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Abstract: In clinical practice, patients’ tissues are fixed and paraffin-embedded in order to enable
histological diagnosis. Nowadays, those tissues are also used for molecular characterization.
Formalin is the most used fixative worldwide, and Bouin’s solution in some worldwide institutions.
Among molecular targets, micro RNAs (miRNAs), the single-stranded non-coding RNAs comprised
of 18 to 24 nucleotides, have been demonstrated to be resistant to fixation and paraffin-embedding
processes, with consequent possible application in clinical practice. In the present study, let-7e-5p,
miR-423-3p, miR-92a-1-5p, miR-30d-5p, miR-155-5p, miR-200a-3p, and miR-429 were investigated
in formalin and matched Bouin’s solution-fixed tissues of high grade serous ovarian cancers by
means of real-time and droplet digital PCR (ddPCR). Micro RNAs were detectable and analyzable
in both formalin- and Bouin’s-fixed specimens, but on average, higher Ct values and lower
copies/µL were found in Bouin’s-fixed samples. Data from formalin-fixed samples correlated
significantly for most targets with Bouin’s ones, except for let-7e-5p and miR-155-5p. This study shows
that miRNAs are analyzable in both formalin- and Bouin’s-fixed specimens, with the possibility,
after proper data normalization, to compare miRNA-based data from formalin-fixed samples to those
of Bouin’s-fixed ones.
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1. Introduction

Tissue fixation is the primary step for pathological analysis to prevent the autolysis of tissues
and allow further histological examination. For this purpose, in diagnostics, chemical fixatives are
mainly used, and among them the most widely used is formalin, the aqueous solution of formaldehyde.
However, Bouin’s fixative has been extensively used as an elective fixative for histological examination
in some institutions worldwide [1]. Bouin’s fixative is a mixture of a saturated aqueous solution
of picric acid, formalin, and acetic acid [2]. The principle of fixation is mostly based on protein
precipitation through picrate formation. This fixation method has been used for specific purposes
because it better preserves some morphological details, such as nuclear conformation [3]. In the past
decades, several studies have already shown that Bouin’s-fixed samples are amenable for nucleic acid
and protein analyses, but only to a certain point, as the fixative has resulted to be more detrimental
compared to 10% buffered formalin mixture in the preservation of biomolecules [1,3,4]. Currently,
no investigation has been carried out on the analysis performance with respect to miRNAs, despite the
publication of two samples in a report [4].
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Among biomolecules, micro RNAs (miRNAs), which are single-stranded non-coding RNAs
comprised of 18 to 24 nucleotides, have been launched as a new generation of biomarkers because of
their possible use in monitoring the efficacy, as well as the safety, of therapeutic regimens, but also in
the diagnosis or risk assessment for the development of a disease, as well as for treatment options [5].
Furthermore, they have been demonstrated to be resistant to formalin-fixed paraffin-embedding (FFPE)
processing [6] and storage [7] in archives so that they can be analyzed in retrospective studies.

The aim of this study was to investigate the reliability of micro RNA analysis in formalin- and
Bouin’s-fixed tissue by analyzing 15 matched samples of formalin- and Bouin’s-fixed paraffin-embedded
high grade serous ovarian cancers (HGSOC) as part of the HERCULES project [8].

2. Results

Micro RNA analyses included in this study were performed on 15 matched cases of high
grade serous ovarian carcinomas (collected between 2002 and 2009), where formalin- and Bouin’s
solution-fixed blocks were available.

2.1. Yield and Purity

RNA yield was comparable between FFPE and Bouin’s-fixed samples, as shown in Figure 1A
(p = 0.7). Mean yield for formalin was 7.04 µg (range 1.778–12.76 µg), while for Bouin’s-fixed samples
was 6.63 µg (range 0.93–12.52 µg). Overall, A260/280 ratio was on average higher than the 1.8 threshold
in all samples, although pairwise testing revealed that phenol/protein contamination as shown by
A260/280 ratio resulted significantly higher in Bouin’s-fixed samples when compared to FFPE ones
(p < 0.001), as shown in Figure 1B. A260/230 ratio was comparable between formalin- and Bouin’s-fixed
specimens (p = 0.7, Figure 1C) with a mean value of 1.7, which is slightly lower than the optimal
threshold, possibly indicating chaotropic salt contamination due to the isolation procedure.
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2.2. Integrity

