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VISUAL BACKWARD MASKING: 
MODELING SPATIAL AND  
TEMPORAL ASPECTS

In visual backward masking, a target stimulus is fol-

lowed by a mask, which impairs performance on the 

target. Although visual masking is often used as a tool 

in cognitive and behavioral sciences, its underlying 

mechanisms are still not well understood. The focus 

of masking research has been on understanding how 

it is possible that for some combinations of target and 

mask, a delay of the mask yields stronger masking 

than having the mask immediately follow the target. 

This phenomenon is known as ‘B-type masking’ or ‘U-

shape masking,’ of which the latter refers to the shape 

of the curve linking stimulus onset asynchrony (SOA) 

between the target and the mask to performance. 

Explanations of B-type masking are either based on a 

single process (e.g. Anbar & Anbar, 1982; Bridgeman, 

1978; Francis, 1997) or on a combination of two proc-

esses (e.g. Neumann & Scharlau, in press; Reeves, 

1986). Most models which use a single process apply 

a mechanism which was termed ‘mask blocking’ by 

Francis (2000). The basic idea of this mechanism is 

that a relatively strong target can block the mask’s 

signal at short SOAs, but fails to do so at intermedi-

ate SOAs due to the decaying trace of the target. The 

two process theories assume that the U-shape curve 

in B-type masking actually consists of two parts, both 

of which are monotonic. The two underlying processes 

might relate to the accounts of ‘integration’ and ‘inter-

ruption’ masking (Scheerer, 1973), or to ‘peripheral’ 

and ‘central’ processes (Turvey, 1973).

While the focus of visual backward masking has been 

on temporal aspects, the effects of the spatial layout of 

the target and the mask have received much less inter-

est (but, see Cho & Francis, 2005; Francis & Cho, 2005; 

Hellige, Walsh, Lawrence, & Prasse, 1979; Kolers, 1962). 

If spatial aspects were investigated, they mainly involved 

low-level aspects, such as the spatial distance between 

the target and the mask, and the spatial frequencies of 
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the stimuli. Recently, Herzog and colleagues (Herzog, 

Schmonsees, & Fahle, 2003a, b; Herzog & Fahle, 2002; 

Herzog & Koch, 2001; Herzog, Harms, Ernst, Eurich, 

Mahmud, & Fahle, 2003c; Herzog, Koch, & Fahle, 2001; 

Herzog, Fahle, & Koch, 2001) started to investigate the 

effects of the spatial layout of the mask systematically, 

while keeping the target (a vertical Vernier) constant. 

Even though the mask consisted of simple bar elements 

only, slight changes in the layout of these elements 

resulted in large differences in masking strengths. For 

example, adding two collinear lines to a grating mask 

strongly impaired performance on the Vernier target 

(Herzog, Schmonsees, & Fahle, 2003a).

Only a few modeling attempts have been made to 

explain spatial aspects of visual masking. The aspects 

that were modeled include the effect of the distance of 

the mask to the target (modeled by Breitmeyer & Ganz, 

1976; Bridgeman, 1971; Francis, 1997), and the distri-

bution of the mask’s contour (modeled by Francis, 1997). 

Several of the existing masking models (Anbar & Anbar, 

1982; Di Lollo, Enns, & Rensink, 2000; Weisstein, 1968) 

are constructed in such a way that they cannot account 

for spatial aspects of the target and the mask.

Here, we describe a structurally simple model that 

can explain several spatial aspects of visual backward 

masking as well as temporal aspects. The model we use 

is inspired by the basic structures found in the visual 

cortex, with excitatory and inhibitory neurons driven by 

feed-forward input, and exchanging action potentials via 

recurrent horizontal interactions. We describe neural ac-

tivity in terms of population firing rates, whose dynam-

ics are similar to the classical Wilson-Cowan differential 

equations (Wilson & Cowan, 1973) for spatially extended 

populations. Here, we will present new simulations of the 

effects of a shift of the mask either in space or time, 

embedded in an overview of results earlier presented 

by Herzog et al. (Herzog, Ernst, Etzold, & Eurich, 2003; 

Herzog, Harms et al. 2003c).

