of the top three winning

teams when either DrugBank or KBR targets were used as

bona fide high-affinity targets of the 32 drugs used in the chal-

lenge (Figure S4). While the scores based on DrugBank targets

were consistently higher (Netphar, 3:2; SBNB, 4:2; and Atom,

1.7:1.4), they all showed positive enrichment within the predic-

tion vector (Figure S4). This result implies that literature-curated

drug targets can be successfully used to bootstrap the polyphar-

macology analysis of otherwise uncharacterized drugs, thus

further supporting the value of these resources. However, this

may reduce algorithm performance for new compounds that

are not yet included in any database.

In addition to DrugBank, two additional drug target data-

bases—ChEMBL32 and DrugTargetCommons36—were used

by the top-performing teams. Plotting the overlap of all drug-

target pairs across all four drug-target databases, only 121 tar-

gets (34%) were found to be unique to the KBR (Figure 3C).

Taken together, these databases provided up to 2,386 additional

drug-target interactions, of which 520 (21%) were evaluated in

the KBR but were found to have affinities >1 mM, suggesting

that they are false positive drug-target interactions (Figure 3D).

We compared the ranked performance of each prediction us-

ing these various databases as gold standards (KBR/Kinome,

ChEMBL, DrugTargetCommons, KinomeScan, and DrugBank)

to evaluate the stability of the predictions with different ground

truths (Figure S5). As is expected, different ground-truth data-

sets have a substantial effect on team ranking, though the SC2

metric (rank across all targets for which data are available in
Cell Reports Medicine 3, 100492, January 18, 2022 5



Figure 3. Comparison of DrugBank and kinome drug target definitions

(A) An affinity threshold of 1 mM within the kinome database successfully recovered almost 80% of the kinase targets within DrugBank.

(B) The kinome-defined drug targets appear to reveal a large number of new drug-targets (in red) in addition to the canonical drug targets (in black).

(C) Drug target pairs overlap across four drug target universes.

(D) Drug target pairs not detected in the kinome database used for PANACEA evaluation.

(E) Number of successful top 10 predictions for each drug and team across the different drug target universes.
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the gold-standard dataset) is more stable than the SC1 metric

(rank across top ten targets only).

Interestingly, when comparing the overlap of the top 10 targets

predicted by the winning teams in each database, the observed

differences strongly reflect the training datasets used by each

team (Figure 3E). For instance, as one would expect, SBNB

and Netphar results were biased toward DrugBank and

DrugTargetCommons targets, respectively.

Kinase groups have distinct transcriptional programs
We next explored drivers of model performance by examining

prediction accuracy for individual kinase inhibitor groups (Fig-

ures 4A and 4B).38 Significant heterogeneity in methods perfor-
6 Cell Reports Medicine 3, 100492, January 18, 2022
mance across individual drugs was observed, suggesting that

differences in modeling strategies (see the next section) may

be leveraged to predict different drug classes. For instance, all

winning methods performed better on the tyrosine kinase inhib-

itors group than on any other kinase group (Figure 4C).

Based on this observation, we hypothesized that specific ki-

nase groups and families may be associated with distinct tran-

scriptional programs. To evaluate the general relationships

between kinase targets and mRNA programs, we assessed the

correlation of the KBR-reported Kdwith transcriptional hallmarks

(as detailed in Supplemental information) across 84 drugs pre-

sent in both databases (Figure 4D). This correlation matrix is

plotted with phylogenetic tree-based kinase groups annotated



Figure 4. Different kinase pathways show distinct mRNA signatures when inhibited

(A and B) Across all models, tyrosine kinase (TK)-targeting drugs performed the best.

(C) Distribution of kinases profiled across the Human Kinome annotated by kinase group.

(D) Correlation of kinase-binding data with transcriptional program.

(E and F) KEGG pathway transformation of kinase space from (C) revealed pathway-specific transcriptional signatures

Cell Reports Medicine 3, 100492, January 18, 2022 7
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Figure 5. Comparison of the two winning strategies: weighted similarity and neural networks

(A) Team Netphar (who won SC2) used a simple matrix manipulation procedure to predict drug targets.

(B) Team Atom (who won SC1) used a protein-sequence-trained neural network.
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on the top bars. Examining the protein kinase mRNA program

matrix, no strong kinase group clustering was observed, indi-

cating that kinase class is not generally sufficient to predict

downstream transcriptional effects (Figure 4D, columns),

although tyrosine kinases showed weak clustering with prolifer-

ation programs (Figure 4D, rows, bottom cluster): E2F targets,

MYC targets, G2M checkpoint, oxidative phosphorylation, and

mTOR-signaling.

To better understand the nature of the biological pathways

underlying this association, we projected kinases into the

KEGG pathway space39 (see Method details for figures), which

yielded a matrix of associations between kinase-signaling path-

ways and downstream transcriptional programs (Figure 4E).

This analysis revealed a distinct pattern of transcriptional signa-

tures that distinguished tyrosine kinase inhibitors from cell-cy-

cle inhibitors and TGFb inhibitors (Figure 4E), consistent with

the known hierarchical structure of these signaling pathways,

e.g., MYC and cell-cycle suppression via RTK-inhibition, in

contrast to cell-cycle but not MYC suppression via CDK-inhibi-

tion (Figure 4F).14

Methodological summary
Overall, the methods submitted to the final validation round

could be broken into three general categories:

1. Methods relying on aweighted average of differential gene

expression and area under the curve (AUC)-based DRC

similarity across drugs and drug targets. These included

Netphar, SBNB, Xielab, and Theragen.

