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Abstract

Machine learning techniques are becoming popular in virtual screening tasks. One of the

powerful machine learning algorithms is Extreme Learning Machine (ELM) which has been

applied to many applications and has recently been applied to virtual screening. We propose

the Weighted Similarity ELM (WS-ELM) which is based on a single layer feed-forward neural

network in a conjunction of 16 different similarity coefficients as activation function in the hid-

den layer. It is known that the performance of conventional ELM is not robust due to random

weight selection in the hidden layer. Thus, we propose a Clustering-based WS-ELM (CWS-

ELM) that deterministically assigns weights by utilising clustering algorithms i.e. k-means

clustering and support vector clustering. The experiments were conducted on one of the

most challenging datasets–Maximum Unbiased Validation Dataset–which contains 17 activ-

ity classes carefully selected from PubChem. The proposed algorithms were then compared

with other machine learning techniques such as support vector machine, random forest, and

similarity searching. The results show that CWS-ELM in conjunction with support vector

clustering yields the best performance when utilised together with Sokal/Sneath(1) coeffi-

cient. Furthermore, ECFP_6 fingerprint presents the best results in our framework com-

pared to the other types of fingerprints, namely ECFP_4, FCFP_4, and FCFP_6.

Introduction

Drug screening is a process of determining drug candidates that contain relevant biological

targets. Recently, computers have been used to speed up the development process in order to

reduce the time required to launch drugs onto the market. Moreover, it has a potential savings

of millions of dollars compared to testing in vitro. Virtual screening is a set of computational

techniques which aims to rank molecule structures in a database [1]. This ensures that chem-

ists can assay molecules which have a higher probability of being active with the relevant

biological target first. A conventional technique in virtual screening is called “similarity search-

ing”. It ranks all molecules in a database on the basis of similarity or dissimilarity to a query

molecule.
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Machine learning techniques are becoming popular in many applications today. They also

play an important role in the drug discovery process, e.g. prediction of target structures, and

optimisation of hit compounds. Examples of techniques used in the drug discovery process are

support vector machine (SVM) [2–4], binary discriminant analysis [2, 5], artificial neural net-

works [6], and decision trees [7]. Many techniques used in virtual screening have been well-

documented and reviewed in the following references [8–10]. Among these techniques, SVM

is one of the most powerful and popular in this area resulting in an increasing number of pub-

lications in recent decades [10].

Although SVM is a powerful algorithm, its main drawback is that it requires quadratic pro-

gramming to solve the problem–at least the space complexity is quadratic. When the training

dataset becomes large, its computational cost will be very intensive. In addition, SVM requires

two or more user-specified parameters which directly affect the model’s performance. These

parameters are required to be tuned in order to get an optimal model. Thus, the higher the

number of parameters to be tuned, the more the computational cost is. In 2004, Extreme

Learning Machine (ELM) was proposed by Huang et al. and made use of single hidden layer

feed-forward neural network [11]. Their proposed algorithm is fast and able to obtain the opti-

mal solution. It has proved to be competitive with SVM in performance but with a remarkable

speed of training compared to SVM. Moreover, ELM requires less human intervention than

SVM because the only important parameter is the number of hidden nodes [12, 13]. ELM has

been applied to protein sequence classification [14–16]. To the best of our knowledge, ELM

was first applied to the virtual screening task by [17] as Weighted Tanimoto ELM (WELMJT).

The algorithm is customised for 2D binary fingerprint descriptor. WELMJT replaces the activa-

tion function in neurons at the hidden layer with the Jaccard/Tanimoto (JT) similarity coeffi-

cient. Moreover, instead of randomly selecting hidden nodes with continuous distribution in

the conventional ELM, WELMJT randomly selects hidden nodes from the training set.

Since there are many available similarity coefficients, we adopt a weighted similarity ELM

(WS-ELM) algorithm which employs different similarity coefficients. This is to obtain a suit-

able similarity coefficient for virtual screening task with 2D fingerprint descriptor.

In addition, WS-ELM performance, like ELM, is not robust due to random weight selec-

tion. This problem should be addressed. Therefore, a deterministic assignment of hidden

weights shall be considered to increase the robustness of the conventional ELM. We propose

an approach to carefully select the weights of WS-ELM. Here, clustering techniques are

employed to carefully select the represented candidates of weights. The proposed algorithm

the so-called “Clustering based Weight Similarity ELM”(CWS-ELM) is performed and com-

pared to the conventional techniques on well-designed experimental frameworks with one of

the most challenging databases–Maximum Unbiased Validation Dataset–which consists of 17

activity classes.

Methods

In this section, we explain all methods used in this work together with our proposed

techniques.

Similarity searching

Similarity searching is a technique to find compounds in a database which are structurally

similar to a query compound. It compares the query against every single compound in the

database and returns a database ranked by similarity score. Its rationale is that the more simi-

lar the structures of the molecules are, the higher the chance of them having the same proper-

ties. The degree of similarity can be calculated by similarity coefficient. Many coefficients
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have been introduced and re-introduced as they are in very common use in many applica-

tions [5, 18, 19].

In this paper, we investigate 16 coefficients selected from [5, 20, 21] as shown in Table 1.

Some coefficients are excluded, e.g. Dice. Dice is monotonic to Jaccard/Tanimoto, therefore

they give identical rankings. The similarity s(xi, xj) and dissimilarity d(xi, xj) of two molecules

are usually calculated from four different quantities: (i) a: The number of bits set in common

to both molecule i and j, (ii) b: The number of bits set in molecule i and unset in molecule j,
(iii) c: The number of bits set in molecule j and unset in molecule i, and (iv) d: The number of

bits unset in common to both molecule i and j. A combination of these four quantities (a + b +

c + d) is equivalent to the number of bits m belonging to molecules i and j. The coefficients are

divided into three main groups as follows:

• Association coefficient is based upon the inner product operation. Most of the ranges are

[0, 1] which indicates no similarity and complete similarity.

• Correlation coefficients measure the degree of correlation between the molecules.

• Distance coefficients quantify the degree of difference between two objects. The more similar

two objects are, the smaller the distance value is. Distance function can be converted to simi-

larity function by d(xi, xj) = 1 − s(xi, xj).

If multiple active molecules (nA) are available, we can calculate the similarity value between

a molecule xj in the unranked database and a set of query molecules–for all xi 2 Actives by,

sAðxjÞ ¼
1

nA

X

i2Actives

sðxi; xjÞ: ð1Þ

Table 1. Formulas for similarity/dissimilarity coefficients for binary-valued vectors.