Ten nanograms of total RNA from each sample was submitted to Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA 95051, USA). The assay allowed investigating the distribution of small
RNA fragments quantifying the smallest RNA fraction, which corresponds to microRNAs in the range
size from 10 to 40 nt. The miRNA content was measured as the relative abundance in comparison to
the total small RNA fraction. In all samples, BioAnalyzer electropherograms showed a characteristic
profile with the presence of a unique distinct peak in the range of 10–40 nt. Furthermore, a mean
fraction abundance of 33% (range: 24–46%, median 31.5%, SD 5.7) was obtained from formalin and
31% (range: 19–43%, median 29%, S.D. 6.0) from Bouin’s-fixed samples without any difference between
the two fixatives (p = 0.2), as shown in Figure 1D.

Total RNA analysis by Agilent Bioanalyser (see the original outputs in the Appendix B) returned
a median RIN of 2.4 in formalin- and of 2.5 in Bouin’s-fixed samples without any significant difference
(p = 0.3). However, the relative amount of RNA stretches of 60–149 nt and 150–299 nt resulted
significantly higher in formalin (mean value 31% and 28%) than matched Bouin’s samples (mean value
19% for 60–149 nt and 20% for 150-299 nt) (p = 0.04 and p = 0.02, respectively), as shown in Figure A1
in Appendix A.

2.3. qRT-PCR

Data on real-time PCR efficiencies detected in formalin- and Bouin’s-fixed specimens are reported
for each miRNA analyzed in Table 1.

Table 1. Results of standardization curves of the analyzed miRNA.

Target Fixative Efficiency Slope Intercept

let-7e-5p Formalin 0.94 −3.48 24.29
let-7e-5p Bouin’s 0.97 −3.41 25.55

miR-423-3p Formalin 0.91 −3.55 24.94
miR-423-3p Bouin’s 0.99 −3.34 25.88

miR-92a-1-5p Formalin 1.23 −2.87 32.95
miR-92a-1-5p Bouin’s 0.84 −3.78 33.02
miR-30d-5p Formalin 0.96 −3.43 24.00
miR-30d-5p Bouin’s 0.85 −3.74 24.37
miR-155-5p Formalin 0.82 −3.83 27.84
miR-155-5p Bouin’s 1.04 −3.23 28.71
miR-200a-3p Formalin 0.90 −3.58 24.34
miR-200a-3p Bouin’s 0.88 −3.64 24.91

miR-429 Formalin 0.94 −3.47 25.56
miR-429 Bouin’s 0.85 −3.73 26.66

In the present study, two reference miRNAs were selected, let-7e-5p and miR-423-3p, because of their
stability in high grade serous ovarian cancer, while miR-92a-1-5p, miR-30d-5p, miR-155-5p, miR-200a-3p,
and miR-429 were chosen for their content in guanine-cytosine (GC) and their expression in ovarian
cancers [9–12]. Furthermore, miR-92a-1-5p was selected for its lower expression level in ovarian
cancer [9]. Therefore, the aforementioned miRNA levels were analyzed in matched pairs of formalin-
and Bouin’s-fixed paraffin-embedded tissues.

Real-time PCR was successful in all samples for all miRNAs analyzed. The expressions of let-7e-5p,
miR-423-3p, and miR-92a-1-5p were closely comparable in FFPE and matched Bouin’s specimens
(p = 0.3, p = 0.5, and p = 0.9, respectively), as shown in Figure 2A–C, but it was significantly different
for miR-30d-5p (p = 0.04, Figure 2D), miR-155-5p (p = 0.03, Appendix A, Figure A2A), miR-200a-3p
(p = 0.04, Appendix A, Figure A2B), and miR-429 (p = 0.01, Appendix A, Figure A2C), which resulted
to be detectable at significant higher Ct values in Bouin’s-fixed samples. Median Ct values and
coefficients of variation for the analyzed miRNAs are reported in Table 2. Overall, Ct values detected



Int. J. Mol. Sci. 2019, 20, 4819 4 of 18

in Bouin’s fixatives resulted to have a higher coefficient of variation compared to formalin for each
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Figure 2. Box plot representing quantitative reverse transcription polymerase chain reaction (RT/qPCR)
of let-7e-5p (A), miR-423-3p (B), miR-92a-1-5p (C), and miR-30d-5p (D) in matched formalin- and
Bouin’s-fixed tissues by real-time PCR. The box represents the first and third quartiles, intersected by
the median, and the whiskers are the range.

