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The analysis of synovial tissue offers the potential for the comprehensive characterization

of cell types involved in arthritis pathogenesis. The studies performed to date in synovial

tissue have made it possible to define synovial pathotypes, which relate to disease

severity and response to treatment. Lipidomics is the branch of metabolomics that allows

the quantification and identification of lipids in different biological samples. Studies in

animal models of arthritis and in serum/plasma from patients with arthritis suggest the

involvement of different types of lipids (glycerophospholipids, glycerolipids, sphingolipids,

oxylipins, fatty acids) in the pathogenesis of arthritis. We reviewed studies that quantified

lipids in different types of tissues and their relationship with inflammation.We propose that

combining lipidomics with currently used “omics” techniques can improve the information

obtained from the analysis of synovial tissue, for a better understanding of pathogenesis

and the development of new therapeutic strategies.
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INTRODUCTION

Synovial Tissue Pathology in Arthritis
The synovial tissue (synovium) is the main target of inflammation in rheumatoid arthritis (RA)
and spondyloarthropathies (SpA) but it is also an important location of inflammation in other
rheumatic diseases, such as osteoarthritis (OA). The synovium lines the diarthrodial joints, as well
as tendons and bursae, and is comprised by a surface layer, the lining or intima, and the sublining
or underlying tissue (1). Healthy synovium is characterized by a low cell content, where the lining
contains 1–2 layers of cells, represented by macrophage- and fibroblast-like synoviocytes (FLS),
while the sublining contains connective tissue with scattered blood vessels, fat cells, and FLS, with
few lymphocytes and macrophages (1).

In pathological conditions, such as RA, SpA, or OA, the synovial membrane undergoes profound
changes, with an increase in the number of infiltrating and proliferating cells as well neoformation
of vessels (2). In RA, there is an increase of the thickness of the lining that becomes hyperplastic,
both due to the proliferation of FLS and the recruitment of circulating macrophages. Circulating
macrophages are also recruited to the sublining, which is hypercellular in RA and can also include
FLS, T and B cells, as well as dendritic and mast cells (3).
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Synovial pathology in SpA, and specifically in PsA, has been
studied in comparison to RA, trying to identify features that
differentiate both diseases. For the most part, PsA synovitis is
similar to RA, including lining hyperplasia, neoangiogenesis and
increased cellular infiltrates in the sublining layer. However, some
differences are worth mentioning as they could have therapeutic
implications (4). Macroscopically, the inflamed synovium of
PsA exhibits bushy and tortuous vessels which is an expression
of intense neovascularization, whereas the synovitis in RA
predominantly shows straight and branched vessels (5). Although
there seems to be no difference in the number of infiltrating
cells, the PsA synovium contains a higher amount of mast
cells, CD15+ neutrophils, and CD163+ macrophages (6). An
important trait of PsA synovium is the high amount of IL17A
loaded mast cells that inversely correlates with inflammation.
These are cells with potential innate protective functions, and
they are also present in other target tissues such as skin and gut.
The regulation of the amount of IL17A inmast cells was proposed
as potential therapeutic strategy in PsA (7).

The synovial pathology of OA includes not only synovitis but
also fibrosis and contributes to both initiation and progression in
OA. When present, synovitis is characterized by proliferation of
FLS and recruitment of macrophages, resulting in hyperplasia of
the synovial lining and cell infiltrating the sublining that include
macrophages, T cells, and to a lesser extent, mast cells, B cells,
plasma cells and endothelial cells (8). Macrophages are the most
abundant immune cells in the synovial membrane of OA and
are involved in both maintaining and resolving the inflammatory
process. Moreover, inflammatory infiltrates coexist with fibrotic
changes and angiogenesis in OA, which can be more prevalent in
the late stages than in the early stages of the disease (8).

Synovial inflammation (or synovitis) causes joint pain
and damage. Synovitis, when uncontrolled, is associated with
disability, decreased quality of life, and increased morbidity
and mortality (9, 10). Despite the existence of a wide range of
therapeutic options for various rheumatic conditions, a number
of patients do not respond well to current treatments. Some
patients will experience persistent high disease activity (11);
and even among responders, only a small percentage will reach
remission (12). Furthermore, there are no disease modifying
treatments available in OA, although it is the most prevalent type
of arthritis. A better understanding of the pathogenesis of these
diseases would offer opportunities for the identification of new
targets and the development of new therapeutic interventions.

The use of synovial biopsies to determine new pathogenesis
mechanisms has recently advanced the field in RA (13). Synovial
tissue can be obtained by arthroscopy or with ultrasound
guidance. The latter are minimally invasive procedures that can
be performed by rheumatologists in the outpatient clinic, are safe
and associated with a low risk of side effects (14). So far, most
of the efforts have focused on the characterization of synovial
tissue in RA and the information provided by the analysis of
the tissue is highly relevant. Histological assessment combined
with cell sequencing of the synovial membrane has led to a
better characterization of the cell types involved in synovial
inflammation and to the development of disease pathotypes in
RA (15). As part of a large collaborative project, the Accelerating

Medicines Partnership (AMP) consortium, functionally distinct
FLS and macrophages among other cell populations were
identified in the RA synovium (16). Of note DMARDs have an
effect on FLS-macrophage crosstalk, paving the way for future
applications in personalized medicine (17). Additionally, other
studies have linked synovial pathotypes with disease severity
and response to various targeted treatments (15, 18). These new
techniques of sequencing for a better characterization of the
synovial cells may not yet be able to capture certain functional
features of the tissue and cells, such as metabolic activity. The
addition of lipidomics to the other “omic” techniques in the
study of synovial tissue will make possible to further deepen
the characterization and understanding of the pathogenesis
of the disease, identifying different lipid metabolic pathways
specifically altered in the different types of arthritis. Moreover,
the identification of different metabolic profiles has the potential
to discover new therapeutic targets and predictors of disease
progression and response to treatment.

Lipid Metabolism in Inflammation
Classically, lipids have been described as the main components
of cell membranes, and also used as fuel and energy storage.
In the recent years, studies have shown that lipids are bioactive
molecules and function as signaling molecules, participating
in the regulation of several cell processes such as cell death,
proliferation, and inflammation (19).

