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a b s t r a c t

The web server, MDM-TASK-web, combines the MD-TASK and MODE-TASK software suites, which are
aimed at the coarse-grained analysis of static and all-atom MD-simulated proteins, using a variety of
non-conventional approaches, such as dynamic residue network analysis, perturbation-response scan-
ning, dynamic cross-correlation, essential dynamics and normal mode analysis. Altogether, these tools
allow for the exploration of protein dynamics at various levels of detail, spanning single residue pertur-
bations and weighted contact network representations, to global residue centrality measurements and
the investigation of global protein motion. Typically, following molecular dynamic simulations designed
to investigate intrinsic and extrinsic protein perturbations (for instance induced by allosteric and orthos-
teric ligands, protein binding, temperature, pH and mutations), this selection of tools can be used to fur-
ther describe protein dynamics. This may lead to the discovery of key residues involved in biological
processes, such as drug resistance. The server simplifies the set-up required for running these tools
and visualizing their results. Several scripts from the tool suites were updated and new ones were also
added and integrated with 2D/3D visualization via the web interface. An embedded work-flow, inte-
grated documentation and visualization tools shorten the number of steps to follow, starting from calcu-
lations to result visualization. The Django-powered web server (available at https://mdmtaskweb.rubi.ru.
ac.za/) is compatible with all major web browsers. All scripts implemented in the web platform are freely
available at https://github.com/RUBi-ZA/MD-TASK/tree/mdm-task-web and https://github.com/RUBi-ZA/
MODE-TASK/tree/mdm-task-web.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Molecular dynamics (MD) simulations are a very useful method
of conformational sampling to study the dynamics of proteins. Due
to the large number of internal degrees of freedom and the com-
plex set of atomic interactions found within proteins, investigating
the effect of local differences within them using conventional met-
rics such as root mean square deviation (RMSD), root mean square
fluctuation (RMSF) or the radius of gyration (Rg) may be limiting.
Alternative analysis approaches may provide deeper insights.

Network analysis has the ability to abstract out such complexity
while maintaining the inter-residue relationships. The term ‘‘cen-
trality” is used as a measure of how central a residue is in the pro-
tein network, and several centrality metrics derived from the social
sciences [1] may be applied to investigate protein dynamics. Many
research groups have applied residue interaction network analysis
on static structures, and have used multiple strategies and tools for
summarizing protein interactions using various edge and node
modeling approaches [2–5] to minimize bias and maintain enough
variance for determining topological changes in a protein. We pre-
viously proposed a post-hoc analysis approach of MD simulations
using dynamic residue network (DRN) analysis to probe the impact
of mutations [6,7] and allosteric effects [8], before setting up the
MD-TASK tool suite [9] in 2017. The tool introduced the concept
of averaging residue network metrics over MD simulations, as an
alternative to examining static networks, to consider the dynamic
nature of functional proteins. This decision was made after observ-
ing that energy minimization criteria (such as the number of steps
and the minimum gradient) influenced network centrality in such
a way that related samples aggregated mainly according to mini-
mization criteria. Nevertheless, these residue interaction networks
are a faster way of estimating centrality as they utilize single con-
formations. Besides DRN, the MD-TASK tool suit also includes
dynamic cross-correlation (DCC) and perturbation response scan-
ning (PRS) techniques. Both of these techniques provide residue

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2021.08.043&domain=pdf
https://mdmtaskweb.rubi.ru.ac.za/
https://mdmtaskweb.rubi.ru.ac.za/
https://github.com/RUBi-ZA/MD-TASK/tree/mdm-task-web
https://github.com/RUBi-ZA/MODE-TASK/tree/mdm-task-web
https://github.com/RUBi-ZA/MODE-TASK/tree/mdm-task-web
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2021.08.043
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:O.TastanBishop@ru.ac.za
https://doi.org/10.1016/j.csbj.2021.08.043
http://www.elsevier.com/locate/csbj


O. Sheik Amamuddy, M. Glenister, T. Tshabalala et al. Computational and Structural Biotechnology Journal 19 (2021) 5059–5071
level analysis with different perspectives and none of them are
found in commonly used MD packages. Some examples of their
usage are given in the Results and Discussion section.

Our second software suite, MODE-TASK [10] was developed for
the analysis of large-scale protein motions, mainly via anisotropic
network model (ANM) calculations from static protein structures,
and also providing various algorithms for estimating protein essen-
tial dynamics (ED) fromMD simulations. These tools are helpful for
the investigation of functionally-relevant changes that can vary
with different orders of magnitude, and can also be more challeng-
ing to compute in the case of very large systems such as viral cap-
sids. Normal mode analysis (NMA) and ED are two useful methods
to study protein dynamics, which can assist in the analysis of
structural and functional relationships [11–13].

Both MD-TASK and MODE-TASK have been highly utilized to
mine protein dynamics by offering a series of novel approaches that
have demonstrated their applicability in a growing number of cases
[6,13–30]. Although both software suites are relatively easy to use,
the required technical knowledge and software dependencies may
act as a hurdle againstmorewidespread usage of the tools and tech-
niques, due to the diversity of operating systems and the relatively
fast-evolving Python libraries. We aimed to bridge this gap by pro-
viding access to both tools while introducing new functionalities in
MDM-TASK-web. It has been designed with a simple and intuitive
interface that is supported by any recent web browser. The need
for additional software, complex dependencies and command line
expertise is greatly reduced. MDM-TASK-web includes new fea-
tures such as additional network centrality metrics for both DRN
and Residue Interaction Network (RIN) centrality calculations from
single structures, a communication propensity (CP) tool [26,31] , an
aggregator of weighted residue contact maps, comparative ED, an
ANMworkflow, NMA fromMD and integrated 2D/3D visualization.
All tools have been ported to Python 3.