2. Methods relying on neural networks trained on prior infor-

mation relating differential gene expression to drug-tar-

gets. These included Atom, DMIS_PDA, and TeamAxolotl

3. Methods based on fully unsupervised data transformation

combining differential gene expression and DRC data.

These included AMbeRland, SenthamizhamV, and Signal.

Generally, similarity-weighted average methodologies per-

formed best in SC2 (Netphar 1st, SBNB 2nd, and Theragen

3rd)—i.e., they were better at predicting the entire range of tar-
8 Cell Reports Medicine 3, 100492, January 18, 2022
gets— while Neural Network-based methodologies performed

best in SC1 (Atom 1st and DMIS_PDA 3rd)—i.e., they were better

at predicting targets in the range that could lead to realistic

experimental validation. Fully unsupervised methods showed

the worst performance. Nonetheless, they achieved statistical

significance without leveraging any prior knowledge, suggesting

the potential for mechanistic insight that could be combined with

prior knowledge in future approaches.

In addition, there were differences in the training datasets

used by algorithms in the first two categories. While weighted

similarity methods used both transcriptional and cytotoxicity

data (Figures 1E and 5A), neural network methods were trained

exclusively with transcriptional profile data (see Contribution of

drug sensitivity data). Intriguingly, the winning neural network

method (Atom) used protein sequence data to further train their

neural network (Figure 5B). This particular prior knowledge is

worth noting, as it underlies several traditional approaches to

structure-based drug design (e.g., ligand docking to homology

models) and off-target discovery (e.g., BLAST searches in Drug-

Bank31). Unfortunately, while such an approach may eventually

help distinguish high-affinity binding targets from key down-

stream effectors, the use of protein sequence information

improved Atom’s performance only by a small, non-statistically

significant amount.
Contribution of drug sensitivity data
Previous work has shown that training on drug sensitivity profile

data can provide a comparable prediction performance to

training on transcriptional signatures.40 As such, we sought to

investigate the contributions of drug sensitivity and drug tran-

scriptional data to the performance of the winning Netphar

model (which utilized both). Drug sensitivity training data was

obtained from DrugComb, a curated database that includes

batch-corrected drug sensitivities for both single drugs and

drug combinations.35 In addition to the commonly used IC50

(half maximum inhibitory concenration), DrugComb provides

an AUC-based relative inhibition (RI) metric,41 which captures

both the potency and efficacy of drug responses (Figure S6A).
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Examining correlations between predicted and gold-standard

targets, we found that adding drug sensitivity data significantly

improved prediction accuracy relative to transcriptional data

alone (Figure S6B). Performance improvements were driven by

several individual drugs whose targets were poorly predicted

based on perturbational profile data only, including sunitinib, cri-

zotinib, and crenolanib (Figure S6C). Finally, we tested whether

the additional efficacy information provided by the RI metric

improved model performance. Indeed, use of the RI metric in

the predictive algorithms produced statistically significant, albeit

marginal, overall improvement (median 0.18 compared to 0.19,

paired Wilcoxon test p value = 0.025), highlighting the potential

value of this metric in modeling drug properties.

DISCUSSION

MoA elucidation is a critical, yet time-consuming, step in the

drug development process,42 as it helps to identify on- and off-

target effects supporting the activity of the compound (polyphar-

macology) as well as off-target effects that may cause unwanted

toxicity. This addresses two major reasons for clinical trial fail-

ures: lack of safety and efficacy.43,44 Failure rates may be sub-

stantially reduced if compound MoAs could be assessed more

accurately and comprehensively (Figures S1A and S1B).

A drugMoA is defined as the set of biochemical interactors and

effectors through which the drug produces its pharmacological

effects, both positive and negative. These are almost invariably

cell-context-specific. Despite its relevance, MoA characteriza-

tion still represents a significant challenge, which is only partially

addressed by experimental and computational strategies. Most

of the experimental approaches rely on direct binding assays,

such as ATP competitive pull-down,18 affinity purification45,46

or affinity chromatography assays.47 These labor-intensive

methods are generally limited to the identification of high-affinity

binding targets rather than the full protein repertoire responsible

for compound activity in a tissue and are often restricted to a spe-

cific protein family, such as protein kinases (Figure S1A). Thus,

critically relevant targets outside of these relatively narrow con-

fines may be missed, as shown by the recent reclassification of

theMET tyrosine receptor kinase inhibitor tivantinib as amicrotu-

bule inhibitor.48 Indeed, drug polypharmacology is emerging as a

critical concept that increasingly impacts themechanistic under-

standing of a drug’s disease-specific impact, for instance via a

field effect mediated by multiple targets rather than by their pri-

mary, high-affinity binding target (Figure S1B). For example,

OTS964 is a compound originally developed as a MELK inhibitor

and was recently shown tomanifest its antitumoral activity via an

entirely different target, CDK11,which hadoriginally beenmissed

in its MoA characterization.1

A few computational approaches have also been developed to

infer MoA,49–51 including using structural and/or genomic infor-

mation,52 text-mining algorithms,53 or data mining.54,55 As

such, they rely on detailed three-dimensional structures of

both the drug molecules and the target proteins or on prior

knowledge of related compounds. More recently, systematic

gene expression profiling (GEP) following compound perturba-

tions in cell lines8,11,23,56 has furthered the development of

computational methods for MoA analysis (Figure S1B).
To address these issues, we hosted a DREAM community

challenge to assess computational approaches for drug MoA

inference from drug perturbational profiles using a comprehen-

sive, experimental protein kinase binding affinity benchmark.