Table 2. Median Ct values of real-time PCR and median copies/µL of ddPCR results with variation
coefficient for the analyzed miRNAs.

Target Fixative Median Ct CV Median Copies/µL CV

let-7e-5p Formalin 26.1 0.026 90.1 0.27
let-7e-5p Bouin’s 26.3 0.063 57.6 0.65

miR-423-3p Formalin 27.4 0.031 31.3 0.35
miR-423-3p Bouin’s 27.2 0.048 28.1 0.49

miR-92a-1-5p Formalin 33.4 0.034 0.48 0.88
miR-92a-1-5p Bouin’s 33.4 0.044 0.36 1.06
miR-30d-5p Formalin 24.6 0.026 152 0.53
miR-30d-5p Bouin’s 25.2 0.052 96.3 0.65
miR-155-5p Formalin 28.3 0.025 13.8 0.54
miR-155-5p Bouin’s 29.4 0.040 7.5 0.67
miR-200a-3p Formalin 26.28 0.045 46.8 0.78
miR-200a-3p Bouin’s 26.97 0.068 32.2 1.16

miR-429 Formalin 26.95 0.042 27.2 0.85
miR-429 Bouin’s 27.86 0.066 14.8 1.41

Pairwise Spearman’s rank analysis showed a significant correlation between formalin and Bouin’s
specimens for miR-423-3p (p = 0.003), miR-92a-1-5p (p = 0.0002), miR-30d-5p (p = 0.01), miR-200a-3p
(p = 0.005), and miR-429 (p = 0.004), but not for let-7e-5p (p = 0.8) or miR-155-5p (p = 0.4), as reported in
Table 3. By comparing Ct values in formalin- and Bouin’s-fixed specimens, a significant correlation was
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found by regression analysis for miR-423-3p (p = 0.03), miR-92a-1-5p (p = 0.0003), miR-30d-5p (p = 0.02),
miR-200a-3p (p = 0.004), and miR-429 (p = 0.008), but not for let-7e-5p (p = 0.4) or miR-155-5p (p = 0.8),
as shown in Table 3. This result shows that the assessment of let-7e-5p and miR- 155-5p is influenced by
the fixation processes in formalin and Bouin’s solution, likely due to the different degradation and
chemical modification extent of the two fixation methods.

Table 3. miRNA guanine-cytosine (GC) content and results on pairwise Spearman’s rank and regression
analyses by comparing RT-qPCR and RT-ddPCR of formalin- and Bouin’s-fixed samples.

Target GC (%)
RT-qPCR RT-ddPCR

rho 1 p R2 p rho p R2 p

let-7e-5p 41 0.07 0.8 0.04 0.4 0.2 0.4 0.03 0.5
miR-423-3p 65 0.7 0.03 0.30 0.03 0.2 0.5 0.09 0.3
miR-92a-1-5p 52 0.8 0.0002 0.68 0.0003 0.7 0.007 0.84 < 0.0001
miR-30d-5p 50 0.7 0.01 0.38 0.02 0.7 0.005 0.64 0.0006
miR-155-5p 38 0.3 0.4 0.006 0.8 0.5 0.1 0.28 0.05
miR-200a-3p 41 0.7 0.005 0.52 0.004 0.8 0.008 0.75 0.0001
miR-429 36 0.7 0.004 0.46 0.008 0.6 0.01 0.65 0.0005