Both pro- and anti-inflammatory lipids are involved in the
pathogenesis of arthritis. The type of lipids better characterized
in arthritis are the oxylipins (Figure 1). The pro-inflammatory
oxylipins derived from omega 6 polyunsaturated fatty acids
(PUFA) such as arachidonic acid (AA) are responsible for
some of the clinical symptoms of arthritis, such as pain,
swelling and stiffness. Anti-inflammatory and specialized
pro-resolving mediators (SPM) are synthesized from omega 3
PUFA such as DHA or EPA and are critical for the resolution
of inflammation and return to homeostasis. Other lipid
classes expanded in this review, such as glycerophospholipids
and sphingolipids have been less studied in the context of
inflammatory arthritis. These are components of cellular
and organelle membranes that regulate functions such as
membrane shaping, cell trafficking, cell growth and death,
inflammatory cascades, and leukocyte adhesion (20). A
few glycerophospholipids, including phosphatidylcholine
(PC), phosphatidylserine (PS), phosphatidylethanolamine
(PE), and phosphatidic acid (PA) have proinflammatory
properties (Figure 2). As for the sphingolipids (Figure 3),
some ceramides [Cer(d18:1/24:2) and Cer(d18:1/24:0)] are
increased in inflammatory processes, while other ceramides,
sphinganine and dihydroceramides are associated with decreased
inflammation (20). Importantly, both FLS and immune cells,
either resident or recruited in the synovial tissue can secrete
bioactive lipid mediators.

Several drugs employed in the treatment of arthritis
can target different pathways belonging to the lipid
metabolism [reviewed elsewhere (21)], further supporting
the involvement of lipids in arthritis. Non-steroid anti-
inflammatory drugs (NSAIDs), commonly used to treat
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FIGURE 1 | Oxylipin synthesis. Pro-inflammatory oxylipins are marked in red, while anti-inflammatory ones are marked in blue. LOX, lipoxygenase; CYP, cytochrome;

NE, non-enzymatic; PGDS, prostaglandin D synthase; PGFS, prostaglandin F synthase; PGES, prostaglandin E synthase; PGIS, prostaglandin I synthase; HEDH,

Hydroxyeicosanoid dehydrogenase; LTAH, Leukotriene A4 hydrolase; PGDH, hydroxy prostaglandin dehydrogenase; TXAS, thromboxane A synthase; PGR,

15-ketoprostaglandin113 reductase; sHE, soluble epoxide hydrolase.

inflammatory arthritis, inhibit the synthesis of prostaglandins
and leukotrienes, by acting on the cyclooxygenase (COX)
enzymes involved in their synthesis (Figure 1). The mechanism
of action of glucocorticoids also involves effects on the lipid
metabolism: they promote fatty acid synthase and acetyl-
CoA carboxylase activation and inhibition of fatty acid
β-oxidation by blocking acyl-CoA dehydrogenase activity.
Other treatments, including hydroxychloroquine, methotrexate,
and biological therapies have beneficial effects of on the lipid
profile (21).

TYPES OF LIPIDS AND METHODS
EMPLOYED IN LIPIDOMICS

Lipidomics is a branch of metabolomics which involves “the full
characterization of lipid molecular species and their biological
roles with respect to the expression of proteins involved in lipid
metabolism and function, including gene regulation” (22). Lipids
are complex molecules and can be classified in several chemical
classes (Table 1), as well as extracted and identified using several
methods (Table 2).

Classification of Lipids
Lipids are chemical compounds with different bioactive
functions. LIPID MAPS (https://www.lipidmaps.org/), an online
resource for lipidomics, has classified lipids into 8 groups
according to the presence of ketoacyl and isoprene groups. Based
on this classification system, lipids have been divided into eight
categories: fatty acyls, glycerolipids (GLs), glycerophospholipids
(GPLs), sphingolipids (SPs), saccharolipids, polyketides (derived
from condensation of ketoacyl subunits), sterol lipids, and prenol
lipids (derived from condensation of isoprene subunits) (29)
(Table 1). Fatty acids (FAs), included in the fatty acyl category,
are the main component of most of these lipids. The general
structure of a FA consists of a straight chain of an even number
of carbon atoms (also named acyl chain), with hydrogen atoms
along the length of the chain at one end of the chain and a
carboxyl group (—COOH) at the other end. Depending on the
number of double bonds, they are classified as saturated (without
double bonds in the acyl chain), monounsaturated (MUFA,
with one double bond), or polyunsaturated (PUFA, with more
than 2 double bonds). Additionally, they can be classified based
on the number of carbon atoms, as short-chain FAs (SCFAs),
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FIGURE 2 | Synthesis of phospholipids. Pro-inflammatory lipids are marked in red, while anti-inflammatory ones are marked in blue. ChoK, Choline Kinase;

CDP-DGS, Cytidine diphosphate diacylglycerol Synthase; CPT, Carnitine Palmitoyltransferase; GPAT, glycerol-3-phosphate acyltransferase; ChoT,

CholineTRansferasa; EK, Ethanolamine kinase; ET, Ethanolamine transferase; EPT, Ethanolalmine phosphotransferase; LPA acetyltransferase, lyso-phosphatidic acid

acyltransferase; PA, Phosphatidic acid; PAP-1, Phosphatidate phosphatase-1; PC, Phosphatidylcholine; P-Choline, Phosphocholine PE, Phosphatidylethanolamine;

P-Ethanolamine, Phosphoethanolamine; PLA1, Phospholipase A1; PLA2, Phospholipase A2; PEMT, PE methyltransferase; PS, Phosphatidylserine; PPS2, PS

synthase 2; PSD, PS-decarboxylase.

with up to 6 carbons, medium-chain FAs (MCFAs), with 6–12
carbons, long-chain FAs (LCFAs), with more than 12 carbons,
or a recently discovered subgroup of the latter group which
has been defined as very long-chain fatty acids (VLCFAs), with
more than 22 carbons. The length of the acyl chain and the
degree of its saturation determine the various functions of FAs,
such as the rigidity of the plasma membrane and the biological
effects in humans. The degree of unsaturation determines the
susceptibility of the unsaturated FAs to oxidation, which makes
the membrane resistant to damage or penetration by drugs (30).

The source of FAs can be both endo- and exogenous
(Figure 4). Endogenously, de novo synthesis of FA from acetyl-
coenzyme A (acetyl-CoA) is catalyzed by fatty acid synthase
(FASN) yielding palmitate (16:0), which can then be either
desaturated to palmitoleate (16:1) by stearoyl-CoA desaturase
1 (SCD, a delta 9 desaturase), or elongated by an elongase
(ELOVL6) to stearate (18:0). Stearate, a saturated FA, is then
converted into oleate (MUFA) by SCD, and its chains are
elongated by elongases (ELOVL). There are 2 groups of elongases:
ELOVLs 1, 3 and 6, involved in the elongation of saturated FAs
and MUFAs, and ELOVLs 2, 4 and 5, which are responsible for
the elongation of PUFAs (31).