MDM-TASK-web is not alone. There are a number of other tools
and web servers aimed at facilitating structural analysis and offer-
ing features that are additional to, or variations of currently
described methods. Some examples are ENCoM [32], DynaMut2
[33], LARMD [34], NAPS [2], ANCA [3], RIP-MD [4] and MDN [5].
Yet, MDM-TASK-web which uses and builds on top of algorithms
previously described in MD-TASK and MODE-TASK, has many
unique features compared to other web servers. These features
are detailed in the rest of the article. We also provide a compara-
tive table for some of these web servers and tools, in Section 4.
Very briefly, ENCoM factors in amino acid variation in coarse-
grained NMA. DynaMut2 integrates graph-based signatures and
NMA to predict stabilizing and destabilizing mutations using ran-
dom forest regression. LARMD is designed to run and analyze up
to 4 ns (conventional and steered) MD simulations by running
standard protocols mostly aimed at analyzing ligand binding and
unbinding. In addition to calculating NMA from static structures,
it also calculates PCA, performs community analysis from protein
contact networks, MM-PBSA and dynamic cross correlation (DCC)
calculations from these simulations. We note that LARMD is based
on algorithms described in Bio3D [35], MDTraj [36], CAVER3.0 [37],
and tools from the AMBER16 suite. We further provide a compar-
ative table for some of these web servers and tools, in Section 4.

In this article, both the server workflow and functionalities of
MDM-TASK-web are described and discussed using example data
and published literature.

2. Materials and methods

2.1. Workflow and file inputs for MDM-TASK-web

MDM-TASK-web is a single-page web application powered by
the Django web framework [38] and a MySQL database. It relies
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on the Bootstrap [39] framework and the Knockout.js [40] library
for a dynamic and responsive front-end, while jobs are handled by
the Job Management System (JMS) [41]. The workflow used by
MDM-TASK-web is shown in Fig. 1. Compared to servers such as
LARMD, CABS-flex [42] and MDWeb [43], which can be used to
both run and analyze MD simulations, no molecular simulation is
performed in MDM-TASK-web. Depending on the tool, user inputs
mainly consist of a previously simulated protein MD trajectory file
and its matching topology, or simply of the PDB file for a single
structure. All of the tools perform computations on coarse-
grained protein residues, whereby the protein is either entirely
composed of alpha carbon atoms (Ca), or alternatively of beta car-
bon (Cb) and glycine Ca atoms. The user should ensure that periodic
boundary condition (PBC) corrections have been done prior to
using the tools, as these will negatively impact the calculations –
the embedded 3D visualizer may provide assistance in this case,
and obvious cases of broken molecules will distort the cartoon rep-
resentation of the protein.

Inputs from the web page are handled using jQuery and Knock-
out.js, and job states are synchronized with a MySQL database,
which is itself managed by the Django framework. The JMS API
monitors job states and compute node availability in order to
schedule job submission. Job status (failure or success) is reported
to JMS, which then updates the job record in the MySQL database.
Depending on the tool and the job state, the relevant outputs are
directly displayed using the 2D figures generated by the MDM-
TASK-web Python scripts, or visualized in 3D using the NGL Viewer
(version 2) [44] web application.
2.2. 3D visualization and tool documentation

Calculated metrics (such as correlations from PRS, network cen-
trality values and normal modes) are mapped onto a user-provided
protein structure to facilitate interpretation where possible, via the
NGL Viewer. A dedicated viewer is also available for generic trajec-
tory visualization. Tool documentation is implemented via tool
tips, collapsible buttons, demonstration pages and as a side panel
on each of the tool input web pages.
2.3. Trajectory management

Transfer and storage of MD data can be a challenge for web ser-
vers as working with these large files can be offset by bandwidth
and storage limitations. MDM-TASK-web can re-use trajectories
and suggests preliminary solvent removal from the trajectory
and topology files. A coarse-graining tool (https://github.com/oli-
serand/MD-TASK-prep) (compatible with MDTraj [36], PYTRAJ
[45], MDAnalysis [46] , GROMACS [47] , VMD [48] and CPPTRAJ
[49]) can also be used to reduce trajectory sizes by retaining only
Ca and Cb atoms. Trajectory files can be provided as URLs, and
the uploaded data is re-usable. Together, these features minimize
bandwidth usage and facilitate the processing of remotely simu-
lated data without the need for specialized hardware onsite. While
user data is privately stored on the server, topology and trajectory
data is automatically removed after 30 days. The maximum size for
a trajectory is limited to 250 Mb.
2.4. MD-TASK functionality

MD-TASK provides tools for performing DRN analysis, weighted
contact network calculations, dynamic cross correlation (DCC) and
perturbation response scanning (PRS) calculations. These are
detailed in the sub-sections below.

https://github.com/oliserand/MD-TASK-prep
https://github.com/oliserand/MD-TASK-prep


Fig. 1. Workflow for MDM-TASK-web. The flow of execution is numbered, starting with user inputs, and ends with the visualization stage, along the unidirectional arrows.
Double-sided arrows denote the two-way communication handled by JMS. Internal processes are shown in gray boxes. Front-end and back-end functionalities are highlighted
with a light red and yellowish background, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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2.5. DRN and RIN calculations

The previous implementation of DRN analysis has been
upgraded to eight centrality metrics, and now includes between-
ness centrality (BC), average shortest path lengths (L), closeness cen-
trality (CC), eccentricity (ECC), degree centrality (DC), eigencentrality
(EC), PageRank (PR) and Katz centrality (KC) that are each computed
for each frame. These are then summarized for each residue as a
mean, median or a standard deviation. The tool has also been
adapted for using a single protein conformation (RIN centrality
metrics), which is faster to compute. Details of DRN calculations
are given in Table 1:

In DRN analysis, the selected network centrality metric [50]
is computed for each MD frame, and the residue centrality val-
ues are aggregated as medians or time-averages. The mapped
3D structures can be directly visualized and compared in
MDM-TASK-web. Mappings are also saved in the PDBx/mmCIF
format, with each DRN metric stored in the B-factor field. CSV
files of the DRN metrics are also generated. The default cut-off
value of 6.7 Å is recommended [24,51]. While smaller or larger
values will generally work in simpler calculations such as DC,
convergence problems will arise for larger values for metrics
based on shortest path calculations or those that solve for
eigenvectors. This will also significantly increase the computa-
tion time, due to the creation of more edges. Too small cut-off
values will surely lead to disconnected nodes, and to the failure
of some of metrics.
2.6. Weighted residue contact network calculations

The original R implementation from MD-TASK was ported to
Python 3, with the ability to aggregate multiple residue contacts
to produce a heat map. The weighted residue contact network is
calculated at one selected residue locus - this would generally be
a common position, or a mutation position across several related
proteins [27,52,53].
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2.7. Perturbation response scanning

The PRS back-end script has been slightly simplified from that
used in MD-TASK, to require fewer parameters and structure pre-
processing steps. It requires only a trajectory, an initial conforma-
tion (which is the PDB-formatted topology file) and a target
conformation (also in PDB format) to generate an interactive 3D
map of residue correlations. Only protein Ca atoms are used.