ID Common Name Formula Range

C01 Baroni-Urbani/Buser sðxi; xjÞ ¼
ffiffiffi
ad
p
þaffiffiffi

ad
p
þaþbþc

0 to 1

C02 Hamman sðxi; xjÞ ¼
aþd� b� c

m -1 to 1

C03 Jaccard/Tanimoto sðxi; xjÞ ¼
a

aþbþc 0 to 1

C04 Kulczyński sðxi; xjÞ ¼
1

2
ð a

aþbþ
a

aþcÞ 0 to 1

C05 Cosine/Ochiai sðxi; xjÞ ¼
a

ðaþbÞðaþcÞ 0 to 1

C06 Roger/Tanimoto sðxi; xjÞ ¼
aþd

bþcþm 0 to 1

C07 Russell/Rao sðxi; xjÞ ¼
a
m 0 to 1

C08 Simple Match sðxi; xjÞ ¼
aþd

m 0 to 1

C09 Simpson sðxi; xjÞ ¼
a

minðaþb;aþcÞ 0 to 1

C10 Sokal/Sneath(1) sðxi; xjÞ ¼
a

aþ2bþ2c 0 to 1

C11 Sokal/Sneath(2) sðxi; xjÞ ¼
2aþ2d

aþdþm 0 to 1

C12 Sokal/Sneath(3) sðxi; xjÞ ¼
ad

ðaþbÞðaþcÞðdþbÞðdþcÞ 0 to 1

C13 McConnaughey sðxi; xjÞ ¼
a2 � bc

ðaþbÞðaþcÞ
-1 to 1

C14 Pearson sðxi; xjÞ ¼
ad� bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþbÞðaþcÞðbþdÞðcþdÞ
p -1 to 1

C15 Yule sðxi; xjÞ ¼
ad� bc
adþbc -1 to 1

C16 Mean Manhattan dðxi; xjÞ ¼
bþc
m 1 to 0

https://doi.org/10.1371/journal.pone.0195478.t001
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Extreme Learning Machine

Extreme Learning Machine (ELM) was first proposed by Huang et al. [11]. It is based on a sin-

gle layer feed-forward neural network architecture. Consider the matrix of m-dimensional

sample vectors X = [x1, x2, . . ., xn]T and a target vector y comprising yi 2 {−1, +1}. The output

of ELM can be defined as a linear sum of weights (βi)–connecting the hidden neurons to the

output–associated with the hidden layer outputs. There are l nodes in the hidden layer. The

hidden layer outputs use an activation function g(�) with a linear combination of input x and

synaptic weights (wi) and bias (bi)–connecting the hidden neuron to the input neurons–as

function input. Therefore the model can be defined as:

yj ¼
Xl

i¼1

bigðwi
T � xj þ biÞ ð2Þ

where wi = [wi1, . . ., wim] (randomly generated). Therefore, the activity of the hidden node can

be represented as

H ¼

hðx1Þ

..

.

hðxnÞ

2

6
6
4

3

7
7
5 ¼

gðw1
T � x1 þ b1Þ . . . gðwl

T � x1 þ blÞ

..

. . .
. ..

.

gðw1
T � xn þ b1Þ . . . gðwl

T � xn þ blÞ

2

6
6
4

3

7
7
5

n�l

: ð3Þ

The ELM aims to minimise the mean squared error,

min
1

2

Xn

i¼1

jjyi � ŷ ijj
2

2
: ð4Þ

where ŷ i is a predicted target. Thus, Moore-Penrose pseudo-inverse is employed to achieve the

optimal solution for this problem. Hence, β can be defined by,

β ¼ ðHTHÞ� 1HTy: ð5Þ

The prediction score can be computed from

ŷ ¼ Hβ: ð6Þ

Weighted Similarity Extreme Learning Machine

The proposed Weighted Similarity ELM (WS-ELM) consists of two functions which are (i)

empirical likelihood function–mean squared error–and (ii) penalised likelihood functions–

ridge penalty,

min
β

1

2
kHβ � yk2

2
þ

1

C
kβk2

2
: ð7Þ

The activation function g(�) in the conventional ELM is replaced by s(�, �), hence, the H is rep-

resented as,

H ¼

sðx1;w1Þ . . . sðx1;wlÞ

..

. . .
. ..

.

sðxn;w1Þ . . . sðxn;wlÞ

2

6
6
4

3

7
7
5

n�l

: ð8Þ

C is a regularisation parameter to control the complexity of the model. w is randomly selected
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from the training set w� X instead of randomly selected from a continuous distribution. This

is to ensure that the achieved weights are binary, sparse, and have identical dimension span.

The virtual screening task faces a dramatic imbalance between the number of active (nA)

and inactive (nI) molecules. In order to deal with this imbalanced class problem, a diagonal

Γn×n is defined associated with all training samples. A minority class will be given higher

importance than a majority class. Thus, the likelihood function becomes

L ðβÞ ¼
1

2
G kHβ � yk2

2
þ

1

C
kβk2

2
ð9Þ

¼
1

2

ffiffiffiffi
G
p

Hβ �
ffiffiffiffi
G
p

y








2

2

þ
1

C
kβk2

2
: ð10Þ

The above likelihood function can be minimised using standard ℓ2-regularised weighted least

squares which gives the following solution

β ¼
I
C
þHTGH

� �� 1

HTGy: ð11Þ

Instead of calculating HTΓH, we can calculate (γ �H)T(γ �H), where γ ¼ diagð
ffiffiffiffi
G
p
Þ. This tech-

nique can speed up the computational time [17]. This leads to the solution in Eq 12.

β ¼
I
C
þ ĤTĤ

� �� 1

Ĥ Tγ � y; ð12Þ

where Ĥ ¼ γ �H. γi can be defined as,

gi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðnI; nAÞ

nA

s

; if yi ¼ Active

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðnI; nAÞ

nI

s

; if yi ¼ Inactive

8
>>>>>><

>>>>>>:

ð13Þ

The architecture of WS-ELM is shown in Fig 1.

Clustering-based Weighted Similarity Extreme Learning Machine

Due to randomness of weights between input and hidden layers, the prediction of the conven-

tional ELM is not stable. This is applicable to the case of WS-ELM as well because a subset of

samples in the training set is randomly selected to represent the weights in WS-ELM. There-

fore, a deterministic assignment of hidden weights will be able to improve the performance of

the conventional ELM. In order to enable the deterministic approach to this, we utilise cluster

analysis methods to organise and summarise data through group prototypes. Thus, we propose

a new algorithm called “Clustering-based WS-ELM”(CWS-ELM).

Clustering analysis is an unsupervised learning technique for grouping samples in the

space into k groups. It aims to minimise the distance of samples within each cluster while

maximising the distance between groups. Many clustering algorithms have been introduced

and well-documented [22, 23]. In this paper, we investigate k-mean clustering and support

vector clustering algorithms. The rationale behind this selection is the choice of representa-

tion of the data for each group. A cluster can be represented by its centroid identified by k-

mean clustering algorithm or a set of samples bounding the cluster. Brief details of these two

Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach
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algorithms are explained in the following subsection. The pseudo-code for CWS-ELM is

shown in Algorithm 1.

k-mean clustering. This is the conventional clustering technique which aims to minimise

the Euclidean distance between the samples and the centroid in each cluster. The number of

clusters (k) must be determined by the user. Instead of Euclidean distance, we can adopt other

distance- or similarity-coefficients listed in Table 1 as well. In order to ensure that CWS-ELM

will pick a binary weight, we choose a sample that is the closest to the centroid. Thus, the num-

ber of nodes used in CWS-ELM is equal to the number of centroids representing all clusters in

the training data.

Support vector clustering. Support Vector Clustering (SVC) is inspired by a well-known

algorithm, the so-called “Support Vector Machine”and is introduced by [24]. SVC employs a

kernel trick to map all samples into a high dimensional feature space and obtains the smallest

sphere which contains the mapped samples. The sphere can be mapped back to the original

feature space and forms a set of contours which enclose samples. Samples in the same contour

are hosted in the same cluster. Furthermore, any points lying on the boundary of the sphere–

cluster boundary–are considered as support vectors. Moreover, embedding a soft margin in

SVC can enable the sphere not to enclose all points in it. Thus the algorithm can have the

Fig 1. Architecture of the WS-ELM.

https://doi.org/10.1371/journal.pone.0195478.g001
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ability to deal with outliers. The similarity function in Table 1 can be adopted as a kernel func-

tion similar to [5]. In CWS-ELM, the number of nodes is equivalent to the number of support

vectors bounding each clusters in the training data.