1 Spearman’s rho.

2.4. Droplet Digital PCR

The expression of the seven miRNAs was further assessed by ddPCR. Comparing miRNA
expression in formalin- and Bouin’s-fixed samples, we found a significant difference between the two
groups for let-7e-5p (p = 0.04), miR-30d-5p (p = 0.0004), miR-155-5p (p = 0.02), and miR-429 (p = 0.03),
but not for miR-423-3p (p = 0.09), miR-92a-1-5p (p = 0.4), or miR-200a-3p (p = 0.09), as shown in Figures 3
and A3 (Appendix A).
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(RT/ddPCR) of let-7e-5p (A), miR-423-3p (B), miR-92a-1-5p (C), and miR-30d-5p (D) in matched formalin-
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Median copies/µL and coefficient of variations are reported in Table 2. For every miRNA,
the median copies in formalin-fixed samples were higher than in Bouin’s ones, where the coefficient of
variation was also higher. Pairwise Spearman’s rank analysis did not return any correlation between
matched pairs for either let-7e-5p, miR-423-3p, or miR-155-5p (p = 0.4, p = 0.5, and p = 0.1, respectively),
but it returned a significant correlation for miR-92a-1-5p (p = 0.007), miR-30d-5p (p = 0.005), miR-200a-3p
(p = 0.008), and miR-429 (p = 0.01), as reported in Table 3. This result has also been confirmed by
linear regression, which resulted to be statistically significant for miR-92a-1-5p (p < 0.0001), miR-30d-5p
(p = 0.0006), miR-200a-3p (p = 0.0001), and miR-429 (p = 0.0005), but not for let-7e-5p (p = 0.5), miR-423-3p
(p = 0.3), or miR-155-5p (p = 0.05) (Table 3).

2.5. miRNA Comparison: qRT-PCR vs. ddPCR

In order to correlate qRT-PCR and ddPCR measurements, the same amount of cDNA (0.4 ng) was
submitted to PCR in each assay on both platforms. The resulting data, expressed as cycle threshold
(Ct) and the log(2) of the number of target copies/µL, were compared by linear regression model and
Spearman’s correlation test for both formalin- and Bouin’s-fixed samples, as reported in Figures 4 and 5,
and in Appendix A Figures A4 and A5. Our results clearly show that there is a linear correlation between
ddPCR results and real-time PCR for both formalin- and Bouin’s-fixed samples as regards miR-92a-1-5p,
miR-30d-5p, miR-200a-3p, and miR-429. For let-7e-5p, miR-423-3p, and miR-155-5p, real-time and ddPCR
results were significantly correlated only in Bouin’s-fixed samples. Linear regression analysis produced
an R-square (R2) value of 0.46 (p = 0.005) for let-7e-5p, 0.91 (p < 0.0001) for miR-423-3p, and 0.9
(p < 0.0001) for miR-155-5p in Bouin’s-fixed tissues (Figure 4C,D, Table 4, and Figures A4 and A5 in
Appendix A).
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Table 4. Results on regression analyses comparing RT-qPCR and RT-ddPCR in paired formalin- and
Bouin’s-fixed tissues.

Target
Formalin Bouin’s

R2 p R2 p

let-7e-5p 0.18 0.1 0.46 0.005
miR-423-3p 0.24 0.06 0.91 <0.00001

miR-92a-1-5p 0.44 0.01 0.73 0.0002
miR-30d-5p 0.94 <0.0001 0.99 <0.0001
miR-155-5p 0.007 0.8 0.90 <0.0001
miR-200a-3p 0.98 <0.0001 0.96 <0.0001

miR-429 0.95 <0.0001 0.97 <0.0001

Similarly, results from qPCR and ddPCR for miR-92a-1-5p were significantly correlated in both
formalin- (p = 0.01) and Bouin’s-fixed tissues (p = 0.0002) (see Figure 5A,C and Table 4). These results
were also confirmed for the other microRNAs analyzed in this study, as reported in Table 4, Figure 5,
and in Appendix A Figures A4 and A5.

2.6. qRT-PCR miRNAs Normalization

In order to normalize qRT-PCR data, the geometric mean of the most stable miRNAs, namely
let-7e-5p and miR-423-3p, was used as reference miRNA. Normalized qRT-PCRs were submitted to
Wilcoxon’s matched-pairs signed-ranks test, which did not return any significant difference between
formalin and Bouin’s ratios, as shown in Table 5 and Figure 6.
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Table 5. Results on RT-qPCR data normalization in paired formalin- and Bouin’s-fixed tissues.

Target
Formalin Bouin’s

Median Ratio Median Ratio p

miR-92a-1-5p 2.7 3.9 0.1
miR-30d-5p 2.2 1.7 0.06
miR-155-5p 2.7 2.0 0.08
miR-200a-3p 1.1 0.8 0.3

miR-429 1.4 0.9 0.1
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3. Discussion

In this study, we investigated whether miRNAs can be efficiently isolated and quantified from
formalin- and Bouin’s-fixed paraffin-embedded tissues for expression analysis by real-time and droplet
digital RT-PCR. For this purpose, we compared the results in matched Bouin’s- and formalin-fixed
paraffin-embedded samples of high grade serous ovarian cancers. Degradation of nucleic acids in
fixed tissues is due to different contributing factors related to enzyme activity, and also to the effect of
chemicals. In detail, in formalin fixation, nucleic acid degradation assembles both fragmentation and
chemical modification of methylol addition to the bases [13]. The latter factor is even more critical for
RNA, as the methylol addition impedes reverse transcription and cDNA synthesis [13]. The fixatives
analyzed in the present study include both a crosslinking agent, formaldehyde (formalin), but our
results clearly show that their degradation effects on RNA during fixation greatly differ.