2.8. Dynamic cross-correlation

DCC, which shows the correlated residue motions, has been
upgraded to work with protein complexes containing non-
protein atoms. The speed has also been improved from the previ-
ous version.

2.9. Communication propensity

Pairwise communication propensity is computed as the mean-
square fluctuation of the inter-residue distance, using Ca atoms.
It relies on the fact that intra-protein signal transduction events
are directly related to the distance fluctuations of communicating
atoms [26,31]. Low CP values correspond to more efficient (faster)
communication compared to larger values.

2.10. MODE-TASK functionality

MODE-TASK enables the calculation of protein ED, and the esti-
mation of normal modes both from coarse-grained static proteins
under the assumptions of the elastic network model, and from
MD trajectories. The coarse-graining approach used for the normal
mode calculations is based on glycine Ca and Cb atoms, and can be
tuned at various levels of sampling for large proteins such that
atoms are equally distributed in 3D space [13]. This approach is
sequence agnostic, and differs from other web servers such as
ENCoM, which accounts for amino acid differences in normal mode
calculations by factoring in intramolecular residue interactions



Table 1
DRN metrics and their interpretations (adapted from [50] ).

Metric Equation Interpretation

Averaged degree
centrality

DCi ¼ 1
m n�1ð Þ

Pm
k¼1

Pn
j¼1;j–iAijk Aijk is the adjacency from the 3D tensor consisting of a time series of adjacencies Aij from adjacency matrices A. It

is the averaged connectivity around a residue i. The number of frames is denoted by m. A residue is more central
if it has a high local connectivity.

Averaged
betweenness
centrality

BCv ¼ 1
m

Pm
i¼1

P
s;t2V

ri s;tjvð Þ
ri s;tð Þ BC measures the fraction of all s-t node pairs that traverse a given node v along their geodesic distance. ri(s,t|v)

denotes the number of paths bridged by residue v, while ri(s,t) is the total number of paths for the graph, both
evaluated at time i. For each residue, this value is then averaged from the total m frames.

Averaged farness Lv ¼ 1
mðn�1Þ

Pm
i¼1

Pn�1
u¼1di u;vð Þ The farness (at time i) for a node v is the sum of its geodesic distance di to every other node u, normalised by the

number of residues. The higher this number, the longer the distance to be travelled to reach other nodes of the
network graph.

Averaged closeness
centrality

CCv ¼ n�1
m

Pm
i¼1

Pn�1
u¼1

1
di v ;uð Þ Closeness is the inverse of farness and is maximised when the latter is smallest. In other words, a node would

have a high closeness when its geodesics to every other node are shortest.
Averaged

eigencentrality
A � EC

!
¼ k � EC

!
(Eq. i)

ECi ¼ 1
m

Pm
k¼1ECik (Eq. ii)

Eigencentrality is an extension of degree centrality. It assigns node importance by solving for the dominant unit
eigenvector EC of the adjacency matrix A. Eq. i shows the eigenvector decomposition method that can be used to
determine EC. In NetworkX, EC is solved using the power iteration method. In Eq. ii, the averaged EC for residue i
is determined from the time average from m frames. The converged eigenvector is a metric that recursively
assigns importance, giving high centrality to nodes that have a high degree or to those connected to high
importance nodes.

Averaged Katz
centrality

KCi ¼ a
Pn

j¼1AijKCj þ b (Eq. i)

KCi ¼ 1
m

Pm
k¼1KCik (Eq. ii)

KC is a generalization of EC, which via two constants, namely an adjacency damping coefficient a and a basal
adjacency b, assigns a centrality on the basis of a node’s immediate connectivity. While b avoids adjacencies of
zero, a weighs the magnitude of each centrality value. Node centrality can be dampened to various extents –
larger values of a make KC tend towards EC.

Averaged PageRank PRi ¼ a
Pn

j¼1
Aij

Dj
PRj þ b (Eq. i)

PRi ¼ 1
m

Pm
k¼1PRik (Eq. ii)

PR is an adjusted version of KC, which also assigns node centrality based on that of their neighbors. For each
round of the power iteration, the centrality of each neighbor to a node is normalised by its own degree D (given
the graph is undirected), and each of the resulting neighbors’ centrality is summed up and assigned to the parent
node. As in KC, it also includes a damping factor a and a constant b.

Averaged
eccentricity

ECCj ¼ 1
m

Pm
i¼1maxj;k2Vdi j; kð Þ ECC is the longest path from a node to any other node in a graph.
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[32] ; or DynaMut2, which combines conformational sampling,
graph-based signatures and NMA to generate consensus predic-
tions of the impact of mutations on protein stability and flexibility
[33,54]
2.11. Normal mode calculations from static proteins and their MD
simulations

In ANM, the user is guided from the initial (optional) coarse-
graining step, to solving and visualizing the normal modes. This
use of a work-flow for this tool was chosen due to the need to
repeat the model construction step when the cut-off value is inad-
equate or if the coarse-graining level is too high. A common indica-
tion of this is the lack of the leading zero-valued eigenvalues for
the first six trivial modes. Arrows are colored by chain. Mean
square fluctuations from all modes and from the first 20 non-
trivial modes are separately displayed. NMA can now be computed
from MD simulations as well, to represent the first dominant
motion. For this calculation, the transpose of the reshaped Carte-
sian coordinate tensor is mean centered and dotted with its trans-
pose to obtain the covariance matrix of dimension 3 N � 3 N
(where N is the number of residues). This matrix is then diago-
nalised by eigen decomposition to retrieve the principal compo-
nents [55] , in descending order of eigenvalue. The percentage of
explained variance is then displayed for the first 50 modes,
together with the 3D mapping of the NMA using the protein topol-
ogy file. A multi-PDB file is also produced to show the mode anima-
tion. Two parameters (the ignc and ignn parameters) control the
number of C- and N-terminus residues to ignore from the struc-
tural alignment and the covariance matrix. These were included
as a means to decrease possible technical variation from the ter-
mini. In our experience with protein MD simulations, we have
often observed relatively high levels of fluctuation at the C-
terminus.
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2.12. Essential dynamics, with improvements for comparing pairs of
protein simulations