Algorithm 1 Clustering-based Weighted Similarity Extreme Learning Machine
1: function CWS-ELM_TRAIN(X, y, method)
2: switch method do
3: case 0 .Conventional
4: W  Randomly select a subset of X
5: case 1 .k-mean Clustering
6: W  Centroid of each cluster by k-mean
7: case 2 .SVC
8: W  Support vector bounding each cluster by SVC
9: n  #samples
10: nA  #positive samples
11: nI  #negative samples
12: for i  1 to n do
13: if yi = 1 then

14: gi  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðnI ;nAÞ

nA

q

15: else

16: gi  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðnI ;nAÞ

nI

q

17: end if
18: end for
19: Ĥ  γ � SðX;WÞ
20: β I

C þ ĤH
� �� 1

ðĤγ � yÞ
21: return W, β
22: end funtion
23: function CWS-ELM_PREDICT(W, β, XTest)
24: H  S(XTest, W)
25: ŷ  Hβ
26: return t
27: end funtion

Dataset and experiment framework

Maximum Unbiased Validation Dataset

The experiments were conducted on a well-known open to the public dataset in a virtual

screening task using the so-called “Maximum Unbiased Validation”(MUV) dataset which was

created by the Institute of Pharmaceutical Chemistry, Braunschweig University of Technology,

Germany [25]. The dataset consists of 17 bioactivity data sets carefully selected from Pub-

Chem–an open archive of the biological activities of millions of molecules as shown in Table 2.

Each set consist of 30 active compounds together with 15,000 carefully selected confirmed

inactive compounds (also known as decoys). An active compound is a compound which

causes a corresponding biological activity while an inactive compound does not. The active

compounds in each activity are designed to be structurally heterogeneous (sometimes called

diverse) with only 1.14 compounds on average of distinct scaffolds in each activity class. The

scaffold is the core structure which is the main component of a molecule. Moreover, the classes

are grossly imbalanced with over 99.8% belonging to the inactive group. Therefore, this dataset

is one of the most challenging in virtual screening tasks.

We represent the data with two popular fingerprints generated by Pipeline Pilot software,

namely: Extended Connectivity Fingerprint (ECFP), and Functional-class Fingerprint (FCFP)

[26]. The reason behind the selection of these two types of fingerprints is that Gardiner et al.
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demonstrated that ECFP and FCFP fingerprints yielded the best two fingerprints among BCI

[27], Daylight [28], ECFP, FCFP, MDL [26], and Unity [29] fingerprints in virtual screening

tasks [30]. In this work, both ECFP and FCFP fingerprints utilise a circular substructure of

four or six diameter bonds–represented as ECFP_4, ECFP_6, FCFP_4, and FCFP_6. All four

types of fingerprints have a fixed dimension of 1,024-D.

As mentioned earlier the MUV dataset is very diverse; another widely used indicator for

diversity among substructures of molecules in a database is mean pairwise similarity (MPS)

score. The lower the score, the more heterogeneous an activity class is. Hence, it will be very diffi-

cult to identify/retrieve in a virtual screening task. The MPS of each compound with every other

compound in the class, calculated with different fingerprints using the Jaccard/Tanimoto similar-

ity coefficient is shown in Table 2. It can be seen that the MPS on average is only 0.19/1.00.

Experiment settings

The dataset is divided into training and test sets. The training sets are created similarly to [30–

32]. All 30 active molecules from the 17 activity classes in the MUV dataset are collected in a data

pool. Then, we randomly select 170 molecules (nTr) as a training set which consists of 10 active

and 160 inactive molecules for each activity class under consideration. A set of the remaining

samples in the data pool combined with inactive samples for each activity class under consider-

ation constitute a test set. Active and inactive molecules are labelled as 1 and −1, respectively.

The experiments are divided into three parts as follows:

• Evaluating WS-ELM in conjunction with different types of available similarity coefficients

against the baseline method–similarity searching–on four considered fingerprints in order

to obtain the best similarity coefficient suitable for WS-ELM and fingerprint.

• Comparing our proposed algorithm, CWS-ELM, with ELM variants.

Table 2. The 17 activity classes in the MUV dataset. The entries are ranked in decreasing order of average mean pairwise similarity across four fingerprints.

ID Activity Class AID Key #Scaffolds #Active
#Scaffold Mean Pairwise Similarity Score

ECFP_4 ECFP_6 FCFP_4 FCFP_6 Average

I01 FXIa Inhibitors 846 21 1.43 0.22 0.18 0.28 0.22 0.23

I02 FXIIa Inhibitors 852 24 1.25 0.22 0.18 0.26 0.21 0.22

I03 Cathepsin G Inhibitors 832 24 1.25 0.21 0.18 0.25 0.20 0.21

I04 PKA Inhibitors 548 27 1.11 0.23 0.16 0.23 0.18 0.20

I05 Rho-Kinase 2 Inhibitors 644 27 1.11 0.19 0.16 0.24 0.19 0.20

I06 ER-α-coactivator-binding Potentiators 737 28 1.07 0.19 0.16 0.24 0.19 0.19

I07 M1 Receptor Allosteric Inhibitors 859 29 1.03 0.19 0.16 0.24 0.19 0.19

I08 SF1 Inhibitors 600 24 1.25 0.18 0.16 0.23 0.18 0.19

I09 S1P1 Receptor Agonists 466 28 1.07 0.18 0.15 0.23 0.18 0.18

I10 FAK Inhibitors 810 28 1.07 0.16 0.14 0.22 0.18 0.18

I11 D1 Receptor Allosteric Modulators 858 24 1.25 0.17 0.15 0.21 0.17 0.17

I12 ER-β-coactivator-binding Inhibitors 733 28 1.07 0.17 0.15 0.22 0.17 0.17

I13 ER-α-coactivator-binding Inhibitors 713 26 1.15 0.17 0.15 0.21 0.17 0.17

I14 SF1 Agonists 692 30 1.00 0.16 0.14 0.22 0.17 0.17

I15 Eph Receptor A4 Inhibitors 689 29 1.03 0.17 0.14 0.21 0.17 0.17

I16 HIV RT-RNase Inhibitors 652 27 1.11 0.15 0.13 0.22 0.17 0.17

I17 HSP 90 Inhibitors 712 27 1.11 0.16 0.14 0.20 0.16 0.16

Average 26.53 1.14 0.18 0.15 0.23 0.18 0.19

https://doi.org/10.1371/journal.pone.0195478.t002
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• Comparing the proposed algorithm with other approaches, i.e. Similarity Searching, SVM,

and Random Forests (RF).

All experiments are run 10 times with different random splits on training and test sets.

In addition, hyper-parameters in each algorithm are identified by estimating generalisation

error via five-fold cross-validation on the basis of the area under the Receiver Operating Char-

acteristic Curve (AUROC) on the training set. There are many criteria for evaluation of virtual

screening tasks, e.g. AUROC, Enrichment Factor (EF), Robust Initial Enhancement (RIE),

Boltzmann-Enhanced Discrimination of ROC [33–36]; but we select AUROC because it is

simple and a standard metric for many fields.