The other source of FA is exogenous, since some FAs cannot
be synthesized by human cells due to the lack of the enzymatic

system that introduces double bonds at position omega (n)-
6 (carbon 6 from the omega end) or lower. Both 18:3 n-3
FAs (alpha linolenic acid, α-LNA), found in some plant oils
(flaxseed, rapeseed, canola), walnuts and leafy greens, and 18:2
n-6 FAs (linoleic acid, LA), contained in meat, poultry, cereal
products, and oil, are essential FAs and must be provided with
the diet. Once ingested, they serve as precursor for other n-3
(eicosapentaenoic acid, EPA, 20:5 n-3, docosapentaenoic acid,
DHA, 22:6 n-3) or n-6 (arachidonic acid, AA, 20:4 n-6) PUFAs,
with the intervention of several elongases (ELOVL) and FA
desaturases (FADS) such as FADS1, a delta 5 desaturase—rate-
limiting enzyme that introduces a double-bond at the 5th carbon
of the n-3 and n-6 PUFA chain, and FADS2, a delta 6 desaturase-
rate limiting enzyme that introduces a double-bond at the 6th
carbon in the FA chain) (Figure 4).

FAs then need to be activated, as FA-CoA, to be able to
perform biological roles (32). The activated FAs are either
transported to mitochondria for oxidation and energy generation
or serve as substrates for the synthesis of other categories of
lipids, such as GLs, GPLs, and SPs (Table 1). These categories of
lipids have a headgroup that binds to a backbone, which have a
high structural variability and are responsible for a large range
of functions, including membrane curvature, cell signaling and
substrate transport (33). The essential FAs, AA, EPA, and DHA
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FIGURE 3 | Synthesis of sphingolipids. Pro-inflammatory lipids are marked in

red, while anti-inflammatory ones are marked in blue.C1P, Ceramide

1-phosphate; CDase, Ceramidase; CerK, Ceramide Kinase; CerS, Ceramide

Synthases 1–6; GCS, Glucosylceramide Synthase; SMS, Sphingomyelin

synthase; SPT, Serine Palmitoyltransferase; S1P, Sphingosine 1-phosphate;

SphK, Sphingosine kinase; *Different types of ceramides can act as either

proinflammatory or anti-inflammatory.

are commonly used for the synthesis of classical [prostaglandins
(PG), leukotrienes (LT), thromboxanes (TX) and lipoxins (LP)]
and non-classical (endocannabinoids (eCBs), neuroprotectins
and resolvins) oxylipins (33).

Extraction Methods and
Chromatography-Mass Spectrometry
Lipids are embedded in complex matrices (blood, tissue, urine),
therefore, prior to analysis, an isolation/fractionation step is
necessary to remove non-lipidmolecules such as proteins, sugars,
and other small molecules. Two methods are widely used for
the separation of lipids from biological samples. The first is
called liquid-liquid extraction (LLE) and allows for the instant
partitioning of the lipids. It uses a chloroform/methanol solvent
with or without incorporated water as the extraction matrix. The
high efficiency of this extraction method is due to the capability
to penetrate through the cell membrane, the higher polarity, and
the stronger interaction with the hydrogen bond.

The second method, solid-phase extraction (SPE), does not
require partitioning of lipids in a solvent/water mixture, but uses
stationary materials, such as bonded silica gel with –CN, –NH2,
or diol groups, in combination with different elution solvents
for lipid separation. The application of solvents with increasing
polarity allows efficient isolation of phosphatidylcholine (PC),
non-esterified FAs, cholesterol esters and triacylglycerols (TG).
This method can also be employed for the fractionation of lipid
subclasses, including ceramides, GPLs, sphingomyelins (SMs)

and phosphorylated sphingoid bases. Compared to LLE, SPE
shows an improved recovery and selectivity for phospholipids
(PLs), including GPLs and phosphosphingolipids. SPE has the
advantages of simplicity in operation, reduced solvent cost,
and easy automation over liquid-liquid extraction, leading to
its increasing popularity, especially in targeted lipidomics while
liquid-liquid extraction tends to be used for non-targeted lipid
profiling (13).

After extraction, lipids from biological samples are
dissolved in a solvent and undergo separation, using either
gas chromatography (GC) or liquid chromatography (LC)
depending on physical state of mobile phase used, followed by
detection of spectra using mass spectrometry (MS). The gases
more commonly used in GC are helium, nitrogen, argon and
hydrogen, while LC uses solvents with high polarity such as
water, methanol and acetonitrile. LC is the chromatographic
technique most commonly used for lipids. However, due to the
chemical diversity and physicochemical characteristics of each
lipid variation, the selection of the methods, solvents and the
chromatographic method need to be performed with caution
(34). Table 2 shows a few examples of extraction, separation, and
detection methods used to quantify lipids from different types
of biological samples, along with the types of lipids identified by
these methods.

Circulating levels of lipids can be influenced by a variety of
factors that include diet, gutmicrobiome and absorption, age, sex,
comorbidities, physical exercise, and drugs. This certainly makes
the interpretation of the data more difficult (35). Yet, no data is
available on the effect of all these factors on the lipid composition
of the synovial tissue, emphasizing the need to study lipidomics
in this tissue.

EVIDENCE OF LIPID ALTERATIONS IN
ARTHRITIS

There is at present a relative paucity of lipidomics studies
performed on synovial tissue to assess the lipid classes and
subclasses present in this tissue. Isolated cells from RA patients
who underwent synovectomy were described to produce PGE2,
which was suppressed by indomethacin and dexamethasone,
suggesting an involvement of PGE2 in the pathogenesis of RA
(36). However, lipidomics has not been largely used in the study
of synovial tissue. An exception is several studies by Rocha
et al., who found that osteoarthritis (OA) synovium presents
elevated levels of PC, FAs and lysophosphatidic acids, and lower
levels of lysophosphatidylcholines (LysoPC) compared to control
tissues. Moreover, the spatial distribution of specific GPLs was
also correlated with hypertrophic, inflamed and vascularized
synovial areas. Compared to other inflammatory arthritis, the OA
tissue showed lower amounts of phosphatidylethanolamine (PE)-
based plasmalogens (28). The second study of the same group
compared lipidomics profiles in rheumatoid arthritis (RA, n =

6), psoriatic arthritis (PsA, n = 12), and control donors (n =

10). Amongst the 35 lipid species that were significantly different
between the groups, PC and PE, such as PE 34:1 and PE 36:1, were
higher in RA and PsA compared to controls. Additionally, the
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FIGURE 4 | Fatty acid synthesis. (A) De novo synthesis of endogenous fatty acids; ACYL, ATP citrate lyase; ACC1, Acetyl-coenzyme A carboxylase 1; FASN, fatty

acid synthase; SCD1, stearoyl-CoA desaturase 1; ELOVL, elongase 6; (B) Synthesis of PUFA from essential fatty acids. ELOVL 2,4,5, elongases 2,4,5.

spatial distribution of the mentioned PE species was associated
with areas of the sublining layer with increased vascularity and
inflammatory cell infiltrates, and their levels were also increased
in synovial fluid (SF) from PsA patients compared to RA (37).