Essential dynamics tools (multidimensional scaling, standard
PCA, internal PCA and t-SNE) fromMODE-TASK are integrated with
basic default options. A new tool, which performs comparative ED
aligns one trajectory to a reference trajectory before performing a
single decomposition to lay out all conformations on a common set
of principal axes, such that the percentage of explained variance is
the one shared by both trajectories. Comparative ED features auto-
mated conformation extraction from lowest energy basins and
applies k-means to sample centroid conformations from the first
2 principal components in standard PCA. N- and C-terminal resi-
dues may be deselected before the structural alignment step to
reduce unwanted noise and improve performance. Residue selec-
tion is also enabled, and is applied post global fitting of the Ca
atoms. This is to be used only for residue and chain selections.
When more than two samples are to be compared, the stand-
alone script is recommended for processing all samples at once
(and not as multiple paired runs), and one should also consider
the percentage of explained variance captured by the principal
axes. Despite its name, the comparative ED tool can also be applied
to a single trajectory, in which case it will not differ from the stan-
dard PCA algorithm, if all atoms are selected.
3. Results and discussion

For a demonstration of use cases of MDM-TASK-web, trajectory-
based tools are evaluated using mutants of the dimeric HIV-1 pro-
tease (198 residues) [56] and a SARS-CoV-2 main protease (Mpro)
[28] , while the enterovirus 71 capsid pentamer (PDB ID: 3VBS
[57] ; 842 residues) is used for demonstrating the calculation of
the anisotropic network model, which is based on a single protein
conformation. The topology and MD trajectory of the HIV protease
mutant that was used for most of the tool demonstrations was
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obtained from our previous work [56] , which used labeled
sequence data from the Stanford HIVdb [58] , bearing major drug
mutations (DRMs) D30N, V32I, M46I, I47V, I54L, I84V and L90M,
together with accessory DRMs L10F, L33F, F53L and N88D and
other mutations. In most cases, a topology and an MD trajectory
are needed. In these cases, the step size parameter controls the
frame sampling rate and speed of calculations, which are inversely
related. Another factor that can play a potentially important role in
the stability of the various trajectory-based calculations is the
equilibration state of the protein. Residual effects from prior tem-
perature and/or pressure equilibration will to some degree influ-
ence any of the aggregated metrics, and one may benefit from
removing such artifacts.

3.1. The MDM-TASK-web interface

The web server tools each have a section where the job inputs
are specified, as shown in Fig. 2, for the standard PCA tool. All
the tools are listed on the top menu and they generally require
an MDTraj-compatible topology file and its trajectory (e.g. from
GROMACS or other MD simulation tools), unless specified other-
wise. In addition to the documentation sources shown in Fig. 2,
those of MD-TASK and those of MODE-TASK are also embedded
in the ‘‘USER HELP” section, for further reference. The demonstra-
tion pages further give a use-case example of each tool.

3.2. Dynamic residue network & residue interaction network centrality
calculations

We and others, in a number of publications, showed the effec-
tiveness of our DRN approach [6,16,19,23–30,59,60]. While MD-
TASK has the functionality to calculate L and BC, MDM-TASK-
web, now, provides further metric options. Additionally, the paired
visualizer of MDM-TASK-web enables the comparison of related
calculations by scaling the color range to span the global minimum
and maximum of any two selected proteins. It may be desirable to
structurally align the topology files when two homologous pro-
teins are to be compared in order to facilitate comparison of the
mapped structure. It is also worth noting that the same back-end
tool (calc_network.py) can compute centrality calculations from
single protein conformations when it is provided with the same
Fig. 2. Example of the MDM-TASK-web interface, showing the embedded sources of docu
down button, on the side panel, as hoverable tool tips and within demonstration pages
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topology file for both the topology and trajectory parameters
(seamlessly integrated as one option under the RIN section).

Some of these metrics were previously used over single static
structures. CC metric calculations, for instance, were applied to
identify active site residues together with other approaches, e.g.
conservation, solvent accessibility [61,62]. MDM-TASK-web gives
metric calculation options over DRN or in static form.

As a case study, we used two multi-drug resistant HIV pro-
teases, and the results from DRN centrality calculations were
mapped onto user-supplied topology files, as shown in Fig. 3.
We compared the averaged BC values of a multi-drug (highly)
resistant HIV protease bound to the antiretroviral (ARV) darunavir
(DRV) (Fig. 3(A)) to another multi-drug resistant (but still
DRV-susceptible) HIV protease bound to the drug tipranavir
(TPV) (Fig. 3(B)). In the same figure, flap residue VAL54 (numbered
153; circled and highlighted in panel (B)) shows a decreased
averaged BC from its homologous position in panel (A), where
the residue was LEU54. Residues are labeled according to the
numbering present in the provided topology file. The B-factor field
of the CIF files can be used in other tools for improved visualiza-
tion, as explained in the current section, for the PyMOL
software.

It can further be seen from the averaged EC values in Fig. 3(C)
and 3(D) that the floor of central cavity (the catalytic aspartic acid,
indicated by the black arrow) has a very high average eigencentral-
ity, indicating that it is likely connected to other well-connected
residues of the active site. Additionally, this retention of centrality
is very likely linked to the presence of stabilizing networks of H-
bonding interactions and usage of a ‘‘fireman’s grip” segment in
the protease [63].

High averaged EC is seen at the center of the protease, mainly
arising from the recursively acquired centrality derived from the
nearby crowd of residues close to the catalytic site. As these
crowds are stably maintained, they manifest high connectivities
that are typical of a compact environment. Consequently, this met-
ric is pointing to a known critical part of the HIV protease (the cat-
alytic residues), which relies on the stability of other nearby
residues, possibly for maintained function. High connectivity (de-
gree) nodes also tend to have a high eigencentrality, especially
when surrounded by other high connectivity nodes, due to their
dependence on residue neighborhood.
mentation. Documentation is mainly embedded within each input page via a drop-
.