In WS-ELM, there are two parameters which need to be tuned: number of hidden nodes (l)
and a regularisation parameter (C). The range of l was [1, . . ., nTr] while the range of C was

[10−6, 10−5, . . ., 105, 106]. For CWS-ELM, the regularisation parameter (C) is required to be

tuned using the same range as WS-ELM. In addition to the base hyper-parameter of WS-ELM,

the number of clusters (k) for k-mean-based WS-ELM (CWS-ELMKMC) is required to be

within a range of 1 to nTr, while SVC-based WS-ELM (CWS-ELMSVC) has another regularisa-

tion CS with a range from 0.1 to 1.0 with increments of 0.1.

A model is trained with the training data with a set of optimal parameters. The model is

tested on the test set and evaluated with a widely used performance measure in a virtual

screening task–the average proportion of the maximum possible number of active molecules

(hit rate) which is retrieved from the top 1% of the ranked database. The molecules are ranked

based on the predicted score from the output layer of WS-ELM and its variants. The higher

the score, the more likely the molecule is to be active.

All experiments are carried out using the Matlab environment. SVC toolbox is available to

download at https://sites.google.com/site/daewonlee/research/svctoolbox and the proposed

CWS-ELM can be downloaded at https://github.com/dsmlr/cwselm.

Results and discussions

A comparison of similarity searching and WS-ELM with the 16 similarity

coefficients on four types of fingerprint

WS-ELM together with the 16 coefficients and similarity searching were evaluated on the 17

activity classes with four types of fingerprint. The experiment results are shown in Tables 3 and

4 for similarity searching and WS-ELM, respectively. Each element in these tables contains the

mean hit rate, when averaged across the four fingerprints and 10 different data splits, in the top

1% of the ranked database. It is clear that Sokal/Sneath(1) could achieve the best performance

followed by Jaccard/Tanimoto and Sokal/Sneath(3) coefficients in both similarity searching

and WS-ELM techniques. It should be noted that Sokal/Sneath(1) is a modified version of the

Jaccard/Tanimoto function which gives double weight to non-matches. The worst similarity

coefficients in similarity searching and WS-ELM are Roger/Tanimoto and Yule, respectively.

There is a degree of variation in the performance of the 16 similarity coefficients (N objects)

by each of the 17 activity classes (k judges). The ranks in Tables 5 and 6 are assigned according

to Tables 3 and 4, respectively. The degree of agreement between the rankings assigned can be

determined by a statistical analysis called the “Kendall Coefficient of Concordance” [37]. This

can be calculated by Eq (14).

W ¼
12
P

�R2
i � 3NðN þ 1Þ

2

NðN2 � 1Þ �

P
Tj

k

; ð14Þ

where �Ri is the average of the ranks assigned to the i-th object. Tj is a correction factor
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Table 3. Maximum percentage actives retrieved in top 1% of ranked database using similarity searching technique (average across 10 runs). Bold face is the best result

in each activity class.

Class Similarity Coefficient Mean

C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16

I01 23.88 8.75 31.38 28.88 29.25 8.63 19.50 8.75 21.50 32.88 28.75 29.50 28.88 29.25 16.25 8.75 22.17

I02 28.63 13.25 33.38 31.13 31.38 13.25 16.75 13.25 24.00 34.50 31.50 31.75 31.13 32.13 19.13 13.25 24.90

I03 13.37 3.00 26.63 22.13 22.25 3.00 23.88 3.00 19.38 28.88 21.75 22.63 22.13 21.88 4.63 3.00 16.35

I04 16.50 5.88 20.75 18.63 18.75 6.00 9.13 5.88 12.50 22.63 19.00 18.88 18.63 19.25 8.88 5.88 14.20

I05 15.63 9.75 20.63 19.00 19.00 9.38 6.63 9.75 14.88 22.25 19.38 19.38 19.00 19.13 11.13 9.75 15.29

I06 0.75 1.50 2.75 2.13 2.38 1.38 4.00 1.50 0.25 3.25 1.88 2.38 2.13 2.13 0.25 1.50 1.89

I07 2.50 0.00 4.75 3.75 3.63 0.00 3.38 0.00 2.38 5.13 3.75 3.63 3.75 3.75 1.38 0.00 2.61

I08 0.75 0.00 6.88 3.50 3.50 0.00 4.13 0.00 1.50 8.38 3.00 3.75 3.50 3.38 0.25 0.00 2.66

I09 0.88 0.00 3.75 2.13 2.25 0.00 3.00 0.00 1.63 4.75 1.88 2.13 2.13 2.00 0.38 0.00 1.68

I10 2.00 2.50 5.13 3.50 3.63 2.50 5.38 2.50 3.75 6.25 3.63 3.75 3.50 3.75 0.50 2.50 3.42

I11 2.75 0.50 4.00 2.50 2.50 0.38 0.75 0.50 1.38 5.50 2.25 2.50 2.50 2.25 2.88 0.50 2.10

I12 2.63 0.50 3.25 2.63 2.63 0.50 1.63 0.50 1.88 4.38 2.63 2.63 2.63 2.63 1.75 0.50 2.08

I13 2.00 1.13 4.88 3.13 3.25 1.13 3.50 1.13 3.25 6.00 3.00 3.25 3.13 3.13 0.63 1.13 2.73

I14 1.75 0.50 1.88 1.75 1.50 0.50 0.75 0.50 1.13 1.88 1.75 1.63 1.75 1.63 0.88 0.50 1.27

I15 4.50 0.88 6.75 5.25 5.25 0.88 1.50 0.88 2.50 8.25 6.00 5.50 5.25 6.00 2.75 0.88 3.94

I16 0.50 0.00 4.13 2.88 2.88 0.00 4.50 0.00 1.75 5.88 2.13 2.75 2.88 2.25 0.13 0.00 2.04

I17 2.13 0.00 6.00 4.13 4.63 0.00 3.38 0.00 2.25 6.00 4.13 4.63 4.13 4.25 0.88 0.00 2.91

Mean 7.13 2.83 11.00 9.24 9.33 2.80 6.58 2.83 6.82 12.16 9.20 9.45 9.24 9.34 4.28 2.83 7.19

https://doi.org/10.1371/journal.pone.0195478.t003

Table 4. Maximum percentage actives retrieved in top 1% of ranked database using WS-ELM technique (average across 10 runs). Bold face is the best result in each

activity class.