The objective benchmark used in this challenge is the Kinome-

Binding Resource (KBR), a systematic set of ATP-competitive

binding assays assessing the ability of 230 candidate kinase in-

hibitor molecules to bind to one of 255 protein kinases

(Figure S2).

A critical issue emerging from the evaluation of individual pre-

diction performance and individual databases is that the concept

of drug target is still poorly defined and inconsistent (Figure S2).

For instance, even when restricting the comparison strictly to

protein kinases, the comparison of targets defined in DrugBank

versus KBR shows that the former may be missing data andmay

contain false positive targets whose binding affinity is >1 mM

(Figure 3). Yet, it is unclear whether there may be false negatives

in the KBR, for example, if allosteric binding or protein degrada-

tion occurred upon drug binding, as it would be missed by an

ATP-competitive binding assay. More critically, it is unclear

whether the targets reported in one database but not the other

may play a relevant pharmacological role either in disease treat-

ment or in the emergence of undesirable side effects.

While this was not the main objective of the DREAM

Challenge, the study also provides significant insights on the

network of effector proteins downstream of high-affinity binding

targets. Indeed, the fact that the perturbational signature signif-

icantly contributed to correct target inference suggests that

downstream transcriptional regulators represent a valuable re-

porter assay that can distinguish the MoA of different com-

pounds (Figures 4 and S6). Furthermore, the analysis shows

that availability of matched DRCs and perturbational profile

data for each drug provided a significant contribution to the qual-

ity of the prediction. For instance, drugs such as sunitinib, crizo-

tinib, and crenolanib produced significantly worse performances

when the analysis was restricted to perturbational profiles but

performed significantly better when DRCs and perturbational

profile data were integrated.

An interesting observation that emerged from this challenge is

that tyrosine kinase inhibitors were predicted with higher accu-

racy by all methods (Figures 4A–4C). Examining correlations be-

tween binding constants and transcriptional profiles, we found

that tyrosine kinases inhibitors were mostly associated with sup-

pression of proliferation signatures (Figure 4D). This is perhaps

unsurprising, as growth factor control of the cell cycle is typically

mediated by receptor tyrosine kinases. Looking at enrichment of

KEGG pathways within Figure 4D’s correlation matrix, we were

able to identify a decoupling in the effects of MYC and the cell

cycle (Figure 4E) that was consistent with the hierarchy of known

proliferation pathways (Figure 4F). These results provide evi-

dence that drug-perturbed transcriptional signatures can retain

information on the signaling pathways directly downstream of

molecular drug targets.

While we did not observe major differences between model

performances based on modeling strategy, generally, similar-

ity-weighted average methodologies performed best in SC2

(Figures S7 and S8), while neural-network-based methodologies

performed best in SC1 (Figure S9). An important insight arising
Cell Reports Medicine 3, 100492, January 18, 2022 9
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from the challenge is that computational methods for MoA infer-

ence are best at identifying similarities between unknown com-

pounds and compounds already reported in existing databases

rather than at elucidating compound MoAs de novo. Indeed, all

of the methodologies that did not rely on prior databases under-

performed when compared with those that did. The fact that all

the proposed methodologies produced statistically significant

results suggests that genome-wide perturbational profiles bring

de novo predictions of compound MoAs a step closer to being

effectively useful in drug discovery.

For the best-performing drug classes, differential transcrip-

tional signals could be traced to specific patterns of co-regulated

transcriptional gene sets or hallmarks (Figures 1D, 4D, and 4E).

These patterns can be directly explained by the hierarchical

structure of kinase signaling cascades in canonical pathways

(Figure 4F). Critically, this insight highlights the strengths and

weaknesses of mRNA-based target inference where:

d Targets within the same pathway can be difficult to differ-

entiate (e.g., EGFR, RAS, RAF, and MEK inhibitors) due to

transcriptional phenocopying.

d Targets at pathway branch points are easier to predict due

to the differential transcriptional effects they induce (e.g.,

RTK versus CDK versus TGFb inhibitors).

For example, while RTK inhibitors could be effectively distin-

guished from CDK inhibitors, distinguishing the more subtle dif-

ferences between drugs within each class should prove more

challenging.

Overall, this work suggests that predictive models can

leverage perturbational data to effectively infer the MoA of small

molecules and to reveal biological and clinical insights about

druggable pathways. Future studies using computational

modeling to tackle this problem will be critical to the successful

application of these methods. Specifically, developing a more

systematic knowledge of drug targets, particularly for non-ki-

nase targets, may improve the ability of the community to

develop accurate models. Additional development and bench-

marking of unsupervised prediction methods may also be

required for the accurate prediction of targets of novel mole-

cules. Finally, future work will be necessary to elucidate the

best practices, limitations, and general applicability of these

methods as a step in the drug discovery pipeline.
Limitations of the study
It is important to note that these finding are most applicable to