Data on the extraction procedure indicate that total RNA obtained from formalin and Bouin’s
specimens was closely comparable in amount, although a higher purity was detected in formalin
extracts, as shown in Figure 1B. The lower A260/A280 ratio in Bouin’s extracts is likely related to the
presence of picric acid residues, that, with its aromatic ring, has an absorbance peak between 200 and
300 nm [14]. Nonetheless, the amount of small RNAs as detected by Agilent Bioanalyzer resulted as
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being similar in extracts from formalin- and Bouin’s-fixed samples, highlighting the feasibility of the
use of these type of tissues.

Micro RNAs, considering their short length, have been reported to be more accessible in FFPE
tissues compared to miRNAs, representing a viable analysis for clinical research and diagnosis [15].
In several reports, miRNAs have been shown to be minimally affected by FFPE treatments, as expression
levels of isolated miRNAs were directly comparable in frozen and FFPE tissue samples [16–18].

Our results on real-time PCR detection for let-7e-5p, miR-423-3p, and miR-92a-1-5p show similar Ct
between matched formalin and Bouin’s specimens, but not for miR-30d-5p, miR-155-5p, miR-200a-3p,
or miR-429, which were detectable at significantly higher Ct in Bouin’s fixative (Figures 2 and A2
in Appendix A). In addition, the coefficients of variation of all the analyzed miRNA were lower in
formalin- than in Bouin’s-fixed specimens. Using matched fixed samples of the same surgical tissue
in this study, the higher Ct levels detected in some miRNAs in Bouin’s-fixed tissues are presumably
due to the sample degradation level. Consequently, the trend of higher Ct values and CV detected in
Bouin’s is in agreement with a lower amount of transcript in such samples, which is strictly linked to
the RNA fragmentation as shown by the Agilent rRNA fragmentation analysis. Therefore, our results
point out lower levels of degradation caused by lower fragmentation in formalin-fixed rather than
in Bouin’s-fixed specimens. Moreover, the ddPCR assessment is in agreement with higher extent of
RNA fragmentation in Bouin’s samples: These samples, indeed, had lower copies/µL than formalin
for all miRNAs investigated. In particular, this trend is even more evident for miR-30d-5p because
of its lower expression level in ovarian cancers. The highest fragmentation of the RNAs in Bouin’s
fixative is in line with the fixative composition, which has a 9–10% concentration of formaldehyde,
5% glacial acetic acid, and 0.9% of picric acid [19], and it is in agreement also with results reported by
other authors [3,4,20–22]. Only Gloghini and colleagues have demonstrated the detection of 921 base
stretches by RT-PCR from both formalin- and Bouin’s-fixed tissues, but the sample fixation time was
reduced to 5 hours [23].