Class Similarity Coefficient Mean

C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16

I01 14.25 24.38 25.50 25.63 26.00 25.13 23.13 24.38 20.00 25.88 24.88 26.75 25.63 24.63 10.00 24.38 23.16

I02 14.00 26.50 27.13 28.63 28.13 27.50 24.00 26.50 25.25 28.00 29.13 28.25 28.63 29.50 9.50 26.50 25.45

I03 7.25 22.63 27.25 22.50 23.50 23.63 23.75 22.63 18.00 27.63 24.25 23.88 22.50 24.50 1.00 22.63 21.09

I04 8.50 20.50 26.00 19.63 20.88 20.00 22.13 20.50 20.50 25.25 21.13 21.25 19.63 22.88 5.63 20.50 19.68

I05 5.63 16.38 22.13 18.00 18.63 17.88 18.63 16.38 15.75 23.00 18.38 18.63 18.00 17.75 4.25 16.38 16.61

I06 1.75 2.50 2.25 2.00 2.13 2.88 3.63 2.50 2.13 2.63 1.75 2.13 2.00 1.25 2.38 2.50 2.27

I07 1.25 2.13 3.75 3.13 3.25 2.00 2.38 2.13 2.00 3.38 2.50 3.13 3.13 2.75 1.88 2.13 2.55

I08 2.75 3.63 7.63 4.88 5.50 4.25 5.63 3.63 5.50 7.25 5.38 6.13 4.88 5.88 0.75 3.63 4.83

I09 1.88 3.25 3.75 2.00 1.75 3.25 2.63 3.25 2.38 4.25 2.50 1.75 2.00 2.63 1.00 3.25 2.59

I10 1.25 4.75 5.88 3.75 4.38 5.50 3.63 4.75 3.25 6.88 3.63 4.50 3.75 5.13 2.13 4.75 4.24

I11 1.13 2.13 4.50 2.50 2.38 2.50 3.00 2.13 2.25 6.50 2.25 2.38 2.50 2.38 1.63 2.13 2.64

I12 2.13 2.38 4.38 3.63 3.38 3.00 3.88 2.38 2.63 4.88 3.63 3.50 3.63 3.63 2.00 2.38 3.21

I13 1.13 3.38 6.38 5.00 4.75 4.00 5.13 3.38 4.00 6.75 4.50 5.13 5.00 4.50 1.63 3.38 4.25

I14 2.13 1.00 2.88 2.25 2.25 1.50 1.88 1.00 2.00 3.00 2.75 2.13 2.25 2.75 1.75 1.00 2.03

I15 3.38 6.13 8.63 7.13 6.88 5.63 5.75 6.13 5.13 8.50 7.00 7.38 7.13 7.13 1.63 6.13 6.23

I16 3.63 6.25 5.63 3.75 3.88 5.38 4.00 6.25 3.75 5.88 3.38 4.25 3.75 3.38 4.13 6.25 4.59

I17 5.00 9.50 9.88 9.63 9.13 9.88 10.13 9.50 10.00 10.88 10.00 9.50 9.63 9.63 5.50 9.50 9.20

Mean 4.53 9.26 11.38 9.65 9.81 9.64 9.60 9.26 8.50 11.79 9.82 10.04 9.65 10.01 3.34 9.26 9.10

https://doi.org/10.1371/journal.pone.0195478.t004
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calculated by Eq (15).

Tj ¼
Xgj

i¼1

ðt3

i � tiÞ ð15Þ

Table 5. Ranks assigned to 16 similarity coefficients–similarity searching–by 17 activity classes from Table 3.

Class Similarity Coefficient

C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16

I01 9.0 14.0 2.0 6.5 4.5 16.0 11.0 14.0 10.0 1.0 8.0 3.0 6.5 4.5 12.0 14.0

I02 9.0 14.5 2.0 7.5 6.0 14.5 12.0 14.5 10.0 1.0 5.0 4.0 7.5 3.0 11.0 14.5

I03 11.0 14.5 2.0 6.5 5.0 14.5 3.0 14.5 10.0 1.0 9.0 4.0 6.5 8.0 12.0 14.5

I04 9.0 15.0 2.0 7.5 6.0 13.0 11.0 15.0 10.0 1.0 4.0 5.0 7.5 3.0 12.0 15.0

I05 9.0 13.0 2.0 7.0 7.0 15.0 16.0 13.0 10.0 1.0 3.5 3.5 7.0 5.0 11.0 13.0

I06 14.0 11.0 3.0 7.0 4.5 13.0 1.0 11.0 15.5 2.0 9.0 4.5 7.0 7.0 15.5 11.0

I07 10.0 14.5 2.0 4.5 7.5 14.5 9.0 14.5 11.0 1.0 4.5 7.5 4.5 4.5 12.0 14.5

I08 11.0 14.5 2.0 6.0 6.0 14.5 3.0 14.5 10.0 1.0 9.0 4.0 6.0 8.0 12.0 14.5

I09 11.0 14.5 2.0 6.0 4.0 14.5 3.0 14.5 10.0 1.0 9.0 6.0 6.0 8.0 12.0 14.5

I10 15.0 12.5 3.0 9.5 7.5 12.5 2.0 12.5 5.0 1.0 7.5 5.0 9.5 5.0 16.0 12.5

I11 4.0 14.0 2.0 6.5 6.5 16.0 12.0 14.0 11.0 1.0 9.5 6.5 6.5 9.5 3.0 14.0

I12 6.0 14.5 2.0 6.0 6.0 14.5 12.0 14.5 10.0 1.0 6.0 6.0 6.0 6.0 11.0 14.5

I13 11.0 13.5 2.0 8.0 5.0 13.5 3.0 13.5 5.0 1.0 10.0 5.0 8.0 8.0 16.0 13.5

I14 4.5 14.5 1.5 4.5 9.0 14.5 12.0 14.5 10.0 1.5 4.5 7.5 4.5 7.5 11.0 14.5

I15 9.0 14.5 2.0 7.0 7.0 14.5 12.0 14.5 11.0 1.0 3.5 5.0 7.0 3.5 10.0 14.5

I16 11.0 14.5 3.0 5.0 5.0 14.5 2.0 14.5 10.0 1.0 9.0 7.0 5.0 8.0 12.0 14.5

I17 11.0 14.5 1.5 7.0 3.5 14.5 9.0 14.5 10.0 1.5 7.0 3.5 7.0 5.0 12.0 14.5

Mean 9.7 14.0 2.1 6.6 5.9 14.4 7.8 14.0 9.9 1.1 6.9 5.1 6.6 6.1 11.8 14.0

https://doi.org/10.1371/journal.pone.0195478.t005

Table 6. Ranks assigned to 16 similarity coefficients–ELM–by 17 activity classes from Table 4.