kinases due to the focus of our drug library on kinase inhibi-

tors. While kinase inhibitors form the largest class of targeted

therapy (which often assume specificity), care should be taken

in extending the results to other oncology drugs such as cell-

cycle inhibitors and DNA-damaging agents. In addition, it

should be noted that our perturbation data are collected on

only 11 cell lines and so may not recapitulate the transcrip-

tional effects of these 32 kinase inhibitors across all cancer

types. Finally, while several different methods were evaluated

in this challenge, other methods not evaluated in the present

study may also be performant when applied to this machine-

learning problem.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

AEE788 SelleckChem S1486

Afatinib SelleckChem S1011

AZD5363 SelleckChem S8019

Bafetinib SelleckChem S1369

Bosutinib SelleckChem S1014

Cabozantinib SelleckChem S1119

Cediranib SelleckChem S1017

Crenolanib SelleckChem S2730

Crizotinib SelleckChem S1068

Dacomitinib SelleckChem S2727

Dasatinib SelleckChem S1021

Dovitinib SelleckChem S1018

Foretinib SelleckChem S1111

Gefitinib SelleckChem S1025

Icotinib SelleckChem S2922

Imatinib SelleckChem S2475

KW2449 SelleckChem S2158

Lapatinib SelleckChem S2111

Linifanib SelleckChem S1003

MGCD365 SelleckChem S1361

MK2206 SelleckChem S1078

Neratinib SelleckChem S2150

Nilotinib SelleckChem S1033

Osimertinib SelleckChem S7297

Ponatinib SelleckChem S1490

Quizartinib SelleckChem S1526

Regorafenib SelleckChem S1178

Sorafenib SelleckChem S1040

Sunitinib SelleckChem S1042

Tivantinib SelleckChem S2753

Vandetanib SelleckChem S1046

Varlitinib SelleckChem S2755

Critical commercial assays

CellTiter-Glo Luminescent Viability Assay Promega G7570

Deposited data

PANACEA gene expression profiles. This paper GEO: GSE186341

Experimental models: Cell lines

AsPC-1 ATCC ATCC Cat# CRL-1682; RRID:CVCL_0152

DU 145 ATCC ATCC Cat# HTB-81; RRID:CVCL_0105

EFO-21 DSMZ DSMZ Cat# ACC-235; RRID:CVCL_0029

HCC1143 ATCC ATCC Cat# CRL-2321; RRID:CVCL_1245

(Continued on next page)

e1 Cell Reports Medicine 3, 100492, January 18, 2022



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

HF2597 Henry Ford N/A

HSTS Broad RRID:CVCL_L296

KRJ1 Califano Lab RRID:CVCL_8886

LNCaP ATCC ATCC Cat# CRL-1740; RRID:CVCL_1379

NCI-H1793 ATCC ATCC Cat# CRL-5896; RRID:CVCL_1496

PANC-1 ATCC ATCC Cat# CRL-1469; RRID:CVCL_0480

U-87 MG ATCC ATCC Cat# HTB-14; RRID:CVCL_0022

Software and algorithms

STAR aligner, 2.5.2b Dobin et al.57 https://github.com/alexdobin/STAR

Limma 3.48.1 Ritchie et al.58 https://bioconductor.org/packages/release/bioc/html/

limma.html

DESeq2 Love et al.59 https://bioconductor.org/packages/release/bioc/html/

DESeq2.html

ComBat Johnson et al.60 https://bioconductor.org/packages/release/bioc/html/

sva.html

Analysis code This paper https://github.com/Sage-Bionetworks-Challenges/

CTD2-Panacea-Challenge
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Andrea Califano

(ac2248@cumc.columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data used in the challenge, submission writeups, and other Challenge resources can be found at https://www.doi.org/10.7303/

syn20968331.

Raw data is also available through the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under accession number

GEO: GSE186341. Code for scoring the predictions and for generating the null models is available here: https://github.com/

Sage-Bionetworks-Challenges/CTD2-Panacea-Challenge, and a Docker container that was used to deploy the scoring algorithm

in this challenge is available to all registered Synapse users via the Synapse Docker registry (https://www.synapse.org/#!Synapse:-

syn20968331/wiki/597042). Links to all submitted writeups, Docker containers containing method source code, and Docker docu-

mentation for this challenge can be found on the Challenge wiki: https://www.synapse.org/#!Synapse:syn20968331/wiki/607259.

Any additional information required to reanalyze the data reported in this work paper is available from the Lead Contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell line viability
Cell-lines were obtained from ATCC and cultured using prescribed conditions. To determine optimal seeding density for compound

titrations (i.e., cell-growth is linear for the duration of experiment), 3.2 million cells of each cell line were plated and viability measured

using CelTiter Glo (Promega Corp.) at 24, 48, 72 and 96 hours. Briefly, 10 mL of 320,000 cells/mL cell-solution was added to column

11 of a 12w deep-well plate. 5mL from column 11was then serially diluted 1:1 from column 11 through column 2. The HamiltonMicro-

Lab automated liquid handling system’s Cell Line Optimization protocol was used to split the 12 w plates between 4 384 well plates

for incubation. 384 well plates were stored in the incubator and at 24, 48, 72 and 96 hours 1 plate was removed and allowed to sit for

15minutes at room temperature. 25 uL of Cell Titer Glo was added to eachwell and shaken at 800rpm for 5min. Finally luminescence

was read using the EnVision Multi-Label Reader (Perkin Elmer Inc.). The seeding density which resulted in linear increase of the cells

was used for the perturbation experiments.
Cell Reports Medicine 3, 100492, January 18, 2022 e2

mailto:ac2248@cumc.columbia.edu
https://www.doi.org/10.7303/syn20968331
https://www.doi.org/10.7303/syn20968331
https://www.ncbi.nlm.nih.gov/geo/
https://github.com/Sage-Bionetworks-Challenges/CTD2-Panacea-Challenge
https://github.com/Sage-Bionetworks-Challenges/CTD2-Panacea-Challenge
https://www.synapse.org/#!Synapse:syn20968331/wiki/607259
https://github.com/alexdobin/STAR
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/sva.html
https://bioconductor.org/packages/release/bioc/html/sva.html
https://github.com/Sage-Bionetworks-Challenges/CTD2-Panacea-Challenge
https://github.com/Sage-Bionetworks-Challenges/CTD2-Panacea-Challenge


Article
ll

OPEN ACCESS
METHOD DETAILS

Collaborative methods overview
The PANACEA database was developed in collaboration between Columbia University Irving Medical Centers (CUIMC)’s High

Throughput Screening Center (HTS), Sulzberger Genome Center and the Califano Laboratory in the Department of Systems Biology.