Fig. 3. Top views of two DRN metrics mapped in two highly drug resistant HIV protease mutants. Averaged BC is shown as a ‘‘spacefill” representation in a common color
scale for panels (A) and (B); while averaged EC is shown as a ‘‘cartoon” representation in panels (C) and (D) – as obtained fromMDM-TASK-web. Panel (A) shows a DRV-bound
multi-drug (highly) resistant HIV protease, and panel (B) shows another, TPV-bound multi-drug resistant HIV protease, for which DRV is still effective. A color gradient
ranging from pale yellow to red in the top and bottom panels, is used to represent low to high centrality values. Non-protein portions are colored blue. The flap residue 54
(numbered 153 in chain B) is circled and highlighted in the top panels, showing the decreased averaged BC in the DRV-susceptible mutant, where the residue had mutated.
Panels (C) and (D) make visible inner details of averaged EC at the core of the proteases, hinting at the highly central catalytic aspartate by black arrows. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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For more experienced users using PyMOL [64] for example, it is
straightforward to use the PDBx/mmCIF-formatted files to visual-
ize and compare related metrics for multiple related proteins using
the ‘‘spectrum” command (with the B-factor values) combined with
the ‘‘set grid_mode” command. Furthermore, the computed central-
ity metrics are all saved as a CSV file, which can be used for cus-
tomized analyses by the users. For instance, one may use the
data for plotting the overall centrality density distribution of a pro-
tein. It is also possible to calculate median residue centrality
instead of the average, which if significantly different from the
default DRN metric type may indicate the presence of skewed or
multi-modal centrality distributions among the residues. In such
cases, the median option could be a more robust estimate of the
DRN centrality.
3.3. Weighted residue contact network and heat maps

Weighted residue contact maps are a helpful functionality for
examining local residue contact frequencies over MD simulations
for many different biological questions, including protein–protein
interactions, and in the identification of contact changes due to
mutations. MD-TASK has the functionality to calculate the contact
frequencies around a single residue. A recent example to use of this
functionality is the analysis of ACE2 and spike-RBD protein interac-
tion behavior round a specific ACE2 residue, K353 [53]. This func-
tionality has been further developed in MDM-TASK-web to be able
to analyze multiple cases at the same time, and presented as heat
maps. Chebon-Bore et al. [27] used this functionality to identify
changes in protein-drug interactions due to malarial resistance
mutations.

In our example here, Fig. 4 (A) shows the residue contact fre-
quencies around GLN18 in an HIV protease mutant. Each map is
associated with a file of weighted edges that can be aggregated
and summarized using the contact heat map tool, for larger scale
comparisons of a given locus across several protein samples, as
shown in Fig. 4 (B). The analysis of local neighborhoods directly
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provides information about the conservation, and lack thereof, of
residue contacts with possibly key residues associated with func-
tion. From Fig. 4 (B), one can see the noticeable gains (or mainte-
nance) of contact between GLN18 and ILE36 in the samples
labeled Demo4, Demo5 and Demo6, and its loss (or absence) in
the remaining samples. One should interpret these in the light of
their MD simulations, as the observed frequencies would be a
direct result of the explored protein conformations.
3.4. Communication propensity

By computing the CP metric, one is able to investigate residue
pairs that are more or less likely to maintain their distances. This
approach, for instance, was used in the analysis and identification
of differences in communication efficiency between the ligand-free
and the ligand bound complex of human heat shock protein 90
[26].

As an example of the interpretation of the CP metric, the topol-
ogy and trajectory files of a highly (multi-drug) resistant HIV pro-
tease mutant (Fig. 5) were used, with default parameters for the
tool. From the figure, it can be seen some residue pairs display rel-
atively higher distance variations [for e.g. between residue index
pairs (37, 50), (37, 135), and (40, 91)], indicating reduced stability
between these loci. This can be a preliminary investigation before
proceeding to more detailed analyses. It is also possible to compare
CP matrices produced by the tool in two states of homologous pro-
teins (for example a WT and a mutant) in order to deduce the
increased or decreased variance in distance between residue pairs,
and extract meaningful insights about the effect of mutation in a
protein. At the time of writing, this feature is only available from
the command line, by providing two CP matrices (each produced
by the ‘‘cp.py” tool) to the ‘‘cp_analyse.py” tool found in the GitHub
repository, whereby the CP matrix specified by the ‘‘--diff” param-
eter is subtracted from the other matrix to produce a delta CP heat
map. Once more, one has to factor in the conformational sampling
representativeness of the provided MD trajectories.



Fig. 4. Estimating contact frequencies around a single residue in a single and in multiple protein structures, using HIV protease mutants as example. The locus of interest is
displayed at the center in panel (A), and is surrounded by its neighbouring residues. Additionally, the edge thicknesses and labels depict the residue contact frequencies
obtained from the MD simulations. In both panels, residues are depicted by the three-letter residue code followed by the residue position, a dot and the chain label. In panel
(B), multiple related contacts (gathered from the contact mapping tool) are stacked on top of each other along the y-axis, with their neighbours spanning the x-axis.

Fig. 5. The coordination propensity calculation shows the variance in the distance
between residue pairs in an HIV protease mutant.

Fig. 6. Pairwise residue correlations from an MD simulation of an HIV protease
mutant. Anti-correlated and correlated movements are denoted by negative and
positive DCC values, respectively, in the range [�1, 1], while uncorrelated motion
has a value of zero.
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3.5. Dynamic cross-correlation

The DCC algorithm is unchanged from that of MD-TASK, with
the exception that it is now faster and supports additional atom
types. Some of the recent examples from the published literature
that used the MD-TASK DCC functionality include [16–18,21].