SETUP OF THE MODEL

The general structure of our model is illustrated in 

Figure 1. The input I(x,t) is filtered by a Mexican hat 

kernel and fed into an excitatory and an inhibitory 

layer. The activation of both layers is updated over 

time, where activation from both layers is mutually 

exchanged via the coupling kernels We and Wi. The 

activation dynamics of the model are determined by 

two coupled partial differential equations for the firing 

rates of neuronal populations, originally introduced by 

Wilson and Cowan (1973). We modified the original 

equations in order to match more recent work (Ben-

Yishai, Bar-Or, & Sompolinsky, 1995; Ernst, Pawelzik, 

Sahar-Pikielny, & Tsodyks, 2001) on the simulation of 

neural populations in the visual cortex, by dropping 

the shunting factors and using piecewise linear activa-

tion functions he and hi, which do not saturate for high 

inputs,
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In these equations, τe and τi denote time constants, 

and wee, wie, wei, wii are weighting coefficients for the 

interactions. x denotes the position of the neuronal 

population in the corresponding layer, and t denotes 

time. We assume an approximate retinotopical map-

ping of the visual input onto the cortical layer, such 

that x also describes position in the visual field.

Recurrent interaction between the layers is mod-

eled by
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Figure 1.
The general setup of the model. The input, which is coded 
as an array of ones and zeros is fed into an inhibitory and 
an excitatory layer via a Mexican-hat filter. The activation 
of these layers is updated over time.
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for excitatory and inhibitory interactions, respectively. 

The convolution, represented by *, describes the ac-

cumulation of synaptic inputs from other populations 

in the same or in a different layer. In the limit of large 

neuron numbers, it can be written as a spatial integral
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The feed-forward filtered input into both layers is 

computed by
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using an input kernel defined as a difference of 

Gaussians (DOG)
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SPATIAL ASPECTS

Size of the grating

In their experiments, Herzog et al. (fig 3. Herzog, 

Fahle, & Koch, 2001) presented a Vernier target fol-

lowed by a grating mask of a variable number of ele-

ments. Participants were asked to determine the off-

set direction (left or right) of the vertical Vernier. The 

mask consisted of an array of aligned vertical Verniers 

(as illustrated in Figure 2A). Masking was strongest 

when the grating consisted of 5 elements (about 58% 

correct decisions with a 20 ms Vernier duration), and 

weakest for gratings with more than 11 elements 

(about 91% correct).

First we will focus on an explanation of why the 

5 elements yield stronger masking, while a larger 

mask (25 elements) yields weaker masking. Figure 

2B shows the time evolution (vertical dimension) 

of the spatial activation in the excitatory layer 

(horizontal dimension). During the first 20 ms, the 

Vernier is presented, which results in a central ac-

tivation of the layer. After these 20 ms, the Vernier 

input is ended and immediately the mask enters 

20 ms

time

A 20 ms

time

time

position

B

N=5 N=25

Figure 2.
Stimulus sequence (A) and simulation results (B) of data presented by Herzog et al. (2001). A Vernier target was masked by a 
grating consisting of either five (left) or 25 elements (right). The model correctly predicts that the five-element grating masks 
the Vernier much more strongly than the 25-element grating.
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the system. For both gratings, this results in strong 

activation at the edges of the grating, strong inhibi-

tion in the surround of these edges, and suppres-

sion of all other activations. Since the edges of the 

five-element grating are much closer to the position 

where the Vernier was displayed, due to strong in-

hibition the remaining activation from the Vernier 

will decay faster than in the case of a 25-element 

grating.