Oxylipins
Studies on gene expression in synovial tissue and in animal
models, though, suggest a role for lipid pathways. The most
studied lipids in the pathogenesis of RA are the oxylipins,
namely PG, LT and TX, which are derived from AA through
COX and LOX enzymes and are considered to have a pro-
inflammatory role (Figure 1). Cytosolic phospholipase A2, the
enzyme that releases FAs from membranes, is overexpressed
in SF from RA patients (38) and is induced by IL-1b in
FLS (39). The expression of COX2 (inducible) but not COX1
(constitutive) is increased in synovial explants from RA patients
(40, 41), as well as in synovium from RA, ankylosing spondylitis
(AS), and PsA compared to OA, by immunohistochemistry
(IHC) and mRNA expression (42). Downstream enzymes of
COX2, such as prostaglandin E synthase (PGES), specifically
the inducible microsomal isoform 1 (mPGES1), involved in
PGE2 synthesis, is also overexpressed in both synovial tissue
and cartilage and contributes to chronic inflammation (43).
Specifically, RA is characterized by an upregulation of the COX2-
mPGEs1-PGE2 axis. Pro-inflammatory cytokines (IL-1b, TNF,
and lipopolysaccharide) induce the expression of COX2 and
mPGES1 and secretion of PGE2 in RA FLS and mononuclear

cells in RA SF (44, 45). In addition, PGI2, PGF2a, and 8-
iso-prostaglandin F2α were elevated in SF and urine of RA
patients suggesting pro-inflammatory effects (46–48) [reviewed
(49)]. In animal models, the genetic deletion of mPGES1 in
the collagen induced arthritis (CIA) model was associated with
decreased severity of arthritis (50). PGE2 has a role not only in
initiating and maintaining inflammation, but also in pain in RA.
Other PG related oxylipins, such as PGD2 and 15-deoxy-D12,14-
prostaglandin J2 (15d-PGJ2) decrease inflammation in animal
models of arthritis (51).

The COX2-mPGES1-PGE2 axis is also upregulated in OA,
although less data is available. PGE2 is increased in both
synovial tissue and SF from OA patients (52, 53). Similar to
RA, proinflammatory cytokines (IL-1β, TNF, or IL-17) induced
expression of mPGES-1, and enhanced PGE2 production in OA
chondrocytes and synovial fibroblasts (54).

The effect of the antirheumatic drugs on the synovial
expression of COX2 and mPGES1 is somewhat surprising.
In RA patients, intraarticular glucocorticoids are associated
not only with clinical improvement, but also decreased
synovial expression of COX1 and 2 and mPGES1, as well as
decreased PGE2 production (44, 55). However, treatment with
methotrexate (55) and TNF inhibitors was followed by no change
in the expression of these enzymes not the amount of PGE2 in
the synovial tissue (44). These are important observations as they
might explain why a percentage of patients does not respond to
these treatments. Therefore, adding lipidomics to the study of
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TABLE 1 | Lipid classification according to LIPID MAPS.

Lipid type Chemical group Structure Subclass

Fatty acid (FA) Carboxylic acid (COOH) group

bonded to a saturated carbon

backbone.

FA (Capric acid, Lauric acid,

Oleic acid, Linoleic acid) and FA

conjugates:

Fatty esters,

Fatty alcohols, Fatty

amides, Oxylipins

Glycerolipids (GL) Glycerol-backbone. Long-chain acyl

and alkyl groups, and a collection of

polar alcohols

Monoacylglycerol (1 FA)

Diacylglycerol (2 FA)

Triacylglycerol (3FA)

Glycerophospholipids

(GLP)

Glycerol-backbone. Terminal ester

group (X) are ethanolamine, choline,

serine or inositol. It has a phosphate

headgroup and R indicates FA

Phosphatidic acid

Phosphatidylcholine

Phosphatidylserine

Phosphatidylethanolamine

Phosphatidylinositol

Phosphatidylglycerol

Cardiolipins

Sphingolipids (SP) Backbone of sphingosine bases and

set of aliphatic amino alcohol. R

indicates FA

Ceramide

Sphingosine

Sphingomyelin

Glycosphingolipid

Sphingosine 1-P

synovial tissue, might uncover active pathways despite treatment
pointing at new potential therapeutic targets.

Other enzymes, 5-, 12- and 15 lipoxygenases (LOX), are
also expressed in human synovial tissue and synoviocytes
(56, 57). 5-LOX mRNA was detected in RA synovial tissue,
specifically in macrophages in the lining (57, 58). Leukotriene
B4 (LTB4, AA derived oxylipin via 5LOX) and its receptor
BLT1 are critical for the development of arthritis in the K/BxN
mouse model (59, 60). Inhibition of 5-LOX in fibroblast-like
synoviocytes (FLS) or knocking the 5LOX gene in a mouse
model with RA decreased inflammatory cytokine expression
and paw inflammation (61). The BLT2 receptor also appears
to be involved in the pathogenesis of RA, as it was shown
to mediate LTB4-induced upregulation of TNF and IL1β in
FLS (62), and BLT2 deficient mice presented reduced incidence
and severity of arthritis in an animal model with RA (63).
Intraarticular glucocorticoids decreased the expression of 5-
LOX in the synovial tissue (57) and methotrexate decreased
LTB4 secretion in polymorphonuclear cells from RA patients
(64, 65). Interestingly, no relevant clinical effects were observed
in RA patients treated with Zileuton, a 5-LOX inhibitor (66, 67).

15-LOX is also expressed in RA synovium (58), but the studies on
this pathway have reported contradictory results in RA (68).

There is less information available in arthritis about the role of
other AA-derived oxylipins such as the hydroxyeicosatetraenoic
acids (HETE) or other lipids derived via the CYP450 pathways,
such as epoxyeicosatrienoic acid (EETs), which have been
proposed to have anti-inflammatory properties.

Finally, another group of PUFA-derived lipids are the
specialized pro-resolving mediators (SPM), which are essential
for the resolution of inflammation. They include lipoxins
(derived from AA), maresins (derived from DHA), and resolvins
(derived from EPA and DHA) (69). Several studies in RA patients
and in animal models of arthritis suggest a role for these oxylipins
in arthritis. Lipoxins (LX) are generated by the combined action
of 5-LOX and 15-LOX-1 (an isoform of 15-LOX). LXA4 has
been detected in RA SF (58) and is known to inhibit neutrophil
chemotaxis, adhesion and migration, which could result in less
articular damage (70). No human studies are available, but
arthritis models induced in 12/15-LOX (an orthologue of human
15-LOX-1) deficient mice showed enhanced joint inflammation
and destruction and were associated with low levels of LXA4 in
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TABLE 2 | Examples of extraction methods and Chromatography-Mass Spectrometry.