In the current example Fig. 6, the MD simulation of a highly
(multi-drug) resistant HIV protease was used. From the DCC heat
map, one can inspect the trend in movement of residue pairs –
these can trend together, apart or be independent. Such analyses
often detect protein segments that are functionally-related. For
instance, by visualizing the antiparallel regions of high cross-
correlation (across the main diagonal), we find (1) residues 10–
24, which form a beta hairpin known as the fulcrum; (2) residues
55–75, in which two beta hairpins (the flap and the cantilever)
are connected by a common beta strand; (3) residues 45–55, which
form the tip of the flap from a beta hairpin that controls substrate
and inhibitor access to the catalytic site; (4) residues 95–105,
which partly consist of a beta strand that composes the dimeriza-
tion region. As the protein is dimeric, the patterns show a partial
symmetry. It is therefore possible to set up experimental designs
and monitor correlative changes associated with a given condition
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using DCC. While being very useful, one should also be mindful of
the limitations of conformational sampling when interpreting such
graphs.

Further, by a judicious choice of atom type(s) (and/or trajectory
data) one can for instance investigate protein/nucleic acid com-
plexes using a comma-separated list ‘‘CA,P”.

3.6. Normal MODE analysis (ANM and NMA from MD)

NMA can be done using either a single PDB file or multiple pro-
tein conformations from an equilibrated MD trajectory. Single con-
formation NMA is done according to the anisotropic network
model, as implemented in MODE-TASK, while eigen decomposition
of the covariance matrix is used for MD data. In the case of the
ANM, a coarse-graining level of four, Cb atoms and a cut-off dis-
tance of 24 were chosen to obtain six leading zero eigenvalues (dis-
played in the web server NMA workflow), corresponding to the
trivial modes. By default, mode 7 (1st non-trivial) is displayed, as
shown in Fig. 7 (A), but other modes can also viewed by cycling
through. From the ANM, we observe rotational motions within
the enterovirus 71 capsid pentamer.



Fig. 7. Normal mode analysis using (A) the anisotropic network model obtained from a static viral capsid pentamer, and (B) the MD covariance matrix of an HIV protease
mutant. In each case, each arrow is colored by its parent chain. The arrow at each residue denotes both the extent of motion and direction with respect to each of the residue.
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NMA was then computed from the MD trajectory of an HIV pro-
tease mutant (Fig. 7 (B)). The decomposition differs from that used
in essential dynamics in the definition of the variables. While MD
frames are the variables in ED, protein residues are chosen as vari-
ables in NMA. From the first dominant motion, we observe a rela-
tively higher amount of motion coming from the outer lateral
portion of the fulcrum of the protease; internal motions are signif-
icantly smaller, with the flaps traveling only slightly more. The rel-
ative extents of motion within each chain also reveal a degree of
chain asymmetry within the homodimer. While the back-end
script can represent all modes, only one mode is represented in
the web server at the moment – others may be shown in a future
update. The dominant mode has indeed summarized an important
aspect of the protease’s functional mechanics – a rotational motion
of each monomer, that has been shown to be associated with the
deformation and expansion of the active site [65,66]. A similar
strategy in other unknown proteins may lead to significant
insights, especially for the design of inhibitors and modulators,
and more generally for understanding protein motion.
3.7. Essential dynamics

ED is demonstrated via the new comparative ED tool using an
early pandemic stage mutant of the SARS-CoV-2 Mpro (GISAID
identifier: EPI_ISL_420610 [67]) and a reference protease, that
had each been previously MD-simulated for 100 ns in our previous
study [28]. In addition to uploading the trajectories and topologies
to the web server, substrate binding residues were selected (as an
example) using the MDTraj syntax ‘‘residue 24 25 26 41 49) or (resi-
due 140 to 145) or (residue 163 to 168) or (residue 188 to 192)”
including the quote characters. These substrate binding residues
were selected from the 1.94 Å resolution crystal structure (PDB
ID: 7MGR [68]) using any residue found at less than 4 Å from its
bound non-structural protein substrate, using the PyMOL software.
The expected number of k-means clusters was set to 3, but is not
useful in this case as there is clearly one density maximum in each
simulation. A very important criterion for the success and accuracy
of this method lies in the correctness of structural alignment, the
specification of regions of interest and the choice of equilibrated
parts of trajectories. Together these decrease unwanted sources
of variation, to focus on what best describes a biological event.
As protomer B had displayed the non-canonical PHE140 pose, only
this protomer and protomer B from the reference were prepared to
be uploaded. The last 10 ns of simulation were selected in each
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case, using every fifth frame - due to the design implementation,
the trajectories need to have the same number of frames. The ignn
and ignc parameters were set to their default values of 0 and 3,
respectively, to ignore three C-terminal residues, in each chain
from the alignment stage onward. One can verify the number of
terminal residues to ignore by independently calculating residue
root mean square fluctuation (RMSF) plots – this trimming is
applied to each chain. By default, the highest probability density
conformations (the blue markers) are extracted from the centroids
of the highest contour level using the k-nearest neighbor algorithm
(where k = 1) for the points within that level, while the k-means
algorithm is independently used to estimate single conformations
from k possible probability density maxima, as specified from the
number of clusters. In the example, conformations with the highest
probability densities were observed at time t = 97560 ps and
t = 98350 ps, respectively for the reference protein (Fig. 8(A)) and
that from SARS-CoV-2 isolate EPI_ISL_420610 (Fig. 8(B)). The k-
means prediction can be helpful as a rough estimate, when other
local maxima are present and are not picked up from the maxi-
mum KDE peaks. While this algorithm is partly stochastic, this
effect is mitigated by being internally parameterized with a large
number of iterations (1000) and by multiple initializations (50)
with different seeds.