To understand the consequences of these dy-

namics for perception, let us consider how activity 

in the model might be related to Vernier visibility. A 

common hypothesis is that the stronger an activa-

tion caused by a particular feature of a stimulus is, 

the better it can be detected by an observer of this 

activity. Consequently, the stronger the activation of 

the center column responding to visual input at the 

target’s position is, the better we expect the target 

to be visible, even it is blending over with the mask’s 

appearance, as in the typical reported percept of an 

observer in the 25-element condition. We therefore 

assume that the duration of the trace of activity as-

sociated with the center column, being above some 

threshold Θ, is monotonically related to visibility of 

the target element (linking hypothesis). It is there-

fore not necessary to model explicitly Vernier off-

set, as this feature of the target in the experiment 

is used only as a vehicle to quantify visibility. From 

elementary considerations in signal detection theory, 

it is obvious that the longer a noisy process is be-

ing observed, the better any estimation gets of some 

of its underlying parameters. The threshold in our 

case plays the role of an ad-hoc quantification of the 

neuronal background noise: only when activation in-

creases beyond this noise level, may stimuli become 

visible. In order to quantify the linking hypothesis, 

one normally uses an experiment in which visibility 

or detection performance changes with some control 

parameter, and then fits a continuous function link-

ing performance to a model variable. Once fixed, this 

function then allows prediction from the model how 

performance will be in other experimental conditions. 

20 ms

time

A
20 ms

time

time

position

B

N=5 N=25

Figure 3.
Stimulus sequence (A) and simulation results (B) of data presented by Herzog et al. (2003). A Vernier target was masked by a 
field of light of the size either of either five (left) or 25 elements (right). The model correctly predicts that the five-element size 
field masks the Vernier much more strongly than that of the size of a 25-element grating, as indicated by the longer Vernier 
trace for the 25-element grating in the center of the image of the network activation.
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While in a previous publication we employed this 

quantitative procedure, in this review article we only 

use qualitative measures, as e.g., predicting the peak 

performance in a specific condition, for evaluating the 

model’s performance.

Uniform fields of light

In the previous paragraph, we saw that a grating 

of five elements masks a Vernier target much more 

strongly than a grating consisting of 25 elements. This 

finding was surprising, because the 25-element grat-

ing contains much more energy than the grating of 5 

elements. The model suggested that the difference in 

masking strength could be explained by the distance 

of the nearest edge of the mask. If the distance to 

the edge of the grating is indeed what determines the 

masking strength, one would also expect a uniform 

field of light of the size of the five element grating to 

be a stronger mask than one of the size of the 25-ele-

ment grating. Figure 3 shows that the model indeed 

predicts stronger masking for a small uniform field of 

light than for a large one. In the top part of this figure 

the sequence of stimuli is shown. The energy of the 

field of light was set such that the overall energy of 

the mask matched that of the corresponding grating 

mask. Figure 3B shows the activation over time for 

the two light masks. The pattern of results resembles 

that obtained for grating masks (Figure 2B). The small 

field of light suppresses the Vernier activation more 

strongly than the larger one.

Whether small fields of light mask more strongly 

than larger ones was experimentally investigated by 

Herzog, Harms et al. (2003c). Vernier offset discrimi-

nation thresholds indicated that the small light-field 

was indeed a stronger mask, although the difference 

in thresholds between the two mask sizes was not as 

large as for the grating masks. By using a function 

that linked network activation to thresholds (the ‘link-

ing hypothesis’), Herzog, Ernst et al. (2003) showed 

that the model could accurately predict the observed 

thresholds.