Type of sample Method of

extraction

Solvent Technique Type of lipid References

Plasma SPE using

Enhance Matrix

Removal—

EMR Lipid

ACN/MeOH (95:5, v/v) LC-MS FAs, PLs, SPs. (23)

Plasma and serum LLE CHCl3/MeOH (1:1, v/v) LC-MS TG, PLs, SPs (24)

Plasma SPE (oxylipins)

LLE (rest of lipids)

Methanolic HCl/isooctane (1:3, v/v). GC-MS, LC-MS Oxylipins, GLs, GPLs, SPs (25)

Brain sample LLE CHCl3/MeOH (1:1, v/v) LC: MS SPs (26)

Macrophages LLE C8H19N/ PFB-Br (1:1, in ACN) GC-MS FAs (27)

Synovial tissue LLE CHCl3/MeOH (2:1, v/v) MALDI-MSI FAs, SPs, GPs (28)

SPs, sphingolipids; GLs, glycerolipids; GPLs, glycerophospholipids; FA, fatty acids; TG, triacylglycerol; PL, phospholipids; LC-MS, liquid chromatography-mass spectrometry; GC-

MS, gas chromatography-mass spectrometry; LLE, liquid-liquid extraction; SPE, solid phase extraction; CHCl3/MeOH, chloroform/methanol; C8H19N, diisopropylethylamine; PFB-Br,

pentafluorobenzyl bromide; ACN, acenotrile.

the synovial extracts (71). Moreover, treatment of another animal
model (CIA) with LXA4 agonists significantly decreased clinical
and histological scores of arthritis (72).

In another study, resolvin (Rv) RvD3 was reduced in serum
from RA patients compared to controls, and administration of
RvD3 reduced joint leukocytes as well as paw joint oxylipins,
clinical scores, and edema in the mouse model (73). RvD3
levels were also reduced in inflamed joints from mice with
delayed-resolving arthritis when compared to joints with self-
resolving inflammatory arthritis. These data suggest a possible
therapeutic role of RvD3 in RA (73). RvD1 was also found to be
decreased in serum of RA patients compared to controls, and its
administration in the CIA mouse model decreased inflammation
as well as cartilage damage. Furthermore, in vitro studies showed
that RvD1 decreased migration and proliferation of RA FLS,
properties that are associated with disease progression (74–76).
RvD5 is another SPM that was shown to decrease inflammation
in amousemodel of RA (77). Of interest, a recent study described
macrophage synovial subpopulations (MerTKposTREM2high and
MerTKposLYVE1pos) with a unique remission transcriptomic
signature enriched in negative regulators of inflammation in
RA synovial tissue. MerTKpos synovial macrophages from
RA patients in remission produce a higher amount of SPMs,
including RvD1, which suggests they may promote resolution of
inflammation (78). All these results suggest that these pathways
are critical for arthritis pathogenesis, but we need a better
understanding of their role to identify critical therapeutic targets.

Sphingosine-1-Phosphate Pathway
Sphingosine-1-phosphate (S1P) is another lipid that has been
studied in RA and acts on a series of tissue receptors (S1P1 to
3). Recently, a study found an increased concentration of S1P
in SF of RA patients compared to controls (79). Ceramide was
found to be a potent inducer of apoptosis of proliferative RA FLS
in vitro and in vivo, suggesting that this lipid messenger might
inhibit synovial proliferation (80). In vitro studies showed that
the addition of C2-ceramide was able to inhibit platelet-derived

growth factor (PDGF)-induced cell cycle progression of RA FLS,
by the inhibition of anti-apoptotic kinases, such as Akt and
ERK1/2, which suggests that the inhibition of these kinases may
contribute to the apoptotic effects of ceramide by eliminating
proliferative signals in the rheumatoid synovium (81). Studies
performed in animal models also provide support for the
involvement of the S1P pathway in synovitis. S1P receptor is
upregulated in synovial tissue from the CIA mouse model, and
inflammation increases S1P/S1P3 signaling, which stimulates
increased production of interleukin (IL)-6 in FLS from CIA
mice. Additionally, S1P3 receptor KO mice developed a lower
degree of arthritis compared to wild type mice (82). Moreover,
proangiogenic factors can stimulate the sphingosine kinase
1 (SphK1)/S1P/S1P1 pathway to upregulate proliferation and
migration and facilitate angiogenesis in a rat model with RA (83).
Hence, the data suggest that S1P could be a potential therapeutic
target in RA, although further studies are needed to establish its
role in RA pathogenesis.

Other Lipids
Regarding other types of lipids involved in arthritis, older studies
revealed that disease progression in the CIA mouse model was
associated with a significant reduction in the expression of genes
involved in lipogenesis (INSIG1, SREBP1a and ACC) and lipid
accumulation (DGAT1, DGAT2, PLIN1 and PLIN2) (84). RA
susceptibility genes (TRAF1/C5, STAT4 and HLA-DRB1-SE)
might also be involved in the regulation of lipid metabolism
(85). Other RA susceptibility genes, specifically FADS1 and 2
and BLK (BLK Proto-Oncogene, Src Family Tyrosine Kinase), are
part of FA metabolism (86–90). Finally, several single nucleotide
polymorphisms (SNP) in genes involved in lipid metabolism
have been described to be associated with RA. SLC22A4, a
transporter related to isovaleryl/carnitine (involved in lipid
transportation), was associated with RA in a Japanese (91), but
not in a Canadian population (92). In another study, Geiger
et al. (93) also described 2 SNPs, rs9309413 and rs4775041, on
PLEK (Pleckstrin) and LIPC (Hepatic Triacylglycerol Lipase)
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TABLE 3 | Lipidomic studies in serum or plasma in individuals with arthritis and controls.

Disease Patients Type of sample Types of lipids Findings

EORA and PMR 44 EORA

20 PMR

18 controls

Serum Oxylipins - The ratio of n-3/n-6 PUFAwas significantly downregulated in EORA,

but not in PMR patients, as compared to controls, and increased

after treatment.

- Two oxylipins, 4-HDoHE and 8,15-diHETE differentiated both

diseases (97).

RA 60 early RA

11 arthralgia

28 controls

Serum Oxylipins - Different oxylipins profiles were identified across the stages of

arthralgia and early RA.

- Different oxylipin profile were observed in patients with more

severe disease and who were less likely to achieve remission (98).

RA 32 active RA

33 RA in remission

Serum SPMs - SPM concentrations (LXA4, RvD1, and RvE1) were higher in sera

of RA patients with active disease compared to remission (99).