Real-time PCR results were significantly correlated between Bouin’s- and formalin-fixed specimens
for most miRNA analyzed, but not for let-7e-5p and miR-155-5p, as shown by Spearman’s and regression
analyses. Although a possible explanation could be related to the different sequence of the miRNA
in terms of GC content (let-7e-5p has 41% and miR-155-5p 38%, respectively) as it seems that miRNAs
with GC% of less than 40% are significantly degenerated in FFPE specimens [24], data from miR-200a-3p
and miR-429 (GC content 41% and 36%, respectively) do not support this hypothesis. The absence of
correlation between formalin- and Bouin’s-fixed tissues for let-7e-5p and miR-155-5p seems to support
a different preservation of those two miRNAs in Bouin’s and formalin fixatives. However, we cannot
exclude that this result is an artifact stemming from the customized design of PCR assays for those two
miRNAs. Regarding the analyzed fixatives, both are formalin-based, however the contribution of the
nitrogenous bases modification by those fixatives is virtually unknown. It is well known that adenine is
the most modified nitrogenous base after formalin fixation [25], so it is reasonable to suppose that formalin
fixation could alter the detectability of some miRNAs with higher adenine content. Given the results
of rRNA on fragmentation showing a higher fragmentation in Bouin’s-fixed samples, it is reasonable to
hypothesize that one possible difference between the two fixatives arises from a higher modification of
RNA in formalin-fixed specimens. We acknowledge that Bouin’s fixative has a high percentage of formalin,
but no data are available at present on the modification rate of adenine residues in Bouin’s-fixed nucleic
acids. Given the composition of Bouin’s fixative, it is likely that the activity of formalin, including its ability
to modify adenine residues by CH2OH addition, could be inhibited by the low pH due to the presence
of picric acid [21]. In Bouin’s solution, indeed, the effects of formalin and picric and acetic acids balance
each other: (i) Formalin fixes cytoplasm, hardens tissues, and prevents paraffin penetration; (ii) picric acid
leaves tissue soft and coagulates cytoplasm, compensating for most the unduly effects of formalin; (iii) the
tissue shrinking effect of picric acid is compensated by acetic acid [26].

A higher correlation between ddPCR and real-time PCR results was obtained for all miRNAs
investigated in Bouin’s-fixed specimens, as shown in Figures 4, 5, A4 and A5 (the latter two in
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Appendix A). In Bouin’s fixative, a lower deviation from the linear prediction and a tighter confidence
interval were detected. One possible hypothesis to explain the lower correlation detected in FFPE
samples could be related to a higher amount of modified bases, due to formaldehyde addition to the
RNA bases that can act as a PCR inhibitor. This is evident when comparing real-time PCR results with
ddPCR because the latter has already shown higher resilience to PCR inhibitors [27]. It was already
demonstrated that DNA isolated from FFPE tissue itself exhibits an inhibitory effect on PCR, leading to
unstable amplification [28]; therefore, for RNA, we hypothesize a similar behavior, presumably due to
the adducts.

Bouin’s fixative consists of picric acid, acetic acid, and also formaldehyde, having both a coagulative
as well as cross-linking effect on proteins [22], with a possible minor modification of nitrogenous
bases due to the acidic pH. The possible inhibitor activity of the mono-methylol adducts in formalin
extracts is supported also by the lower amplification efficiencies detected in formalin compared to
Bouin’s (Table 1). Any deviation of the PCR efficiency from 1 can provide a measure of the level of PCR
inhibition in the sample [29]. Nevertheless, we acknowledge that a limitation on the abovementioned
hypothesis is the small amount of RNA processed to generate cDNA (20 ng) and the high dilution
used for PCR analyses (40X).

Our results show that by choosing the proper reference miRNAs with a calibrator that includes
both formalin- and Bouin’s-fixed samples, it is possible to eliminate differences in the expression
profiles of miRNAs and analyze in the same cohort samples processed with both fixatives. Although
no significant differences were obtained in the expression profiles in formalin- and Bouin’s-fixed
samples, we acknowledge that specific care should be taken for outliers and further validation studies
are needed to verify that finding.

In conclusion, our results indicate that microRNAs can be analyzed in formalin- and Bouin’s-fixed
samples as well. Our data support for a higher fragmentation of miRNA from Bouin’s-fixed tissues,
but a possible lower level of nitrogenous bases modification by formalin. Thus, miRNA expression
studies can be reliably performed by real-time PCR or, better, by ddPCR in routinely obtained
pathological material fixed in formalin or Bouin’s fluid, but considering proper data normalization
correcting sample-to-sample degradation.

We acknowledge as limitations of this study that no analyses have been made in fresh frozen
samples for a further validation of results, and that no analyses have been carried out to test the level
of adenine modification in the analyzed specimens. As a future perspective, the chemical analysis of
the RNA templates obtained from Bouin’s-fixed samples is planned.