Briefly, HTS handled cell-culture, cell-perturbation experiments and RNA extraction; theGenomeCenter performedRNA sequencing

and the Califano laboratory performed data normalization, quality control, benchmarking and scientific and statistical analysis.

Compound titration curves
To determine the 48h ED20 of each drug, cell lines were plated into 96-well tissue culture plates, in 100 mL total volume, and incubated

at 37�C. After 16 hours the plates were removed from the incubator and compounds were transferred into assay wells (1 mL) in trip-

licate. Plates were then returned to the incubator. After 48 hours the assay plates were removed from the incubator and allowed to

cool to room temperature prior to the addition of 100 mL of CellTiter-Glo (Promega Inc.) per well. The plates were then mechanically

shaken for 5 minutes prior to readout on the EnVision Multi-Label Reader (Perkin Elmer Inc.) using the enhanced luminescence mod-

ule. Relative cell viability was computed using matched DMSO control wells as reference. ED20 was estimated by fitting a four-

parameter sigmoid model to the titration results.

Perturbational profile generation
Using the previously described plating and perturbation procedure we perturbed each cell-line with each drug at its 48h ED20 value

(measured above) or its CMax concentration. In order to optimize the clinical translation potential of the perturbation databases, we

used the CMax, defined as themaximum plasma concentration after the administration of the drug at themaximum tolerated dose in

patients, (whenever available from published pharmacokinetic studies), as an upper bound for the perturbation studies (Table S1).

The mRNA from these cells was isolated and profiled by PLATESeq (Nat. Commun. 2017, 8, 105) at 24h after each perturbation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Profile normalization
RNASeq reads were mapped for each well to the human reference genome assembly 38 using the STAR aligner,57 version 2.5.2b.

Individual plates counts files were then combined, normalized and corrected for batch effects. First, individual counts files were com-

bined across genes and ERCC2 spike-in counts removed, yielding the raw counts file for each cell-line experiment. Second, raw

counts were quantile normalized and variance stabilized based on the negative binomial distribution with the DESeq R system pack-

age.59 To account for plate-based batch effects (which are commonwith drug-perturbed transcriptomic data) normalized expression

was batch corrected using ComBat.60

Kinome and PANACEA data formatting
Kinome-binding data from Klaeger et al.18 was downloaded at https://www.proteomicsdb.org/#projects/4257 via ‘‘Supplementary

Table 3 DrugMatrices.’’ Raw data was transformed to -log10 scale and NA’s replaced with thematrix maximum -log10(Kd) of�4.3 to

represent the limit of detection of the technology. PANACEA differential gene expression data was calculated using a moderated

Student’s t test as implemented in the limma package58 from Bioconductor (version 3.48.1) with respect to pooled DMSO controls

across all cell-line plates.

Baseline model
For the baseline model, we used drug perturbation gene expression data from the LINCS-L1000 project23 and drug-target informa-

tion from the Drug Repurposing Hub.61 We calculated consensus signatures40 for each drug with known target molecules. The

DREAM-PANACEA gene expression dataset was standardized using the control measurements, and consensus signature (average

across cell lines) was calculated for each DREAM-PANACEA drug. We calculated the similarity (Spearman’s correlation) matrix be-

tween the LINCS and DREAM-PANACEA drug signatures, using only the measured (landmark) genes of LINCS-L1000. For each

DREAM-PANACEA drug, we performed target enrichment (including the mode of action (i.e., activation or inhibitor), using the viper

R package12) using the drug similarity vector and the known targets of the LINCS drugs. The normalized enrichment scores from

target enrichment were further rank transformed for each drug, and submitted as baseline prediction.

Scoring algorithms
Participants submitted predictions for a list of 1259 ‘‘druggable’’ targets and 30 drugs, with each prediction being a confidence score

between 0 and 1 (where one is most confident that the target is a true target of a drug). We then filtered each submission to only

consider the 255 targets in the gold standard dataset. For the purposes of calculating p values, we created 1000 null models by

generating 1000 random prediction sets. These random predictions were generated by sampling (without replacement) the 255

gold standard targets using the dplyr ‘‘sample_frac’’ function to obtain a randomly-ranked set of targets (this procedurewas repeated

1000 times).62
e3 Cell Reports Medicine 3, 100492, January 18, 2022
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For each submission, we filtered the predictions to the 255 kinases being evaluated. For SC1, we scored teams by evaluating the

enrichment of their top 10 predictions for each drug in the gold standard dataset, aswell as for one null model prediction, performing a

paired Wilcoxon rank sum test (Mann-Whitney test) to generate a p value for each prediction. We repeated this each null model to

generate a distribution of 1000 p values for each submission, and calculated themean p value as the participants’ score. For SC2, the

methodology and null models were identical, but instead of evaluating the enrichment of the top 10 predicted targets in the gold stan-

dard dataset, we assessed the ranks of the true targets within the full vector of 255 predicted targets for each drug. We again per-

formed a pairedWilcoxon rank sum test (Mann-Whitney test) to generate a p value for each submission.We repeated this for each null

model to generate a distribution of 1000 p values for each submission and calculated the mean p value as the participants’ score. In

the post-challenge phase of this study, we re-evaluated the performance of each team (Figure S3) by repeating this analysis but omit-

ting the kinase filtering step described above.