By concatenating the trajectories and aligning each frame to a
common reference, the tool addresses a potential problem that
may arise when comparing separate MD simulations – that of
the generation of distinct sets of eigenvector/eigenvalue pairs
specific to each trajectory, as each set belongs to its own simulated
covariance matrix. While the calculation of a single covariance
matrix has higher physical memory footprint, it adequately repre-
sents the total variability shared across the trajectories, thus yield-
ing a common set of eigenvector/eigenvalue pairs that explain the
total variance. By optimizing for several of the discussed factors, a
total explained variance of about 78.5% was obtained from the first
2 principal components prepared from the Mpro substrate binding
residues of the two Mpro proteins, even though such performances
may be influenced by the number of selected residues and protein
flexibility. From the separate contours in the shared axes, as
showed in Fig. 8(A) and 8(B), we clearly observe that the substrate
binding residue dynamics were very different. In Fig. 8(C), which
was obtained by aligning (using PyMOL) the resulting single con-
formations from each protease, we can see that additional confor-
mational details associated with the non-canonical PHE140 pose
were detected, with several distortions from the reference protease



Fig. 8. Representations of conformational sampling from independent MD simulations of (A) a reference and (B) an early pandemic stage mutant of the dimeric SARS-CoV-2
Mpro in the same eigen subspace, using comparative essential dynamics. Dots correspond to individual protein conformations (defined by a selection) and are colored by the
time of sampling. The kernel density contour plots [colored from blue (lowest density) through yellow to red (highest density)] only serve as a visual guide for the energy
surface, and are independently scaled, based on the respective samples. The red labels are estimates obtained from the k-means algorithm, while the blue ones are obtained
from the probability density maxima. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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around the binding site. Using this tool, one can rapidly obtain
equilibrium conformations from various experimental conditions,
from which the user may then choose to visualize or to perform
other analyses, such as those that use single conformations - for
instance in centrality calculations using RIN, in ANM or as a target
conformation in PRS.

3.8. Perturbation response scanning

PRS measures the tendency of an initial protein conformation to
reach a known target protein conformation, by sequentially per-
turbing each of its residues and measuring the level of agreement
via correlation calculations. The approach is very useful in deter-
mining functionally important residues (hot spots) with allosteric
influence, and can therefore be used to determine candidate sites
for mutagenesis studies or allosteric drug discovery approaches
[59]. This method has been used for different research purposes
[69–71]. We, for the first time, applied PRS to large and highly
dynamic protein analysis [8,24]. We also showed that PRS hot spot
residues and the DRN metric BC are highly correlated to identify
allosteric residues [24]. This correlation was, later, also identified
in another study [23]. As another example, PRS findings were cou-
pled with docking studies to investigate allosteric modulators in
human heat shock proteins [24].

In this section, as an example, the interface for PRS calculation is
demonstrated using the same closed conformation of HIV protease
used in section 3.5, possessing high levels of (multi-drug) resis-
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tance as the starting conformation (the topology file) together with
its corresponding MD trajectory and a wide-opened target confor-
mation (PDB ID: 1TW7 [72] ), which also happens to be multi-drug
resistant. Applying the residue perturbation algorithm with this
experimental set-up one seeks for possible trigger residues that
are associated with a known conformational change of the pro-
tease flaps, proceeding from a closed to an opened state. The corre-
lations are mapped on the starting topology, as shown in Fig. 9, and
are also written to a text file. From Fig. 9, it can be seen that resi-
dues (in reddish color) from or in connection to the HIV protease
flap region can be perturbed in order to make a transition from a
closed to an opened conformation, seemingly with monomer
asymmetry. This flap-opening movement has implications in the
acceptance or release of its substrate, and similarly for inhibitors
designed against it. It is known that the flaps of the protease open
to accept or release its inhibitors [73] , and that DRMs can reduce
dimer stability and also lead to the release of a bound inhibitor
[74]. Therefore, it can be insightful to study the propensity of cer-
tain mutations to lead to certain known states.
4. Comparing MDM-TASK-web to other existing servers for MD/
protein analysis

In Table 2, we enumerate the functionalities of MDM-TASK-web
and compare them against those of four existing web servers doing
similar tasks.



Fig. 9. Application of PRS to scan for residues associated with the conformational shift from a closed to an opened flap conformation in HIV protease. The front (A) and (B) top
views of the protease are shown, with an arrow depicting the protease flaps. The correlation mappings default to the range [0, 1], with a color gradient ranging from yellow to
dark red, but can also be scaled to the range of the observed correlations by clicking on the ‘‘Min-max scaling” option when signals have a narrower range.

Table 2
Features of MDM-TASK-web and other servers used to analyse static and dynamic protein structures.

Functionality MDM-TASK-web NAPS ANCA RIP-MD MDN

Input file formats Tools processing trajectories
require a topology and a
trajectory, both in multiple
formats. PRS uses PDB files as
conformations.

PDB topology and DCD
trajectory file.

Single PDB files. PDB or PSF formats.
Trajectories are loaded
as a multi-PDB file.

All files used by
GROMACS to
analyse a trajectory
are needed for
analyses.

Residue interaction
network (RIN) from
MD

Dynamic residue networks
analysis via averaged network
centralities from RINs.

Networks are
aggregated to one
from an MD
simulation.

– RIN for each frame Network coupling,
betweenness

Residue interaction
network from a
single structure

RIN is calculated for a single
protein structure.

RIN is calculated for
single protein
structure.

Amino acid network (AAN)
for single structure.

RIN is calculated for
single protein structure.

Single network is
calculated from
interaction energies
from MD.

Network metrics Averaged network centrality
metrics for betweenness, degree,
eccentricity, averaged shortest
paths, closeness, Katz, PageRank
and eigencentrality.
Same metrics are available for
single conformations.

Degree, closeness,
betweenness,
clustering coefficient,
eccentricity, shortest
paths, k-cliques,
eigenspectra.

Degree, closeness,
betweenness, clustering
coefficient, average
shortest path, edge
betweenness.

– Non-normalized and
normalised node
betweenness.

Network node types Cb and glycine Ca atoms. Cb and glycine Ca
atoms, amino acids.

Ca atoms. Ca atoms, residues. Amino acids.

Network edge types Any node < 6.7Ang to any other
node.

DCC, energy, inverse
distance.

Contact energy, Ca cut-off
distance.

Ca contacts, H-bonds,
salt-bridges, disulfide
bonds, cation-p, p–p,
Arg–Arg distance,
Coulombic, and Lennard
Jones.

Averaged inter-
residue interaction
energy.

Weighted residue
contact network
and heat map

Weighted contacts at a single
locus. Contact heat map also
aggregates residue contacts from
multiple simulations for large-
scale comparisons of single loci.

2D dot matrix. Implements a node-
weighted amino acid
contact energy network,
and an edge-weighted
amino acid contact energy
network.

– The edge weights for
the network are
derived from the
energy involved in
residue interactions.