4. Materials and Methods

4.1. Samples

A total of 30 paraffin-embedded tissue blocks from 15 patients were collected at the National
Cancer Institute of Aviano. Informed consent was obtained from all individual participants included
in the study. The study was conducted in accordance with the Declaration of Helsinki, and it was
approved by the Institutional Review Board of CRO-Aviano (protocol number 1213, 24/01/2017).
For each patient, two matched tissue blocks of the same surgical specimen were retrieved, one fixed in
formalin and one in Bouin’s solution, for a total of 15 matched pairs. All cases were obtained from
debulking surgeries of high grade serous ovarian cancers, carried out from 2002 to 2009, of pT3c grade
and stage III. HGSOC cases have been selected for the HERCULES project funded by the European
Union’s Horizon 2020 research and innovation program under grant agreement No 667403. Fixation
and embedding procedures were those routinely performed in the laboratory at the time of patient’s
surgery with a conventional fixation for 24 h.
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4.2. miRNA Isolation from Formalin- and Bouin’s-Fixed Paraffin-Embedded Tissues

From each paraffin-embedded block, one 10-µm-thick section was cut and collected into 1.5-ml
microcentrifuge sterile tubes. miRNA isolation was carried out by the use of the Maxwell RSC®

extractor (Promega, Madison, WI 53711-5399, USA) using a purification protocol which allows
extracting miRNAs from fixed tissues as suggested by the manufacturer. In detail, tissue de-waxing
was carried out by the use of 300 µL of mineral oil as provided by the Maxwell® RSC RNA FFPE kit
(Promega, Madison, WI 53711-5399, USA; code AS1440). Procedures of the abovementioned kit were
strictly followed for protein digestion by proteinase K and the DNAse digestion step. Afterwards,
the aqueous solution of digested samples was transferred into the cartridge of the Maxwell® RSC
miRNA tissue kit (Promega, Madison, WI 53711-5399, USA; code AS1460) to allow miRNA, as well as
total RNA, isolation following the manufacturer’s procedures. Elution of the samples was done in
30 µL of nuclease-free water (Promega, Madison, WI 53711-5399, USA).

4.3. RNA Quantification and Quality

RNA concentration and purity were measured by Nanodrop ND 1000 spectrophotometer (Thermo
Scientific, Waltham, MA 02451, USA) using 1 µL of isolated RNA. The A280/260 and A260/230
absorbance ratios were used to assess purity, considering a ratio between 1.8 and 2.0 to be pure.

RNA and miRNA integrity was estimated by microcapillary electrophoresis in an Agilent 2100
Bioanalyzer (Agilent Technology, Santa Clara, CA 95051, USA). For miRNA analysis, sample aliquots
were diluted at 10 ng/µL just before use and measured in the Agilent 2100 Bioanalyzer using a Small
RNA kit (Agilent Technology, Santa Clara, CA 95051, USA). The integrity of miRNA was calculated
as the relative abundance of miRNA species (10–40 nt) in comparison to the total amount of small
RNA fraction (10–150 nt). For RNA integrity, 1 µL of RNA was submitted to Agilent 2100 Bioanalyzer
using Agilent RNA 6000 nano kit (Agilent Technology, Santa Clara, CA 95051, USA). RIN number and
relative percentage of total RNA species (60–149 nt and 150–299 nt) were recorded.

4.4. cDNA Synthesis

Twenty nanograms of RNA was reverse transcribed into cDNA in 10 µL final volume, using the
miRCURY LNA RT (Qiagen, Hilden, Germany) according to manufacturer’s instructions. The cDNA
was then split into aliquots of 2 µL and stored at −80 ◦C until use. To cover the methods’ set-up and
analysis, cDNA synthesis was made in duplicate with 20 ng of RNA each time.

4.5. Real-time PCR

miRNA let-7e-5p (MIMAT0000066), miR-423-3p (MIMAT0001340), miR-92a-1-5p (MIMAT0004507),
miR-30d-5p (MIMAT0000245), miR-155-5p (MIMAT0000646), miR-200a-3p (MIMAT0000682),
and miR-429 (MIMAT0001536) were analyzed by real-time PCR. miR-423-3p and let-7e-5p were chosen as
they have been reported to be stably expressed in high grade serous ovarian cancer [30]. The remaining
ones were chosen for their content in GC and their expression in ovarian cancers [9–12]. Complementary
DNA aliquots were diluted 40x just before use, and real-time PCR was run using 4 µL of diluted
cDNA corresponding to 0.4 ng of cDNA in a total reaction volume of 10 µL. The reaction mixture was
composed of 1 µL of the specific miRCURY miRNA Assay primer set (Qiagen, Hilden, Germany) and
5 µL of Fast EVA Green qPCR mastermix (Biotium, Fremont, CA 94538, USA). All reactions were run
in duplicate, and a negative control without cDNA was added in each run. Samples were amplified on
a Mastercycler® ep Realplex (Eppendorf, Hamburg, Germany) using the following cycling conditions:
95 ◦C for 10 min, 40 cycles of 95 ◦C for 10 s and 60 ◦C for 1 min. For mi-92a-1-5p and miR-30d-5p, an
annealing-extension temperature of 56 ◦C was applied; for miR-200a-3p and miR-429, it was of 58 ◦C.
For every miRNA tested by real-time PCR, a standardization curve was created using a pool of cDNA
from Bouin’s and FFPE samples. Standard curve was generated for three points using the following
dilutions: 10x (0.4 ng/µL); 40X (0.1 ng/µL); 160x (0.025 ng/µL) for all the analyzed miRNAs. Standard
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curves were generated in duplicate for each miRNA and each pool of cDNA using 4 µL of diluted
cDNA per replica. Cases with differences of Ct ≥ 0.5 cycle were repeated in triplicate.