Alternate gold standard evaluation
Data from ChEMBL, DrugTargetCommons, KinomeScan (generated by HMS LINCS consortium), and DrugBank for the 1259 ‘‘drug-

gable’’ targets used in this challenge were collected and formatted in the same manner as the KBR dataset used in the challenge. A

set of 1000 null models was generated using the 1259 ‘‘druggable’’ targets. The scoring was performed for the SC1 and SC2metrics

as described in the previous section. Due to the very different target universes and completeness of each dataset, we converted the

absolute scores to ranks to make it easier to compare the relative differences between the different datasets.

Determination of top performers and data leak
Winners were determined by calculating a Bayes factor relative to the top-ranked submission in each category. In this context, we

used the Bayes factor, a likelihood ratio, to compare the difference between the top-ranked model and all other models in each sub-

challenge. The Bayes factor indicates the relative difference between the predictive power of the twomodels; with larger Bayes factor

values corresponding an larger difference between the models. Ties were defined as models with a Bayes factor % 3 relative to the

top-ranked model.

We calculated Bayes factors by bootstrapping all of the submissions that qualified for final scoring by performing 10000 iterations

of sampling with replacement for each submission. For each bootstrap, we calculated the p values as described above to generate a

distribution of scores for each submission. Using this distribution of p values, Bayes factors were calculated for each submission

relative to the top-scoring team using the challengescoring R package (https://github.com/sage-bionetworks/challengescoring).

Ties were defined as submissions with a Bayes factor % 3 relative to the top submission. During the scoring of the final round,

we discovered that a portion of the Challenge dose-response data had been revealed to the public via a preprint. Upon reviewing

the writeups, we saw that Team netphar (not knowing that this was the challenge data) described using this information to fine-

tune some of the compound predictions for better performance. To ensure a level playing field and to ensure that this team’s model

was generalizable and did not use the preprint data, we worked with Team netphar to remove this fine-tuning step and rescore the

prediction. Importantly, the analyses presented in this manuscript to determine the top performers used the new prediction file that

omits the fine-tuning step and leaked data.

Detailed computational procedure Figures 1C and 1D
PANACEA differential gene expression data were transformed into ‘‘Transcriptional Hallmarks’’ based on definitions of 50 transcrip-

tional signatures defined in63. Briefly, an average z-score was calculated for each signature by averaging the z-scores of the individ-

ual genes for each signature. PanACEA cell-lines were then averaged to yield a single 32x50 matrix reflecting the relationships of 32

drugs and 50 transcriptional hallmarks. PANACEA and Kinome-binding matrices were then processed for visualization by (1) filtering

for the top 30 kinases and signatures by variance and (2) clustering rows and column based on pearson correlation. Filtered datawere

then visualized using the heatmap.2 function of the gplots package in R. Sidebar annotations of canonical drug-targets were defined

based on the DrugBank definitions of drug-targets as detailed in Table S1.

Detailed computational procedure Figure 3A
To assess the agreement between DrugBank-Literature and Kinome-binding data, we first defined our reference as: all the kinase-

targets defined by DrugBank for our 32-drug library. As the Kinome-binding data give continuous measurements, it is necessary to

define a Kd-threshold to binarize the Kinome-data to compare with DrugBank. For each Kd-threshold, we then calculated the

coverage of DrugBank by counting the number of drug-kinase edges identified in the Kinome data and divided by the total number

of drug-kinase edges in DrugBank. (B) To visualize the new-targets defined in the Kinome-data (but not in DrugBank) we plotted the

number of overlapping drug-targets in black (defined in Figure 3A) and newly identified drug-targets in red (defined as NOT being

present within DrugBank) for each drug. We then sorted based on total number of targets to aid assessment of polypharmacology.

Detailed computational procedure Figures 4A and 4B
To better understand the performance of the three winningmodels on individual drugs we recalculated team-scores for each drug as

z-scores for enrichment (in red) or depletion (in blue) for < uM targets within each drug-vector for both SC1 and SC2. Recalculated

scores were sorted by the rank of the average performance across all three teams to identify the drugs which all models performed
Cell Reports Medicine 3, 100492, January 18, 2022 e4
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well on. To better understand the type of inhibitors thatmodels performed the best onwe calculated the enrichment of each drugbank

target kinases (as defined in Table S1) over the ranked 32-drug vector in Figures 4A and 4B using the aREA algorithm in the viper

package in R.12 (C) To visualize the kinases sampled by the Klaeger et. al18 definitions of drug-targets we color-coded individual ki-

nase-nodes within the Human Kinome phylogenetic tree obtained from the CORAL tool.64 Kinases measured in the Kinome-dataset

were color coded based the Kinase group that they were a member of as defined in Manning et al.38 (D) To better understand the

relationships between individual kinases and down-stream transcriptional programs we calculated the correlation matrix between

the Kinome Kd’s (250 kinases x 84 drugs) and the pan-cancer transcriptional signature PANACEA-data (50 signatures x 84 drugs)

across 84 overlapping drugs that occurred in both datasets. Correlation matrix was then clustered based on correlation and visual-

ized using the heatmap.2 function in the gplots package in R. Top side-bars were color-coded by kinase groups as defined in Mann-

ing et al.38 and colors were chosen to match the Kinome-coverage-phylogenetic tree in Figure 4C. (E) To better understand the

signaling pathways involved in the kinase-mRNA correlations in Figure 4D, we transformed the individual kinase columns in Fig-

ure 4D’s correlation matrix into KEGG-defined signaling pathways. This was done by calculating the enrichment of pathway-specific

kinases within each transcriptional program vector using the aREA algorithm in the viper package in R. This generated a normalized

enrichment score (NES) for each kinase-pathway/mRNA-program pair that is equivalent to a z-score. The visualization on Figure 4E

was obtained from the raw pathway-program matrix by slicing top columns associated with receptor tyrosine kinase controlled

pathways.