Irregularities in the mask

Two findings suggest that breaking up the regularity 

of the mask increases its masking strength. Herzog et 

al. (fig. 4; 2001) introduced two gaps in the grating 

20 ms

time

A
20 ms

time

time

position

B

Gaps Double intensity

Figure 4.
Stimulus sequences (A) and simulation results (B). A Vernier target was followed either by a grating with two gaps at offset 
positions +/-2 from the Vernier, or two elements of double luminance at these positions. Experimental data showed that both 
masks yield a strong increase in offset discrimination thresholds with respect to the standard grating. The simulations show 
that the model can well detect the irregularities in the mask, and explain how these irregularities result in an increase in 
masking strength. The irregularities are associated with strong network activation causing strong inhibition in their immediate 
surroundings that suppresses activation of the target, because the irregularities were close to the target.
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by removing two elements (illustrated in the left plot 

of Figure 4A), which resulted in a grating consisting 

of five central elements and two more distant groups 

of nine elements. The removal of the two grating ele-

ments strongly increased the strength of the mask. 

Similarly, Herzog et al. (fig. 7A; 2004) increased the 

luminance of the two elements at position offsets +2 

and −2 from the Vernier, as illustrated in the right part 

of Figure 4A. Also, this slight change in mask layout 

resulted in a strong increase in the masking strength.

The simulation plots of Figure 4B show how we can 

understand the strong increase in masking strength 

by the introduction of the gaps or the double lumi-

nance elements into our model. The model is sensi-

tive to irregularities in the grating, which yield high 

activations in the neuronal layers. As the activation 

induced by the gaps or by the elements with doubled 

luminance is close to the preceding Vernier activity, 

the decay of the Vernier activation will be faster, and 

thus predicted performance will be low.

The simulations with the mask with the two gaps 

show that not only the mask affects the target, but 

also the target affects the mask. The inner edges at 

the two gaps show weaker activation than the outer 

edges, which can be understood as resulting from 

stronger inhibition of the inner edges by the target 

than the outer edges. Said differently, the target 

forwardly masks the mask.

Masking is predicted to be slightly weaker for 

the mask with the two gaps than for the mask with 

double luminance lines. At this time, there is no 

experimental data to determine whether this pre-

diction is correct. Thresholds were determined for 

both masks, however, with different observers with 

different amounts of training in the Vernier discrim-

ination task. It would be interesting, though, to test 

this prediction in the future.

Center = 0" Center = 400" Center = 800"

Center = 1600" Center = 2000" Center = 2200"

Center = 2300"

Figure 5.
The activation in the excitatory population over time (vertical dimension) for different sizes of the shift of the center of the 
grating to the right. The small red horizontal bar indicates where the activity at the center drops below a certain value. The 
model predicts that when the grating’s edge approaches the Vernier, the Vernier’s trace is strongly reduced, implying much 
worse performance on the Vernier.
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Edge distance

Previous simulations suggest that it is mainly the dis-

tance of the closest edge to the Vernier rather than 

the number of lines in the mask that determines the 

strength of the mask. This leads to the prediction that 

if the 25-element grating is shifted with respect to the 

location of the Vernier (as illustrated in the left part of 

Figure 6), masking strength will increase. This model 

prediction is illustrated in Figure 5, where the different 

subplots show the activation of the excitatory popula-

tion across time (vertical dimension) for different sizes 

of the shift of the 25-element grating (the grating is 

shifted to the right of the center). The small red hori-

zontal bar indicates where the activity at the center 

drops below a certain value. In the plot, a 0” shift 

indicates that both the Vernier and the grating were 

centered around the middle of the screen. A 400” shift 

indicates that the grating’s center was shifted 400” 

to the right, which means that the left edge of the 

grating is 400” closer to the Vernier compared to the 

standard situation. The model predicts that shifts up to 

800” have little effect, while shifts larger than 1600” 

strongly affect the Vernier’s visibility. Note that merely 

looking at the moment the central activation drops 

below a certain value suggests a different pattern of 

results. This is because at some point the activation 

of the Vernier and that of the mask’s edge appear at 

the same spatial location. To avoid this confusion of 

activation, a different linking hypothesis might need to 

be used, or some spatial representation of the offset of 

the Vernier needs to be coded by the model.