RA 78 RA Serum Lipid composition

carnitine- and

choline- derivatives

- Higher total FA and total cholesterol concentrations were found in

active RA.

- Elevated PL concentrations with lower choline, elevated

medium-chain acylcarnitines (MC-AC), and decreased ratios of

MC-AC and long-chain (LC)-AC were associated with

prednisolone medication (100).

RA 255 RA

100 controls

Serum GPL, GL,

Carnitines

- Acyl carnitines (20:3), PE (18:1), and LPE (20:3) correlated with RA

disease activity.

- PA (28:0) negatively correlated with RA disease activity (101).

RA 30 RA responders to

DMARDs

24 non-responders

Plasma Oxylipins - Upregulation of SPMs and pro-inflammatory and

immunosuppressive mediators including PGD2 and TXB2 in

patients with a pauci-immune-fibroid pathotype (characterized by

histologic analysis of synovial tissue from biopsies).

- Different lipid profiles were associated to response to

DMARDs (102).

Pre-RA 30 pre-RA

19 controls

Plasma GPLs, GLs - The majority of PL and SM were higher in pre-RA in comparison

with controls (103).

PsA 41 PsA Serum Oxylipins - Pro-inflammatory oxylipins such as PGE2, HXB3 or 6,15-dk, dh,

PGF1a, and EPA-derived oxylipins, such as 11-HEPE, 12-HEPE

and 15-HEPE correlated with joint disease score.

- RvD1 was down-regulated in patients with high disease

activity (104).

PsO and PsA 20 PsO

19 PsA

Serum Oxylipins - PsO and PsA patients with higher PASI score had lower serum

AA-derived oxylipins.

- AA-derived oxylipins (5,15 di-HETE 5-oxoETE, PGE2, 11bPGE2,

and LTB4 were associated with enthesitis (105).

PsA 20 PsO who develop

PsA

30 PsO with no PsA

10 controls

Serum Untargeted - Elevated levels of selected LCFA (e.g., 3-hydroxytetradecanedioic

acid) in severe PsA.

- 1,11-undecanedicarboxylic acid was identified as a classifier in

PsA patients -Oxylipins were detected solely in moderate and

severe PsA (106).

OA 49 early OA

43 late OA

SF and serum GLs, GPLs, SPs - The lipid levels were 4–10-fold higher in serum than in SF

- With advanced disease stage more lipid species are found at

elevated serum levels as compared to normal controls (107).

OA 23 late OA

6 controls

SF FA - The n-6/n-3 ratio was significantly lower in the OA group.

- AA concentrations were lower in OA SF, while tetracosadienoic

acid and nervonic acid (MUFAs) were higher in OA SF (108).

RA, rheumatoid arthritis; EORA, elderly onset rheumatoid arthritis; PMR, polymyalgia rheumatica; PsA, psoriatic arthritis; PsO, psoriasis; OA, osteoarthritis; SF, synovial fluid; AA,

arachidonic acid; PL, phospholipids; LCFA, long chain fatty acids; FA, fatty acids; PUFA, polyunsaturated fatty acids; MUFA, monounsaturated fatty acids; MTX, methotrexate;

SPM, specialized pro-resolving mediators; LC-AC, long chain acylcarnitines; SM, sphingomyelins; DMARDs, disease modifying anti-rheumatic drugs; PA, phosphatidic acid; PE,

Phosphoethanolamine; LPE, lysophosphoethanolamine; SPs, sphingolipids; GLs: glycerolipids; GPLs, glycerophospholipids.

genes, which are related to sphingomyelin and PE synthesis
respectively, that were associated with risk of RA in a previous
study (94). Finally, DLG2 (Disks Large MAGUK Scaffold

Protein 2), a gene associated with GPL metabolism (95), was
described to be related to the response to TNF inhibitors in RA
patients (96).
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TABLE 4 | Biological role of lipids in the synovium of inflammatory arthritis.

Lipid Role

GPL - Elevated levels of PC, FAs and lysophosphatidic acids, and

lower levels of lysophosphatidylcholines (LysoPC) in OA

synovium compared to control tissue

- The spatial distribution of specific GPLs correlates with

hypertrophic, inflamed and vascularized synovial areas (28).

PE and PC - PE and PC were higher in PsA synovium and SF compared

to RA (37).

- PE spatial distribution was associated with areas of the

sublining layer with increased vascularity and inflammatory

cell infiltrates (37).

Oxylipins - COX2 and PGEs, involved in oxylipins synthesis, are over-

expressed in RA, ankylosing spondylitis, and PsA synovium

compared to OA (40–43).

- PGE2 has a role in inflammation and pain (49, 50).

- Inhibition of 5LOX in FLS decreased inflammatory cytokine

expression (61).

- RvD3 (73) and RvD1 was reduced in serum from RA patients

compared to controls and in vitro studies showed RvD1

decreased migration and proliferation of RA FLS, properties

that are associated with disease progression (74–76).

- MerTKpos synovial macrophages from RA patients in

remission produce a higher amount of SPMs, including

RvD1, which suggest they may promote resolution of

inflammation (78).

S1P - S1P is increased in SF of RA patients compared to controls

(79).

- Ceramide is a potent inducer of apoptosis of proliferative RA

FLS in vitro and in vivo (80).

- C2-ceramide inhibits platelet-derived growth factor

(PDGF)-induced cell cycle progression of RA FLS, hence

decreasing proliferation (81).

GPL, Glycerophospholipids; PE, Phosphatidylethanolamine; PE, Phosphatidylcholine;

FA, fatty acid; PUFA, Polyunsaturated fatty acids; S1P, Sphingosine-1-phosphate;

RA-FLS, Rheumatoid Arthritis-Fibroblast like synoviocytes; RA, rheumatoid arthritis;

PsA, psoriatic arthritis; OA, osteoarthritis; SF, synovial fluid; COX2, cyclooxygenase

2; PGE2, prostaglandin E2; LOX, lipoxygenase; Rv, Resolvin; SPM, specialized pro-

resolving mediators.

Lipids in Serum
Several studies have also determined lipids in the serum
of patients with rheumatic diseases. We have summarized
these studies in Table 3. In one of these studies, Gomez
et al. found an upregulation of various SPM in peripheral
blood from patients with a pauci-immune-fibroid pathotype
(characterized by histologic analysis of synovial tissue
from biopsies). They also found different lipid profiles
were associated with response to DMARDs, suggesting a
still underdeveloped understanding of these mediators in
arthritis (102).

Overall, human observational studies and mechanistic in
vitro and animal studies offer evidence for the alteration
of lipid metabolism in arthritis, with the presence of an
imbalance between pro- and inflammatory lipids. The lack
of lipidomic data in synovial tissue prompted us to review
applications of tissue lipidomics in other diseases and identify
inflammation-related changes, which might also play a role
in arthritis.