Detailed computational procedure Figure S4
To compare the relative scores of DrugBank-defined targets and New-Kinome-Data-set defined targets within the winning teams

predictions we first normalized all scores by the average-score. The purpose of this was to assure that a random-selection of

drug-targets would have a normalized score of 1. For each winning team, and for each drug, we then calculated the average scores

of Drug-Bank defined targets and Kinome-defined targets. Encouraging, while DrugBank Targets were consistently higher than

Kinome-defined targets, both sets consistently scored better than random sets of drug-targets.

Detailed algorithm for winning team ‘‘Netphar’’
The Netphar team collected three types of data related to the compounds: 1) Drug sensitivity data; 2) Drug induced gene signature

data and 3) Drug target interaction data. For drug sensitivity data, we utilized the DrugComb database, which is a crowd-sourcing

database to collect comprehensive drug sensitivity screen data, including both monotherapy drug screens and drug combination

screens.35 DrugComb currently consists of drug sensitivity data for 466k combination and 710k monotherapy drug screenings.

From DrugComb, we found n = 116 drugs that have dose-response data on at least 7 of the 11 cell lines. Furthermore, for each com-

pound-cell pair, we determined IC20 and RI (relative inhibition, which is based on area under the log10-scaled dose-response

curves41) score, as more robust measures for drug sensitivity.

For drug-target interaction data, we utilized the DrugTargetCommons which is a crowdsourcing-based database to collectively

and manually curate the comprehensive drug-target bioactivity values.36 The bioactivity values were transformed into a confidence

score between 0 and 1 to indicate the binding affinity potential.

To determine the best machine learning models to predict the drug targets, we considered two classes of methods including

weighted averaging and regression (Figure below). For weighted averaging, the prediction was made based on the multiplication

of the Pearson correlation matrix and the drug-target interaction matrix; while for regression, we considered standard machine

learning algorithms including ElasticNet, RandomForest and GBM (Gradient Boosting Machine), for which the model was trained

on the n = 116 compounds that were found in DrugComb, and then tested on the n = 32 Challenge compounds. We have utilized

the LINCS-L1000 data23 to evaluate the methods, and determined the weighted averaging approach that performed better than

regression based on 10-fold cross validation.

Detailed algorithm for winning team ‘‘SBNB’’ (Figure S8):
As SBNB team, we approached the challenge as a data integration exercise, wherewe first adapted the transcriptional and sensitivity

signatures of the DREAM Challenge compounds to the format of the Chemical Checker (CC).37 The CC is a resource that provides

processed, harmonized, and ready-to-use bioactivity signatures for about 1M compounds, offering a rich portrait of the small mole-

cule data available in the public domain, and opening an opportunity for making queries that would be otherwise impossible using

chemical information alone. The CC expresses bioactivity data as numerical vectors, making them suitable for similarity measure-

ments, clustering, visualization and prediction tasks. Among others, the CC contains cell line sensitivity (Sens) and differential

gene expression (DGEx) bioactivity signatures for tens of thousands of compounds (CC compounds), being thus possible to relate

this data to the DREAM compounds. To integrate DREAM compounds with CC compounds, we built six different signature types

from those bioactivity spaces similar to the ones provided by the DREAM challenge. In three of them, we used growth-inhibition

(GI) data of eight cell lines common to the Cancer Therapeutics Response Portal (CTRP28) and the DREAM panel. We then used

GI data as features to train a classifier to infer the expected CTRP sensitivity (Sens) profile of DREAM compounds, as well as bio-

markers and annotations from the PharmacoDB resource.65 Thus, we could connect the DREAM compounds to the hundreds of

drugs available in the public drug sensitivity panels. Likewise, DREAM DGEx data were integrated with LINCS DGEx (Level 5) signa-

tures,23 along with the Touchstone reference collection of perturbational profiles. Additionally, we mapped the DREAM and LINCS
e5 Cell Reports Medicine 3, 100492, January 18, 2022
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DGEx to a collection ofmanually curated expression signatures fromGene Expression Omnibus (CREEDS30), in order to capture cell-

unspecific profiles, since only one cell line was shared between the DREAM and LINCS L1000 resources. We moved from individual

gene expression to global expression signatures with the aim of capturing possible transcriptional regulatory programs shared

among the compounds, enabling thus a more comprehensive integration of the DREAM and LINCS datasets.

Once we contextualised DREAM compounds within the larger CC compounds collection, we used the Sens/DiffGEx signatures as

input for conventional target prediction methods, based on previously known ligand-binding profiles. In brief, to prevent overfitting

due to the limited number of CC-exp compounds, we first used CC signatures to train a k-nearest neighbors (kNN) classifier to iden-

tify the most probable targets for each DREAM compound.