4.6. Data Normalization

miRNA expression levels obtained by real-time qPCR were normalized using let-7e-5p and
miR-423-3p as normalizing miRNAs, as returned by Bestkeeper software. In normalizing data,
the geometric mean of let-7e-5p and miR-423-3p Cts was used as reference gene, while the mean of
formalin and Bouin’s pooled samples was used as calibrator in the relative quantification method
proposed by Livak et al. [31].

4.7. ddPCR

Four microliters of 40x diluted cDNAs was used in each ddPCR reaction for a direct comparison
with real-time PCR. The reaction mixture contained 1x final of QX200TM EvaGreen ddPCR Supermix
(BioRad, Hercules, CA 94547, USA) and the miRCURY LNA PCR primer set at the appropriate
concentration, which was set up experimentally for each miRNA investigated in the present study.
A non-template control of deionized water was used instead of cDNA samples in each reaction.
Droplet generation was performed in a QX200TM Droplet Generator (BioRad, Hercules, CA 94547,
USA). The droplets’ emulsion was transferred onto a 96-well plate (Eppendorf, Hamburg, Germany),
which was foil-sealed twice at 179 ◦C for 3 s in a PX1 PCR Plate Sealer (BioRad, Hercules, CA 94547,
USA) and PCR was run in a iCycler thermocycler (BioRad, Hercules, CA 94547 USA) as follows: 95 ◦C
for 5 min; 40 cycles of 95 ◦C for 30 s and 56 ◦C for 1 min; signal stabilization at 4 ◦C for 5 min and 90 ◦C
for 5 min, and final hold at 4 ◦C. The annealing/extension temperature for miR-155-5p, miR-200a-3p,
and miR-429 was 57 ◦C. After amplification, the fluorescence of each droplet was read in the QX200TM

Droplet Reader (BioRad, Hercules, CA 94547, USA). Droplet digital PCR data were analyzed using
QuantaSoftTM software and droplets’ count was fitted to a Poisson distribution to obtain the absolute
concentration (copies/µL) of the target sequence.

4.8. Statistical Analyses

Data distribution was tested by Kurtosis test to establish the type of statistical tests (parametric or
non-parametric). For normally distributed variables, the t-test for paired-data was run, while Wilcoxon
signed rank test was used in case of non-normal distribution of data. Linear regression was
run to establish the relationship between two variables (i.e., ddPCR and real-time PCR results).
Pairwise Spearman’s rank analysis was carried out to investigate on variables’ dependence in case of
non-normal data distribution.

All p-values are two-sided with values <0.05 regarded as statistically significant. Statistical analyses
were performed with the Stata/SE 12 package (Stata, College Station, TX, USA).
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Abbreviations

FFPE Formalin-fixed and paraffin-embedded tissues
A260/280 Ratio of absorbance at 260 and 280 nm
A260/230 Ratio of absorbance at 260 and 230 nm
HGSOC High grade serous ovarian cancer
LNA Locked nucleic acid
miRNA Micro RNA
RT-qPCR Reverse transcription-quantitative polymerase chain reaction
ddPCR Droplet digital Polymerase chain reaction
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(RT/ddPCR) of miR-155-5p (A), miR-200a-3p (B), and miR-429 (C) in matched formalin- and Bouin’s-fixed
tissues by ddPCR. The box represents the first and third quartiles, intersected by the median, and the
whiskers are the range.
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