LIPIDOMICS IN OTHER INFLAMMATORY
DISEASES

Most of the studies that have performed tissue lipidomics come
from the fields of dermatology and inflammatory bowel disease,
since the diagnostic process involves a biopsy. Most of the studies
offer lipidomic profiles in the different tissues compared to
controls, some of them attempt correlations with disease activity,
however, in a large number of cases, the functional role of the
lipids described in those studies is not known.

Inflammatory Bowel Disease (IBD)
Lipidomics has been used in the field of IBD to better understand
disease pathogenesis, as well as to identify biomarkers of
diagnosis, disease activity, and response to treatment. The
available studies describe the lipidomic profile in the intestinal
mucosa of both ulcerative colitis (UC) and Crohn’s disease (CD)
compared to mucosa of controls, although a big limitation of all
these studies is their small sample size.

Phospholipids
Analyzing ileal biopsy samples from CD patients with quiescent
disease, Sewell et al. (109) reported a significant reduction in
phosphatidylinositol (PI) 16:0/18:1 (as a percentage of total PI) in
CD compared to controls, whose synthesis was also decreased in
peripheral blood monocyte derived macrophages isolated from
CD patients. PI is part of the PL classes, which are important
components of the intestinal mucus as well as the membranes
of cells which contribute to the protective effect of the intestinal
barrier (110). Hence, the alteration in PI could contribute to
both damage of the mucosal barriers function as well as an
imbalance in the secretion of pro-inflammatory cytokines in CD
patients. Another group (111) also compared lipid content in the
colonic mucosa of patients with UC and reported that several
PCs and PEs, mainly PE(38:3), were elevated in UC patients with
active disease compared to remission, as well as in remission
compared to contorosl. PE has a role in apoptosis in TNF induced
inflammation (112, 113).

Polyunsaturated Fatty Acids
Pearl and colleagues (114) measured the esterified and non-
esterified bioactive PUFA in gut mucosal biopsies from patients
with quiescent, active UC, and from matched controls. They
had also paired samples of inflamed- non-inflamed mucosa.
AA, docosapentaenoic acid (DPA) and DHA were significantly
higher, and LA, α-LNA and EPA were significantly lower
in inflamed compared to non-inflamed mucosa, but also in
inflamed mucosa of patients with UC compared to mucosa of
controls. The comparison of PUFA in non-inflamed mucosa
from UC patients with age–sex matched controls did not show
significant differences except for DPA, which was significantly
lower in non-inflamed mucosa. Importantly, the mass % of AA
and DPA positively correlated with both endoscopically and
histological disease activity, while the mass % of a-LNA and EPA
negatively correlated with the same parameters of disease activity.
These changes were also observed in treatment naïve patients.
The findings in this study suggest an imbalance of n-3 and n-6

Frontiers in Medicine | www.frontiersin.org 10 April 2022 | Volume 9 | Article 857135

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Coras et al. Lipidomics in Synovial Tissue

PUFA, with an increase of AA availability, which is a precursor
of pro-inflammatory oxylipins, and a decrease in EPA, which is a
precursor of anti-inflammatory oxylipins.

Oxylipins
Concentrations of 5-HETE, 12-HETE and 15-HETE (AA derived
oxylipins via the LOX pathway), PGE2, PGD2, and TXB2 (AA
derived oxylipins via COX pathway), as well as 11-HETE (AA
derived oxylipin via non-enzymatic pathway) in UC inflamed
mucosa were significantly higher than in adjacent non-inflamed
mucosa. Moreover, these mediators also correlated with the level
of inflammation measured by histology. Of those metabolites,
only PGE2, PGD2, TXB2, and 15-HETE were confirmed in
inflamed mucosa from treatment naïve patients (115).

Oxylipins and endocannabinoids (eCBs) were also studied by
Diab et al. (116) in UC, comparing UC treatment naïve patients,
with patients in remission, and with controls. They reported
that patients with active disease presented a significant elevation
in concentrations of n-6 AA–derived oxylipins, specifically,
PGE2, TXB2, trans-LTB4, and 12-HETE, in addition to lower
concentrations of n-3 eCBs (docosahexaenoyl ethanolamide
and eicosapentaenoyl ethanolamide). Only 15(s)-HETrE, an
AA derived oxylipin, was higher in mucosa of patients
in remission compared to controls. 15-HETrE has anti-
inflammatory properties and could be involved in maintaining
the remission state. The results of this study also support the idea
of an imbalance between pro- and anti-inflammatory oxylipins in
the inflammatory process underlying UC disease. An interesting
finding was the decrease in eCBs, which also negatively
correlated with pro-inflammatory cytokines suggesting an anti-
inflammatory role.

Sphingolipids
Bazarganipour and colleagues (117) applied targeted lipidomics
to colonic inflamed tissues compared to non-inflammatory
tissue from the same patients with different severity of CD
(in remission, mild or moderate/severe disease), and who also
received different treatments. The levels of sphinganine (dhSph)
and most dihydroceramides (dhCer) were significantly decreased
in inflamed tissue, suggesting that the de novo synthesis of SPs
is reduced in inflamed tissue. In IBD, the de novo synthesis of
SPs is considered critical for the integrity of the epithelial barrier,
whose disruption is associated with intestinal inflammation and
bacterial invasion (118). The decrease was not due to a decrease in
the expression of the enzymes serine palmitoyltransferase (SPT)
and ceramide synthases (CerS), involved in dhCer synthesis,
so the authors suggest it could be due to post-translational
modifications of these enzymes. They did however notice an
enhanced expression in CerS3 in the lamina propria, by both
mRNA and IHC, suggesting it could represent the result of
invaded immune cells. Additionally, the concentrations of C16:0-
and C24:0-lactosyl-ceramide (LacCer) increased in inflamed
tissue in comparison to control tissue. LacCer functions as
pattern-recognition receptor in human cells and activates an
innate immune response (119, 120). Therefore, the increase
in LacCer in inflamed colon tissue would increase binding of
pathogens, enhancing the immune response and inflammation.

Ceramides were associated with bowel inflammation in
another study (111), which reported that Cer(d18:1/24:2) and
Cer(d18:1/24:0) increased from remission to active inflammation
in UC patients, and SF of RA and OA patients contained higher
levels of Cer(d18:1/24:2) and Cer(d18:1/24:0).

As presented above, some of them, such as the imbalance
between n-3 and n-6 derived oxylipins and sphingolipids,
may be relevant in synovitis so would be worth analyzing in
inflamed synovium.