We simply looked in DrugBank for CC compounds having similar signatures to the DREAM compounds, and suggested the CC

annotated targets as putative targets for the DREAM compounds. Then, in a second step, we used a much larger set of over

100k bioactive compounds in the Chemical Checker, for which we inferred their gene expression and cell line sensitivity signatures

to train a multitask, quality-aware artificial neural network (ANN) primarily based on chemogenomics data (i.e., compound interac-

tions) from ChEMBL66 and refined it with DrugBank drug-target data.31 More specifically, we trained a deep neural network (imple-

mented with Tensorflow v1.12.) with 2 hidden layers (of 256 and 128 units, both using RELU activation and 20% dropout for

regularization) and a last multitask classification output layer (with sigmoid activation and 1 unit for each annotated target). Given

the gene expression and cell line sensitivity signatures of a drug, this architecture returns a vector of probabilities for each annotated

target.We first trained themodel using the ChEMBL universe of targets (456 proteins, 87904 different compounds) for 50 epochswith

a high learning rate (1e-3). We used the trained network as a starting point to fine-tune the network (transfer learning on the whole

network with a low learning rate of 1e-5) with Drugbank targets (456 proteins, 3409 compounds). In both cases we used the normal-

ized average of compound signature confidence (obtained from the CC pipeline) to weight the sample, hence, making the network

predictions aware of the input quality (quality-aware). To obtain the final ranking we first computed the closest 1, 5 and 10 nearest

neighbors, assembling the results and using them to rank each target accordingly, as previous attempts showed a good performance

for the challenge SC2. Then, to improve the challenge SC1, we reordered the top 10 targets for each drug according to the ANN pre-

diction (i.e., we placed in the top 10 the top 10 targets with higher probability scores according to the ANN). Finally, those protein

targets of the challenge not annotated in Drugbank were placed at the end, ranked according to the drug counts in ChEMBL

(thus, sorted by their prior probability of being a target).

Detailed algorithm for winning team ‘‘ATOM’’ (Figure S9):
For each compound, its compound-perturbed gene expression featurewas calculated from Level 5 data of the LINCS L1000 platform

of phase I (GSE92742) and phase II (GSE70138). To obtain a consensus feature for each compound without considering other con-

ditions like cell line, dose and time, all the Level 5 signatures corresponding to the same compoundwere selected and averaged using

MODZ algorithm introduced in L1000 paper.23 In order to suit for the challenge, we compared the RNA-seq data with the L1000 data

and selected 973 overlapping genes as input features.

During the model training, a graph-based multi-task constraint was used to train our model (described below). The target similarity

graph was constructed by using two types of metrics, including a sequence similarity from protein primary sequences as well as a

genomic similarity from gene knockdown perturbed gene expression profiles. The protein primary sequences were first obtained

from UniProt database according to their gene IDs. Then, the Smith-Waterman sequence alignment scores were computed by an

alignment tool (https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library). The sequence similarity between two

proteins was then defined as the normalized alignment scores, that is, swðs1 ;s2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

swðs1 ;s1Þ3swðs2 ;s2Þ
p , where swðs1; s2Þ stands for the alignment

score between protein sequences s1 and s2. The gene knockdown perturbed gene expression profiles were obtained from the

L1000 database and processed using the same protocol as drug features described above. The genomic similarity between two tar-

gets was defined asmaxf0;rðe1;e2Þg, where rðe1; e2Þ stands for Pearson’s correlation coefficient between gene expression profiles

e1 and e2. Finally, we averaged these two matrices and constructed a K-nearest neighbor (KNN) (K = 10) graph as our final target

similarity graph.

As the problem is to predict the potential targets for a compound/drug of interest, we formulate this problem as a multi-label clas-

sification problem, where the input of a compound is the compound-perturbed gene expression feature x˛R973 derived from LINCS

L1000 platform, and the output is a binary vector y˛R769 indicating the binding probabilities to 769 pre-defined protein targets. We

used an ensemble of neural networks to make predictions.

We use an ensemble of single-layer neural networks to model the relationship between x and y. The model architecture of each

base learner (i.e., a single-layer neural network) is shown in Figure 5. For each base learner, three losses are used to train its param-

eters. The first one is Bayesian Personalized Ranking (BPR) loss.67 Specifically, let Si;j denote the predicted score between drug i and

protein j produced by our model. Then, BPR loss is defined as:BPR Loss= � loglogðSi;j � Si;kÞ, where protein j is the known target of

drug i while protein k is not. During neural network training, we sampled a batch (batch size = 256) of drugs, and for each drug i, we

sampled pairs (i, j) and (i, k) to perform forward and backward propagation. The second loss is amulti-task constraint loss (Zhou et al.,

2011). The multi-task constraint loss is defined as: Multitask Loss= traceðWLWTÞ, where W is the learnable parameter of the last

layer of the neural network, L is the normalized graph laplacian of the target similarity graph defined above. This loss encourages

the similar targets to have similar classifiers. The last loss is the weight decay (i.e., L2_regularization) for controlling the model
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complexity. The combined loss is defined as BPR_Loss + l1Multitask Loss + l2 L2_regularization, where l1 and l2 are used to bal-

ance different losses. This combined loss was optimized by Adam optimizer with learning rate = 0.001.

We used 10-fold cross validation to trainmodels. For each fold, 1/10 of the drugswere used as test data. Among the remaining 9/10

drugs, 1/10 of drugs were left out as validation data and the rest drugs were used as training data. This strategy was used to perform

hyperparameter selection (i.e., dropout rate, l1, l2, hidden size of the neural network and training epoch). During training, early stop-

ping was used to prevent overfitting. For each epoch, we compared the model performance on validation data with the best perfor-

mance. The training process would be stopped as long as the performance on the validation data no longer improves in consecutive

100 epochs.

We used ensemble learning approach to further boost the performance. We constructed 100 different neural network models from

{ l1 = 0.0001, 0.00001}3 { l2 = 0.0001}3 {hidden size of neural network = 256, 512, 1024, 2048, 4096}3 {10 different folds}. These

hyperparameter ranges produced decent prediction performance during our hyperparameter selection. We then averaged the pre-

diction scores from these models to produce the final scores.
e7 Cell Reports Medicine 3, 100492, January 18, 2022
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