Whether Vernier discrimination performance in-

deed decreases with an increasing shift of the mask 

was determined with one observer (author FH). 

This observer was presented with a sequence of a 

Vernier presented for 12 ms (the optimal duration 

for this observer), followed by a 25-element grating 

for 300 ms. The center of the grating was shifted 

from 0”, via 400”, 800”, 1600”, 2000”, 2200”’, to 

2300” (edge close to the Vernier position), as is 

illustrated in the left part of Figure 6. For the rest, 

the experimental procedure was the same as in 

earlier demonstrations of the shine-through ef-

fect (e.g., Herzog, Harms et al., 2003c). The right 

part of Figure 6 shows the results. Thresholds start 

to rise at a shift of about 1600” (≈ ±8 elements 

offset), and reach a maximum for a shift of 2300”  

(≈ ±11.5 elements offset), where no threshold 

could be measured anymore.

The model was correct in predicting that thresh-

olds increase with an increase in the shift of the 

mask. In addition, the model could well predict for 

which shift thresholds would strongly rise, which 

suggests that the model is correct in its assump-

tion that the distance to the mask’s nearest edge 

determines the masking strength.

Alternative explanations

Of the existing models of masking, only few are imple-

mented in such a way that spatial information about 

the target and the mask can be coded (Bridgeman, 

1978; Francis, 1997; Öğmen, 1993). Other compu-

tational models represent target and mask in single 

neurons (Anbar & Anbar, 1982; Di Lollo et al., 2000; 

Weisstein, 1968), an approach which does not allow 

spatial information to enter the model system.

Of the models that can code for spatial proper-

ties, only the model by Bridgeman can easily be 

implemented. The remaining two models (Francis, 

time
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Figure 6.
The sequence of Vernier and mask (left) and Vernier offset discrimination thresholds for observer FH (right) as a function of 
the size of the shift of the center of the grating mask. The data confirm the model’s prediction that a close edge yields strong 
inhibition of the Vernier’s signal, reflected in higher offset discrimination thresholds.
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1997; Öğmen, 1993) involve many stages and com-

plex processing. For example, the model by Francis 

(1997), which is based on the boundary contour 

system (Grossberg & Mingolla, 1985), consists of 

six layers with many complex interactions. To simu-

late these models, one probably needs the help of 

the authors to understand the full details in order 

to correctly implement the model. Moreover, these 

models often require simplifications of the model 

to be able to perform the simulations. Due to these 

restrictions, we will only present simulation results 

of Bridgeman’s model here.

The model by Bridgeman makes use of the Hartline-

Ratliff equation that was originally developed to de-

scribe lateral inhibition in the Limulus eye. A network 

of 30 neurons is used to describe the effects of a visual 

mask. The firing rate of each neuron in the network 

changes over time depending on the excitatory sensory 

input and the inhibitory effect of neighboring neurons. 

To compare the network activations with the visibility 

of the target, the firing rates in the network are com-

pared for a run in which only the target is presented, 

with one in which both the target and the mask are 

presented.

For the implementation of the Bridgeman model, 

we assumed a network of 500 neurons centered 

around the position where the Vernier was present-

ed. In the original version of the model, 30 neurons 

were used, of which the first and the last neurons 

were linked to avoid edge effects. We choose a dif-

ferent approach: Since computers have become 

much faster, we could easily extend the number of 
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Figure 7.
Cell activations in Bridgeman’s (1978) model for the conditions (1) Vernier only, (2) Vernier followed by a five-element grat-
ing, (3) Vernier followed by a 25-element grating, (4) Vernier followed by a 25-element grating with gaps. The value p in the 
subplot titles refers to the sum of the squared correlation over time between the activation for condition (1) and the respective 
condition. The higher the value of, the higher the predicted per-formance. The values indicate that the model fails to explain 
why a 5-element grating (2), and the 25-element grating with gaps (4) are much stronger masks than the 25-element grat-
ing (3).
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neurons in the model, thereby avoiding edge ef-

fects (activation could not spread to the boundaries 

within the simulation time), while also avoiding 

neurons that were not close in retinotopic space af-

fecting each other.