Class Similarity Coefficient

C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16

I01 15.0 11.0 6.0 4.5 2.0 7.0 13.0 11.0 14.0 3.0 8.0 1.0 4.5 9.0 16.0 11.0

I02 15.0 11.0 9.0 3.5 6.0 8.0 14.0 11.0 13.0 7.0 2.0 5.0 3.5 1.0 16.0 11.0

I03 15.0 10.0 2.0 12.5 8.0 7.0 6.0 10.0 14.0 1.0 4.0 5.0 12.5 3.0 16.0 10.0

I04 15.0 9.5 1.0 13.5 7.0 12.0 4.0 9.5 9.5 2.0 6.0 5.0 13.5 3.0 16.0 9.5

I05 15.0 12.0 2.0 7.5 4.0 9.0 4.0 12.0 14.0 1.0 6.0 4.0 7.5 10.0 16.0 12.0

I06 14.5 5.0 8.0 12.5 10.0 2.0 1.0 5.0 10.0 3.0 14.5 10.0 12.5 16.0 7.0 5.0

I07 16.0 11.0 1.0 5.0 3.0 13.5 9.0 11.0 13.5 2.0 8.0 5.0 5.0 7.0 15.0 11.0

I08 15.0 13.0 1.0 9.5 6.5 11.0 5.0 13.0 6.5 2.0 8.0 3.0 9.5 4.0 16.0 13.0

I09 13.0 4.5 2.0 11.5 14.5 4.5 7.5 4.5 10.0 1.0 9.0 14.5 11.5 7.5 16.0 4.5

I10 16.0 6.0 2.0 10.5 9.0 3.0 12.5 6.0 14.0 1.0 12.5 8.0 10.5 4.0 15.0 6.0

I11 16.0 13.0 2.0 5.0 8.0 5.0 3.0 13.0 10.5 1.0 10.5 8.0 5.0 8.0 15.0 13.0

I12 15.0 13.0 2.0 5.5 9.0 10.0 3.0 13.0 11.0 1.0 5.5 8.0 5.5 5.5 16.0 13.0

I13 16.0 13.0 2.0 5.5 7.0 10.5 3.5 13.0 10.5 1.0 8.5 3.5 5.5 8.5 15.0 13.0

I14 8.5 15.0 2.0 6.0 6.0 13.0 11.0 15.0 10.0 1.0 3.5 8.5 6.0 3.5 12.0 15.0

I15 15.0 10.0 1.0 5.0 8.0 13.0 12.0 10.0 14.0 2.0 7.0 3.0 5.0 5.0 16.0 10.0

I16 14.0 2.0 5.0 12.0 10.0 6.0 9.0 2.0 12.0 4.0 15.5 7.0 12.0 15.5 8.0 2.0

I17 16.0 11.5 5.5 8.0 14.0 5.5 2.0 11.5 3.5 1.0 3.5 11.5 8.0 8.0 15.0 11.5

Mean 14.7 10.0 3.1 8.1 7.8 8.2 7.0 10.0 11.2 2.0 7.8 6.5 8.1 7.0 14.5 10.0

https://doi.org/10.1371/journal.pone.0195478.t006
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where ti is the number of tied ranks in the i-th grouping of ties, and gi is the number of groups

of ties in the j-th rank. The significance of the computed value of W can be obtained from the

table of critical values for N� 7 [37] or from a table of the chi-square distribution with N − 1

degrees of freedom for N> 7. We can calculate chi-square from

kðN � 1ÞW � w2
N� 1

ð16Þ

The computed values of W for similarity searching and WS-ELM are 0.8103, and 0.5161,

respectively, which correspond to χ2 values of 206.64, and 131.61, respectively (p< 0.001 for

15 degrees of freedom). Because agreement between various rankings of the same set of activity

classes is significant, this leads to the following orderings in the similarity searching case:

C10 > C03 > C12 > C05 > C14 > C04 ’ C13 > C11 >

C07 > C01 > C09 > C15 > C02 ’ C08 ’ C16 > C06

The rank of the 16 coefficients in WS-ELM case is as follows:

C10 > C03 > C12 > C14 ’ C07 > C05 ’ C11 > C04 ’>

C13 > C06 > C02 ’ C08 ’ C16 > C09 > C15 > C01

WS-ELM is then compared with the similarity searching technique. According to Tables 3

and 4, WS-ELM can achieve higher maximum percentage actives retrieved at 9.10% than simi-

larity searching does at 7.19% on average across 17 activity classes, 16 similarity coefficients,

four fingerprints, and ten runs. The t-test is used to test the significance level of the difference

between the means of two independent samples [37]. It is confirmed that WS-ELM can per-

form better than similarity searching on average at p< 0.001.

Next, the performance of Sokal/Sneath(1) on similarity searching and WS-ELM is analysed.

As shown in Tables 3 and 4, similarity searching and WS-ELM can achieve 11.79% and

12.16% of maximum percentage actives retrieved, respectively. However, it is inconclusive that

similarity searching with Sokal/Sneath(1) is outperforming WS-ELM with Sokal/Sneath(1) at

p = 0.5759.

Fig 2 shows relative improvement or worsening of WS-ELM with respect to similarity

searching on average across 16 similarity coefficients, four fingerprints, and 10 runs. The

entries are sorted by MPS score. It is hardly surprising that WS-ELM performs better than sim-

ilarity searching. This is because similarity searching only uses active molecules in its training

set while WS-ELM has a proper training set consisting of active and inactive molecules.

WS-ELM was more effective than similarity searching in 16 out of 17 cases, especially in the

cases with low MPS (heterogeneous). This means that including inactive molecules in the

training sets can improve overall performance. However, it might not be very useful in some

homogeneous classes, i.e. I01, I02, I5, and I07.

Further analysis is conducted by using a violin plot (as shown in Fig 3) to evaluate the distri-

bution of the results for WS-ELM in conjunction with each similarity coefficient. It is clearly

seen that there are two distinct distributions in each coefficient. These two distributions reflect

those activity classes with high and low MPS scores. The distribution with higher performance

contains activity I1, I2, I3, I4, and I5 with average MPS of 0.21 while distributions with lower

hit rate contain the remaining activity classes with average MPS of 0.18. In other words, the

five most homogeneous activity classes in the MUV dataset could achieve higher hit rates com-

pared to the others. On the other hand, if the active molecules are very structurally heteroge-

neous, it is difficult to achieve a high hit rate in that activity class as shown in Fig 4.
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Fig 5 shows maximum percentage of actives retrieved with WS-ELM and similarity search-

ing using different fingerprints–averaged across all activity classes and all similarity coeffi-

cients. Representing molecules with ECFP_6 fingerprint enables retrieving the most actives on

average in both WS-ELM and similarity searching. FCFP_4 fingerprint performs worst on

Fig 3. Violin plot of maximum percentage of active molecules retrieved in the top 1% with WS-ELM in conjunction with 16 different similarity

coefficients–averaged across ten runs, 17 activity classes, and four fingerprints.

https://doi.org/10.1371/journal.pone.0195478.g003

Fig 2. Relative improvement/worsening with respect to similarity searching for top 1% retrieved–average across ten runs, 16 similarity

coefficients, and four fingerprints.

https://doi.org/10.1371/journal.pone.0195478.g002
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Fig 4. Maximum percentage of active molecules retrieved in the top 1% with WS-ELM and similarity searching in 17 activity classes–averaged

across ten runs, 16 similarity coefficients, and four fingerprints.

https://doi.org/10.1371/journal.pone.0195478.g004

Fig 5. Maximum percentage of active molecules retrieved with WS-ELM and similarity searching using four different fingerprints–averaged

across 17 activity classes, 16 similarity coefficients, and 10 runs.

https://doi.org/10.1371/journal.pone.0195478.g005
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average. Again, Kendall Coefficient of Concordance is applied in order to obtain ordering in

four fingerprints–4 objects–and 17 judges. The computed W values are 0.1657 and 0.1352 for

WS-ELM and similarity searching, respectively. According to these values, the chi-square val-

ues yield 84.5153 and 68.9718, respectively; both are significant at the 0.001 level of statistical

significance. This suggests the same orderings in fingerprint case for both WS-ELM and simi-

larity searching:

ECFP 6 > ECFP 4 > FCFP 6 > FCFP 4:

A comparison of CWS-ELM and WS-ELM with the best two similarity

coefficients

The two best similarity coefficients–Sokal/Sneath(1) and Jaccard/Tanimoto–for MUV dataset

from the first part are employed in the proposed CWS-ELM algorithm. The proposed algo-

rithms are compared with WS-ELM on the same framework. Maximum percentage of active

molecules retrieved in the top 1% and number of hidden nodes used in the model are reported

in Table 7. Each element is an average across four fingerprints and 10 runs. The proposed algo-

rithm is reported as CWS-ELMKMC and CWS-ELMSVC for CWS-ELM in conjunction with k-

means clustering and SVC, respectively.