Skin Diseases
Lipids are essential components of the skin and play a critical
role in maintaining the skin barrier. Lipidomics has been used
in several studies of skin diseases such as psoriasis and atopic
dermatitis (AD).

Sphingolipids
The level of de novo ceramides synthesis, the protein expression
of SPT (serine palmitoyltransferase, the enzyme involved in
ceramide synthesis), and the number of ceramides were described
to be significantly lower in psoriatic plaques compared to the
non-lesional epidermis [reviewed here (121)]. This data is also
supported by animal studies, since SPT knock out mice develop
skin psoriasis and have low skin levels of ceramides. Interestingly,
the percentage reductions of both—ceramide synthesis and its
epidermal level—were positively correlated with the Psoriasis
Area and Severity Index (PASI) score in mild to moderate
psoriasis (122, 123).

Another study (124) used lipidomics to measure both
circulating and skin lipids in psoriasis patients, lesional,
and non-lesional skin. The lipid species that were analyzed
include non-hydroxylated fatty acid/sphingosine (NS) class
of sphingolipids, with an extensive coverage of the SP
pathway (30 species were quantified in total), consisting of
a range of compounds including sphingomyelins, ceramides,
hexosylceramides, lactosylceramides, and dihydroceramides with
varying FA chain lengths. The analysis also included free
phosphorylated and non-phosphorylated NS sphingoid bases
[sphingosine, sphinganine, S1P, and sphinganine-1-phosphate
(Spa1P)]. Increased levels (P < 0.001) for most of the ceramides
were observed in lesional skin relative to non-lesional and
control skin. Levels of sphingomyelins were altered in lesional
skin in a FA chain length-dependent manner with increases in
C16:0-, C24:1- and C24:0-sphingomyelins. This observation is
interesting since in cancer a higher content in lipids with longer
chains and increased number of unsaturated bonds is associated
with a more flexible phenotype of the cells, allowing for increased
proliferation and invasion.

Glycerophospholipids
Another study (125) performed in atopic dermatitis (AD)
compared metabolomic profiles of lesional skin (AD-L) and
non-lesional skin (AD-NL) with the skin of controls. The
quantified metabolites, including SM and PC, are sources of
bioactive compounds that are involved in different signaling
pathways. They found 40 PCs that had elevated ratios in AD-
L skin compared to AD-NL skin, and 6 PCs that had higher
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FIGURE 5 | Summary of the role of bioactive lipids in synovial pathology. The findings included in the red circles include lipids with potential pro-inflammatory role,

while the ones included in the blue circles include anti-inflammatory and pro-resolving metabolites. The black font describes results from studies in inflammatory

arthritis, while the purple font describes results from studies in non-rheumatic diseases but with potential role in inflammatory arthritis. PUFA, polyunsaturated fatty

acids; AA, arachidonic acid; LA, linoleic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; COX, cyclooxygenase; PGES, prostaglandin E synthase;

LOX, lipoxygenase; PG, prostaglandin E; HETE, hydroxyeicosatetraenoic acid; LT, leukotriene; TX, thromboxane; HETrE, hydroxyeicosatrienoic acid; SPM, specialized

proresolving mediators; Rv, resolvin; RA, rheumatoid arthritis; FLS, fibroblast-like synoviocytes; PE, phosphatidylethanolamine; TNF, tumor necrosis factor; S1P,

sphingosine 1 phosphate; Cer, ceramides.

concentrations in AD-L skin compared to both AD-NL and C
skin. As in psoriasis, the concentrations of 4 lysoPCs, which are
derived from PCs, were increased in AD lesional skin compared
to non-lesional skin and they hypothesized that one of their roles
could be the attraction of T lymphocytes to the skin.

Oxylipins
In psoriatic lesions, the levels of unsaturated FAs differ
significantly. All products of LOX are abundant and involve
monohydroxy derivatives from AA [5-, 8-, 9-, 11-, 12-, and 15-
hydroxyeicosatetraenoic acid (HETE)] and from LA [9- and 13-
hydroxyoctadecadienoic acid (HODE)] (126). These lipids have
specific physiological functions in the epidermis. For example,
13-HODE is thought to have anti-inflammatory effects and the
ability to maintain normal cell proliferation, as was shown in
human and animal keratinocytes (127, 128). 9-HODE promotes
the release of inflammatory cytokines (126, 129). However, the
amount of 13-HODE produced by the psoriatic epidermis is
not sufficient to inhibit the hyperproliferation of keratinocytes.
Similarly, 12-HETE is a proinflammatory chemotactic agent
(130), whereas 15-HETE reduces inflammatory cell infiltration.
However, 15-HETE is higher in psoriatic lesions than 12-
HETE (126). LOX oxidation products are further oxidized
to produce epoxides, such as epoxy octadecadienoic acid
and epoxyeicosatrienoic acid. These epoxides may promote
neutrophil infiltration and inflammation (131, 132).

A recent study (133) found marked changes in both
PL and oxylipin synthesis in psoriatic skin. This includes
abundant AA metabolites, DHA and oxidized-DHA products,
and PCs, and decreased PE, LPC, and resolvin D1, and are
consistent with previous findings (126, 130). Lipid mediators
can serve as both activators and suppressors of inflammation
to elicit local effects (104). For example, LTB4 and 12-
HETE (134) act as chemoattractant for neutrophils and
macrophages in the skin. In contrast, 15-HETE acts as a negative
regulator in LTB4- and 12-HETE–induced inflammation (135).
DHA affects skin homeostasis by activating keratinocytes
to express proinflammatory mediators. In addition, resolvin
D1 is decreased in psoriatic skin and downregulated by
phospholipase A2, exerts a protective role in psoriasis-like
dermatitis and other types of inflammatory responses (136,
137).

The studies that we reviewed in other tissues show
evidence of the role of different types of lipids (fatty acids,
oxylipins, phospholipids) not only in the pathogenesis of
these diseases but also in predicting response to treatment.
The application of lipidomics to the study of synovial tissue
may help to assess whether these lipids are also altered or
contribute to the inflammatory process in inflammatory
arthritis (Table 4; Figure 5), paving the way for the discovery
of new therapeutic targets and biomarkers of response
to treatment.
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CONCLUSION

The characterization of the cells in the synovial membrane is
now being actively pursued in RA as part of the Accelerating
Medicines Partnership consortium (17, 138). Combining this
data with lipidomic cell signatures could provide useful
information to not only better understand the role of each type
of cell, and functional mediators, but also identify biomarkers
of disease activity or response to treatment. In addition, the
characterization of the ratio n6-n3 PUFA and the quantification
of pro-, anti-inflammatory and pro-resolving mediators, among
other lipid subtypes, in the synovial tissue, would offer more
information on the involvement of these bioactive lipids in the
arthritis pathogenesis.
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