The background activation of the model was set 

to 50, additional activation of the target and mask 

was 22.5. The standard error of the Gaussian noise 

was assumed to be 0.1. The interaction param-

eters were the same as in earlier simulations by 

Bridgeman (1971, 1978). To initialize the network, 

500 iterations were run in which only background 

activation was provided, before the stimuli were 

presented to the network. The target was presented 

for 2 time frames, the mask for the remaining 18 

frames.

Figure 7 shows the activation of the neurons at 

different points in time for different stimulus se-

quences. The top row shows the activation of the 

neurons after presentation of the Vernier only, the 

bottom three rows for a Vernier followed by one of 

three gratings (5-element grating, 25-element grat-

ing, 25-element grating with gaps, respectively).

The value in the subplots’ title (ρ) shows the sum 

over time of the squared correlation between the 

neuronal activation with the mask and that of the 

run without a mask. The sum is shown instead of 

the commonly used average, to make the outcome 

less dependent on the number of time steps in the 

simulation. If the model’s predictions agree with 

the data, we would expect to find a high value of ρ 

for the 25-element grating, and low values for the 

other two masks. This is not what is found: The 

value of ρ for the 25-element grating is, in fact, 

lower than that for the other two gratings, suggest-

ing that Bridgeman’s model cannot account for the 

experimental findings.

TEMPORAL ASPECTS

Onset of context

As discussed before, a grating of five elements is a 

stronger mask than one consisting of 25 elements 

time

position

positive 
SOA duration

20 ms

time

negative 
SOA duration

20 ms

time

A

B

SOA = −50 ms SOA = −30 ms SOA = −10 ms SOA = 0 ms

SOA = 10 ms SOA = 30 ms SOA = 50 ms SOA = −80 ms

Figure 8.
Stimulus sequence (A) and simulation results (B) of data presented by Herzog et al. (2001). The small red horizontal bars 
indicate where the activity of the trace drops below a particular threshold. A Vernier target was masked by a grating consist-
ing of a five-element center and a 20-element surround, which were presented at different onset times. Once presented, the 
stimulus remained on the screen until 300 ms after target offset. The model correctly predicts that the target strength remains 
strongest for simultaneous onset of the mask’s center and surround.
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(Herzog, Fahle, & Koch, 2001). Here, we will show 

simulation results in which the relative onset of the 

five central elements and the 20 surrounding elements 

of a 25-element mask was varied. Figure 8A shows 

the sequences used in the experiment by Herzog 

et al. (2001). For negative SOAs, the 20 surround-

ing elements of the mask preceded the five central 

elements. For positive SOAs, the central five elements 

were presented before the surrounding 20 elements. 

At zero SOA, all 25 elements were presented simulta-

neously. In the experiment, Vernier offset discrimina-

tion thresholds were found to be minimal for an SOA 

equal to zero, and increased with SOA (either positive 

or negative).

The Wilson-Cowan type model can explain why 

masking is weakest at zero SOA and increases with 

SOA. The activation plots that illustrate this are 

shown in Figure 8B. Each subplot shows the activa-

tion in the excitatory layer over time (vertical axis). 

The small red horizontal bars in the plots indicate 

where the activity of the trace drops below a cer-

tain threshold. During the first 20ms, the Vernier is 

presented to the network, followed by the sequence 

of mask parts. The duration over which the acti-

vation at the center of the population (where the 

Vernier was presented) survives is an indication of 

how well the Vernier will be perceived. The figure 

shows that the Vernier’s signal best survives for an 

SOA of zero, while the length of the Vernier’s trace 

decreases with increasing absolute SOA (either 

negative or positive).