In the overall picture, the proposed CWS-ELM yields the highest performance measure in

15/17 activity classes. The best technique is CW-ELMSVC in conjunction with Sokal/Sneath(1)

which achieves the best percentage of active molecules retrieved in 9/17 cases at 13.02% on

average across all activity classes, but it requires the highest number of nodes in the hidden

layer at 71.0%. This is followed by CW-ELMSVC in conjunction with Jaccard/Tanimoto which

achieved a 12.03% hit rate and exhibited high accuracy in 4/17 cases. However, CW-ELMKMC’s

performance is slightly worse than WS-ELM because it contains a smaller number of hidden

nodes on average than WS-ELM. The correlation coefficient between the mean percentage of

hit rates and number of nodes used in the model is 0.93 which is considered very highly corre-

lated. Due to the high degree of diversity in the dataset, therefore, the number of nodes in the

hidden layer can directly affect the performance of the model. If the model is too simple, it can

degrade the performance of the classifier.

As our proposed algorithm embeds two clustering techniques to select the represented

samples in WS-ELM–one selects the centroids of the clusters and the other utilises support

vectors bounding the clusters, they are different in nature. Considering the same number of

clusters in the space, SVC requires more than one support vector to bound and identify the

cluster while k-means clustering needs only one centroid to represent the cluster. Therefore,

there is a high chance of SVC performing better than k-means clustering in this dataset as they

are very diverse.

Again, we applied the Kendall Coefficient of Concordance to test the significance on the

ranking of six contenders in Table 8. The computed W is 0.2581–leading to a χ2 of 21.94–

which indicates that the results are highly statistically significant. This gives the following rank-

ing:

CWS‐ELMSVC‐SN >WS‐ELMSN > CWS‐ELMSVC‐JT >

CWS‐ELMKMC‐SN > CWS‐ELMKMC‐JT ’WS‐ELMJT

It is clear that CWS-ELMSVC is the best contender among all while the worst is WS-ELMJT.

Furthermore, the effect of the number of nodes in the hidden layer on the performance is

investigated. The most homogeneous (I1) and the most diverse (I17) classes in the dataset with
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ECFP_6 fingerprint are evaluated. The regularisation parameter for each model–with a differ-

ent number of nodes used–is tuned by five-fold cross validation on the basis of AUROC.

Again, the experiment is conducted ten times with different random splits. In this experiment,

only WS-ELM and CWS-ELMKMC are evaluated because the number of hidden nodes of these

two can be directly adjusted and compared. Unlike the CWS-ELMSVC, the number of nodes

depends on Cs. The results of I01 and I17 are displayed in Figs 6 and 7, respectively.

Table 7. The percentage hit rate in the top 1% of the ranked database retrieved by WS-ELM and CWS-ELM in conjunction with Jaccard/Tanimoto (JT) and Sokal/

Sneath(1) (SN1). Figures in bold face represent the best performance.

Class WS-ELM CWS-ELM

Random K-Means SVC

JT SN1 JT SN1 JT SN1

I01 25.50 25.88 28.88 28.50 32.88 33.25

54.24 48.91 51.09 53.79 49.72 69.87

I02 27.13 28.00 27.25 25.88 28.50 29.63

54.85 45.51 54.32 46.16 50.21 71.03

I03 27.25 27.63 28.38 26.63 24.13 27.50

57.59 57.26 62.97 63.13 54.79 74.82

I04 26.00 25.25 20.38 22.88 25.25 30.88

52.56 58.63 47.24 55.29 55.56 79.31

I05 22.13 23.00 24.63 23.50 21.13 23.00

63.01 68.76 69.84 71.63 52.32 73.99

I06 2.25 2.63 2.25 2.25 4.13 3.88

37.26 36.51 34.62 37.40 52.21 66.28

I07 3.75 3.38 3.00 2.75 3.63 4.00

52.22 55.82 49.81 50.19 53.32 74.41

I08 7.63 7.25 7.00 8.38 7.25 8.88

52.94 54.00 51.47 47.78 53.65 68.66

I09 3.75 4.25 3.88 4.25 4.38 5.25

42.60 46.38 39.71 37.76 52.71 67.00

I10 5.88 6.88 6.50 5.75 6.88 8.50

55.90 64.40 59.72 62.51 51.26 71.51

I11 4.50 6.50 5.13 6.38 6.13 6.00

50.57 55.26 50.28 54.00 51.32 69.66

I12 4.38 4.88 4.75 4.88 4.75 4.88

51.84 55.53 51.00 50.51 51.00 69.50

I13 6.38 6.75 6.63 6.63 6.88 6.75

51.84 56.22 48.25 47.44 52.12 71.26

I14 2.88 3.00 1.63 1.25 1.88 1.75

36.93 41.22 43.65 49.06 51.90 67.59

I15 8.63 8.50 8.25 8.13 9.13 8.25

62.90 67.49 67.78 69.82 54.74 71.01

I16 5.63 5.88 4.63 4.75 5.63 7.50

46.60 46.37 38.59 41.44 53.76 69.51

I17 9.88 10.88 10.00 11.00 12.00 11.50

60.29 66.09 56.71 59.06 52.68 71.53

Mean 11.38 11.79 11.36 11.40 12.03 13.02

52.01 54.38 51.59 52.76 52.54 71.00

https://doi.org/10.1371/journal.pone.0195478.t007
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It is clear that CWS-ELMKMC is better than WS-ELM in number of actives retrieved

when a small number of nodes is used (1–28%) in the model for I17 as shown in Fig 7.

Moreover, it is more robust than WS-ELM resulting in smaller standard deviations in the

performances. This means that carefully selected samples in the hidden node is important.

According to Fig 6, CWS-ELMKMC is comparable to WS-ELM in I01. Comparing perfor-

mances of the classifiers in both activity classes, AUROC of I01 achieves convergence at

15% of number of nodes used while the convergence of AUROC in I17 occurs at 30% of

number of nodes used. This shows that the performance of classifiers on I01 can achieve

convergence quicker than I17.

We also show an enrichment plot which is a very useful method for evaluating the quality

of virtual screening methods. It is a cumulative sum plot of the active molecules retrieved from

the top 1% of the ranked database. Figs 8 and 9 show enrichment plots for I01 and I17, respec-

tively. Clearly, CWS-ELM’s performances are better than the conventional WS-ELMJT in both

I01 and I17. Performances by all methods on I01, the most homogeneous activity class, are bet-

ter than on I17, the most heterogeneous activity class.

In addition to comparing the overall performance results by using enrichment plots, the

individual molecules that are being retrieved are shown in Figs 10 and 11 for activity I01

and I17, respectively. It can be seen that CWS-ELMSVC-SN is the best in I01. Basically,

any molecules retrieved by other approaches can be retrieved in the top 1% of the list by

CWS-ELMSVC-SN but in different orders. This is because Sokal/Sneath(1) is a modified ver-

sion of the Jaccard/Tanimoto function as mentioned in the previous section. In I17 case,

WS-ELMSN fails to retrieve any active molecules in the top 1% while the other methods can

retrieve one or two active molecules.

Table 8. Ranks assigned to the performances of 6 classifiers by 17 activity classes from Table 7.

Class WS-ELM CWS-ELM

Random K-Means SVC

JT SN1 JT SN1 JT SN1

I01 6.00 5.00 3.00 4.00 2.00 1.00

I02 5.00 3.00 4.00 6.00 2.00 1.00

I03 4.00 2.00 1.00 5.00 6.00 3.00

I04 2.00 3.50 6.00 5.00 3.50 1.00

I05 5.00 3.50 1.00 2.00 6.00 3.50

I06 5.00 3.00 5.00 5.00 1.00 2.00

I07 2.00 4.00 5.00 6.00 3.00 1.00

I08 3.00 4.00 6.00 2.00 5.00 1.00

I09 6.00 3.50 5.00 3.50 2.00 1.00

I10 5.00 2.50 4.00 6.00 2.50 1.00

I11 6.00 1.00 5.00 2.00 3.00 4.00

I12 6.00 2.00 4.50 2.00 4.50 2.00

I13 6.00 2.50 4.50 4.50 1.00 2.50

I14 2.00 1.00 5.00 6.00 3.00 4.00

I15 2.00 3.00 4.50 6.00 1.00 4.50

I16 3.50 2.00 6.00 5.00 3.50 1.00

I17 6.00 4.00 5.00 3.00 1.00 2.00

Mean 4.38 2.91 4.38 4.29 2.94 2.09

https://doi.org/10.1371/journal.pone.0195478.t008
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Fig 7. Effect of AUROC when the number of hidden nodes in WS-ELM and CWS-ELMKMC is changed in activity class I17. Solid lines represent

mean values while shaded areas represent error/confidence bounds. The upper and lower bounds of each node are based on the standard deviation.

https://doi.org/10.1371/journal.pone.0195478.g007

Fig 6. Effect of AUROC when the number of hidden nodes in WS-ELM and CWS-ELMKMC is changed in activity class I01. Solid lines represent

mean values while shaded areas represent error/confidence bounds. The upper and lower bounds of each node are based on the standard deviation.

https://doi.org/10.1371/journal.pone.0195478.g006
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Fig 8. Enrichment plot for the top 1% of the sorted library for each performer with ECFP_6 fingerprint on activity class I01.

https://doi.org/10.1371/journal.pone.0195478.g008

Fig 9. Enrichment plot for the top 1% of the sorted library for each performer with ECFP_6 fingerprint on activity class I17.

https://doi.org/10.1371/journal.pone.0195478.g009
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Fig 10. Molecules retrieved by different methods in top 1% of the ranked database for activity class I01.

https://doi.org/10.1371/journal.pone.0195478.g010

Fig 11. Molecules retrieved by different methods in top 1% of the ranked database for activity class I17.

https://doi.org/10.1371/journal.pone.0195478.g011
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A comparison of CWS-ELM and WS-ELM with the best similarity

coefficient against other approaches

The proposed methods CWS-ELM and WS-ELM are compared against other approaches,

namely SVM, RF, and Similarity Searching. Apart from RF, all other methods are based on

Sokal/Sneath(1) coefficient. The hyper-parameters of SVM and RF are tuned with the same

framework as the proposed methods. As mentioned earlier, there are many criteria to evaluate

the algorithms but, in the previous experiments, AUROC is chosen for its simplicity, and the

percentage hit rate in the top 1% which gives the same picture as EF. However, AUROC has

been criticised because it is a global measure that does not pay attention to the top-ranked

molecules, therefore Truchon & Bayly proposed a generalised ROC metric called “Boltzmann-

Enhanced Discrimination of ROC” (BEDROC) which considers the early recognition problem

[34].

However, the best approaches to evaluate the virtual screening task are recommended [35,

38], and EF gives very much the same results as BEDROC but is easier to understand [36].

Therefore we follow the evaluations suggested in [35] by reporting the following measures: (i)

EF at 0.5%, 1.0%, 2.0%, and 5.0%, and (ii) The ratio of true positive to false positive rates at

0.5%, 1.0%, 2.0%, and 5.0%. Fig 12 shows EF and the ratio of true positive to false positive rates

at the top 0.5%, 1.0%, 2.0%, and 5.0% of the ranked database. Both criteria display the same

overall picture. CWS-ELMSVC is still the best contender among all other algorithms followed

by SVM at EF0.5% and EF1.0%. The worst is similarity search technique as expected. These are

confirmed by Kendall Coefficient of Concordance (with N = 6 and k = 17)–W values are

0.2186 (p< 0.01) and 0.1576 (p< 0.05) for EF at 0.5% and 1.0%, respectively–and lead to the

Fig 12. Early recognition criteria suggested by [35, 38]. (Left) EF (Right) Ratio of true positive rate to the false positive rate, at 0.5%, 1.0%, 2.0%, and

5.0% of the ranked database for WS-ELM and its variants, SVM, RF, and Similarity Searching (SS). Each bar represents the mean value across all activity

classes and ten runs.

https://doi.org/10.1371/journal.pone.0195478.g012
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following rankings.

EF0:5 % :

CWS‐ELMSVC > SVM >WS‐ELM > CWS‐ELMKMC > RF > Similarity Searching

EF1:0 % :

CWS‐ELMSVC > SVM > RF >WS‐ELM > CWS‐ELMKMC > Similarity Searching

Unfortunately, values of W are not significant at p = 0.05 level in the case of EF of 2.0% and

5.0%.

Furthermore, we also evaluate the task with BEDROC and a parameter α which relates to

the number of considered top ranked molecules in the database. The higher the value of α is,

the smaller the considered number of molecules is. As we are interested in the top 1% of the

ranked database, α is equal to 160.9 (refer to [34]). The BEDROC results are shown in Fig 13

with EF1.0%. Again, testing the results with Kendall Coefficient of Concordance (W = 0.1585)

gives the following ranking at p = 0.05:

CWS‐ELMSVC > SVM >WS‐ELM > RF > CWS‐ELMKMC > Similarity Searching:

Moreover, Fig 13 also shows that EF1.0% correlates with BEDROC(160.9) with correlation coef-

ficient of 0.9917. Although EF and BEDROC are strongly correlated, EF does not take into

account the ratio of active and inactive molecules while BEDROC does.

Conclusion

This study proposes a modified ELM, termed WS-ELM, which improves the overall perfor-

mance of virtual screening tasks. It demonstrates the capability of WS-ELM on the MUV data-

set which is known as one of the most challenging datasets. The results show that Sokal/Sneath

Fig 13. Bar charts showing mean EF and BEDROC at 1.0% of the ranked database for WS-ELM and its variants, SVM, RF, and Similarity

Seaching (SS). According to Truchon & Bayly, the top 1% of the ranked database is equivalent to α = 160.9 of BEDROC [34].

https://doi.org/10.1371/journal.pone.0195478.g013
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(1) and Jaccard/Tanimoto are the two best performers in this task among 16 similarity coeffi-

cients. Moreover, statistical analysis shows that using the ECFP fingerprint is better than the

FCFP fingerprint, and utilising a circular substructure of six diameter bonds is generally better

than four diameter bonds. Because of random generation of the weights in hidden nodes, it is

not able to guarantee the stability and robustness of WS-ELM. This can lead to a lack of accu-

rate prediction. Thus, WS-ELM is extended as CWS-ELM which adopts a clustering algorithm

to enhance its performance, namely k-mean clustering and SVC, to carefully select weights in

hidden nodes instead of randomly. Experimental results confirm that CWS-ELM perfor-

mances are better and more robust than WS-ELM. CWS-ELMSVC-SN is the best approach

which is consistently listed in the top ranks compared with its variants and other machine

learning techniques.
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