Verbally, the explanation of the results can be 

phrased as follows. When the center and the sur-

round are presented simultaneously, the network 

will consider the two parts as one object. The edges 

of this object are determined, and since they are far 

away from the Vernier target, they will hardly affect 

the signal of the Vernier. If the surround is present-

ed earlier, the network will respond by detecting the 

edges of the two parts of the surround. Since the 

edges of these parts are much closer to the Vernier 

location, they will inhibit the Vernier more strongly. 

Similarly, if the center is presented before, its edg-

es will be detected, and since also these edges are 

close to the Vernier, they will inhibit the Vernier’s 

signal. The trace of the mask in the population can 

change over time, as soon as other elements of the 

grating enter the network. This explains why early 

onset of the context elements results in a longer 

trace of the Vernier than late onset.

The model predictions were compared quanti-

tatively with the experimental findings by Herzog 

et al. by applying a linking function converting the 

length of the suprathreshold trace of the Vernier 

into predicted thresholds (see model section). The 

model predictions closely matched the experimen-

tal results (Figure 6; Herzog, Ernst et al., 2003).

Optimal masking at a non-zero 
SOA

In the introduction, we mentioned the relatively strong 

focus of the masking research community on explain-

ing that masking can be strongest at a non-zero SOA 

(B-type masking). The work by Francis (2000) sug-

gests that many models that apply a non-linearity 

(rectification) and decay can explain B-type masking. 

As our version of the Wilson-Cowan model contains 

both properties, we would expect that a combination 

of target and mask can be found for which the model 

shows strongest masking at a non-zero SOA. Figure 

9 shows such a combination (left), together with the 

corresponding network responses (right). The small 

red horizontal bars indicate where the activity of the 

time

increasing SOA

Figure 9.
Stimulus sequence (left) and responses of the excitatory population (right) for which optimal masking at a non-zero SOA oc-
curs. The small red horizontal bars indicate where the activity of the trace drops below a particular threshold. The Vernier’s 
trace is long for a zero SOA, then decreases in length for intermediate SOAs, and returns to full length again at long SOAs, 
indicating that masking is strongest at intermediate SOAs.
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trace drops below a particular value. For short SOAs, 

the target’s trace is long. For intermediate SOAs, the 

length of the trace decreases, to increase again with 

longer SOAs. This pattern of trace lengths as a function 

of SOA suggests a U-shaped dependence of predicted 

performance on SOA.

GENERAL DISCUSSION

In this paper, we have argued that it is important to 

study both spatial and temporal aspects of visual back-

ward masking. Temporal aspects have been studied 

for a long time. Although some basic spatial aspects, 

such as the distance between target and mask, and 

their spatial frequencies have been studied in the past, 

it is only recently that spatial aspects have started to 

be investigated systematically. A similar trend can be 

seen for models of visual masking. Most earlier mod-

els (Anbar & Anbar, 1982; Weisstein, 1968) could only 

model temporal aspects of masking, simply because 

spatial aspects could not be coded by the models. An 

exception is the model by Bridgeman (1978), which al-

lows for a representation of stimuli in a spatial array. 

However, we showed that this model can not account 

for the difference in masking strength of the 25-ele-

ment grating (weak masking), the five-element grating 

and the grating with two gaps (strong masking). Later 

models can represent the spatial layout of the stimuli, 

even in two dimensions (Francis, 1997; Öğmen, 1993). 

However, these models are so complex that a single 

simulation can take a standard computer days to per-

form (see the appendix of Francis, 1997), while at the 

same time preventing any analytical investigation of 

the relevant mechanisms.

Here, we showed that a structurally simple corti-

cal model with excitatory and inhibitory interactions 

can uncover putative mechanisms of several spatial 

and temporal aspects of masking. The model can 

explain why a grating of 5 aligned Vernier elements 

masks a Vernier target more strongly than one con-

sisting of 25 elements. Similarly, it explains why 

a smaller uniform light-field masks more strongly 

than a large one. The model also correctly predicted 

that shifting the 25-element grating with respect 

to the Vernier target results in stronger masking. 

In addition to these spatial aspects of masking, the 

model could explain why a delayed onset of mask 

elements results in stronger masking, and how a 

non-monotonic relation between SOA and masking 

strength can be obtained.

The mechanisms which enable the model to work 

in the described way are easy to understand: The first 

stage of processing is a pure feed-forward filtering of 

the stimulus, realizing an edge enhancement (or de-

tection of inhomogeneities) on the length scale of a 

typical double bar distance. The features of a stimu-

lus pronounced by this procedure are then enhanced 

through a localized excitatory interaction, while two 

features within the distance of the length scale of 

the inhibitory interactions will compete for activa-

tion. A necessary condition hereby is that enhance-

ment and competition are governed by two different 

time scales, a fast one for enhancement, and a slow 

one for competition. Through these time scales, fea-

tures of mask and target are either superimposing 

or canceling each other. The most important aspect 

leading sometimes to counterintuitive effects is the 

strong recurrency in the interactions: even when a 

feature in the target, which leads to a pronounced 

activation in the network, has just been switched 

off, the excitatory interactions can sustain this acti-

vation for a prolonged period. During this period a 

competing, nearby feed-forward input of a mask has 

no chance to produce sufficient activation which in 

turn could suppress the target’s sustained activity. 

Only when this activity has decayed sufficiently, is 

the mask rendered effective. This mechanism in our 

model provides a putative neural basis for U-shaped 

masking curves.

By systematically comparing model output and 

experimental results, we can determine which as-

pects of masking can be explained with a simple 

mechanism, and which aspects need a more elabo-

rate model. For example, the U-shaped dependence 

of performance on SOA for certain targets and masks 

can be explained with a single mechanism, and does 

not necessarily require two processes. However, 

Francis and Herzog (2004) showed that masking 

curves can intersect, even if the target and the task 

are kept constant, and just the mask is varied. This 

result poses strong restrictions on plausible mod-

els, suggesting that two or more neural processes 

underlie masking curves [as suggested by Reeves 

(1986) and Neumann and Scharlau (in press)].

Computational models are also necessary to de-

termine which conclusions can be drawn from data, 

as is illustrated by a recent contribution by Di Lollo 

and colleagues (2000) that received several com-

ments. In their article, Di Lollo et al. suggested 

that no existing model could account for their data, 

and in particular for common onset masking, where 

the mask is onset at the same time as the target, 

but remains on the screen after target offset. They 

furthermore suggested that recurrent connections 

were needed to explain the results, instead of the 
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feed-forward structure applied by existing models. 

The problem with their statements was that they did 

not check with simulations whether existing theo-

ries could already explain their data. Not much later, 

Francis & Hermens (2002) performed the necessary 

simulations and found out that common onset mask-

ing could easily be accounted for by existing mod-

els. Additional simulations then suggested which 

experiment would distinguish between the existing 

models and the newly proposed model by Di Lollo 

et al. (2000). This experiment confirmed that the 

recurrent model by Di Lollo et al., in fact, outper-

formed all existing models (Francis & Cho, 2007).

The ultimate goal of modeling visual processing 

will be to construct a predictive model of the visual 

cortex. However, current computer capacities and 

also our current knowledge of the visual system do 

not allow this yet. Until the ultimate model of the 

brain can be constructed, we will have to work with 

much simpler models. The best strategy hereby is 

to tightly combine experimental and modeling stud-

ies to test upcoming theories of visual information 

processing, and to break down visual processing 

as far as possible into distinct modules which can 

under certain conditions be studied separately from 

each other. In such an integrative approach, we 

have demonstrated that a structurally simple cor-

tical network can explain a quite extensive set of 

data in visual masking, which suggests that masking 

phenomena can be easily understood through the 

dynamics of network structures that are common to 

many areas found in the visual cortex.
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