Dynamic Cross
Correlation

Normalised residue covariance
matrix. Supports nucleic acids.

Normalised residue
covariance matrix.

– Pearson correlations of
interactions

–

Perturbation Response
Scanning

Scanning of hotspot residues
leading to a target
conformational change.

– – – –

Essential dynamics
(ED)

Several algorithms for visually
assessing conformational
distributions from MD
simulations:
t-SNE, internal PCA, comparative
ED, multidimensional scaling.

– – – –

Normal Mode Analysis
(NMA)

Elastic network model to extract
global motions and compute MSF
from a single PDB-formatted file.
NMA is also computed from MD
trajectories.

– – – –

Coordination
propensity

Identifies residue pairs whose
distance vary the most.

– – – –
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Fig. 10. Benchmarking of the performance of MDM-TASK-web DRN metrics evaluated using triplicate MD simulations of dimeric HIV protease. Each panel shows the time
taken for each of the metrics, namely the averaged (A) BC, (B) CC, (C) DC, (D) EC, (E) ECC, (F) KC, (G) L and (H) PR, for increasing protein sizes.

Fig. 11. Reproducibility of the MDM-TASK-web DRN metrics. Probability density plots for each of the averaged network centrality metrics were evaluated from triplicate MD
simulations of dimeric HIV protease, using varying residue contact cut-off radii (rc = 6, 6.7 and 7 Angstroms). Each metric is labeled along the x-axis in each of the panels (A) to
(H). A cut-off value of 6 Angstroms tends to produce more divergent results.
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5. Performance

Several protein structures [PDB IDs: 1HIV [75] (monomer and
dimer), 2G50 [76] (monomer) and 1JYX [77] (monomer)] were
used to test the performance of the averaged centrality metric cal-
culations. It can be seen that the required time of computation of
the centrality metrics (especially for averaged BC, CC, L and ECC
metrics) escalates quickly (Fig. 10), ranging from minutes for 99
residues, to a few hours in the case of 1011 residues. This is mainly
due to the fact that the number of potential paths to be traversed
increases significantly when the number of nodes (residues) in the
network graphs increases. In all cases, 101 frames were sampled
from 5001 frames by specifying a step size of 50. Alternatively,
the same metric can be measured from a single protein structure
for a fraction of the time, but at the expense of sampling depth,
using the residue interaction network option. The speed of DRN
computation will be improved in a future version of the tool. The
robustness of the each DRN metric was evaluated by varying the
contact cut-off radius (at 6, 6.7 and 7 Å) in triplicate MD simula-
tions, as shown in Fig. 11. We observe that the values can be influ-
enced by its choice, however we show that centrality distributions
obtained at the default value of 6.7 are very similar to those
obtained at 7 Å, but experience a shift at 6 Å. Further, in our previ-
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ous publication, we evaluated averaged BC values at three cut-off
distances (6.7, 9 and 12 Å), and observed a change in the usage fre-
quency for the peak BC residues by changing the cut-off, which had
no observable trend, even though small values reduced the effect
of flexible residues [24]. We therefore recommend a value of
6.7 Å, and reiterate the observations obtained by an earlier study
[51] , and which has been applied in numerous cases that used
the MD-TASK software, even though values spanning 6.5–7.5 Å
are also common in other studies. The reproducibility of the aver-
aged centrality metrics is also shown in Fig. 11, using identical col-
ors for each of the triplicate samples evaluated at each cut-off
radius.
6. Conclusion

MDM-TASK-web is a user-friendly web server for performing
various types of calculations aimed at obtaining different types of
insights from both static and dynamic protein data sets. By provid-
ing access to these tools in this manner also makes it available to
more researchers studying proteins dynamics, without spending
too much time and resources on setting up specialized hardware
and software environments. The possibility of coarse-graining
facilitates data transfer over the web, and tremendously reduces
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the data storage footprint required for the calculations, making the
it more likely to be accessible for further analysis without requir-
ing significant additional storage hardware. The novel algorithms
and updates to both MD-TASK andMODE-TASK enhance the capac-
ities of each of the tool suites.
CRediT authorship contribution statement

Olivier Sheik Amamuddy: Methodology, Software, Validation,
Formal analysis, Writing – original draft, Visualization. Michael
Glenister: Software, Validation. Thulani Tshabalala: Software.
Özlem Tastan Bishop: Conceptualization, Methodology, Resources,
Writing – original draft, Writing - review & editing, Supervision,
Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

We thank the Centre for High Performance Computing (CHPC); Dr
D. Penkler for the CP script and RUBi members for their valuable
suggestions.
Funding

This work is supported by the National Human Genome
Research Institute of the National Institutes of Health under Award
Number U24HG006941 to H3ABioNet; and by the Grand Chal-
lenges Africa programme [GCA/DD/rnd3/023]. Grand Challenges
Africa is a programme of the African Academy of Sciences (AAS)
implemented through the Alliance for Accelerating Excellence in
Science in Africa (AESA) platform, an initiative of the AAS and the
African Union Development Agency (AUDA-NEPAD). GC Africa is
supported by the Bill & Melinda Gates Foundation (BMGF), Swed-
ish International Development Cooperation Agency (SIDA), Ger-
man Federal Ministry of Education and Research (BMBF),
Medicines for Malaria Venture (MMV), and Drug Discovery and
Development Centre of University of Cape Town (H3D). The con-
tent of this publication is solely the responsibility of the authors
and does not necessarily represent the official views of the funders.
Conflict of interest

None declared.

References

[1] Golbeck J. Analyzing the social web. Newnes; 2013.
[2] Chakrabarty B, Naganathan V, Garg K, Agarwal Y, Parekh N. NAPS update:

network analysis of molecular dynamics data and protein–nucleic acid
complexes. Nucleic Acids Res 2019;47:W462–70. https://doi.org/
10.1093/nar/gkz399.

[3] Yan W, Yu C, Chen J, Zhou J, Shen B. ANCA: A web server for amino acid
networks construction and analysis. Front Mol Biosci 2020;7:1–8. https://doi.
org/10.3389/fmolb.2020.582702.

[4] Contreras-Riquelme S, Garate J-A, Perez-Acle T, Martin AJM, RIP-MD: a tool to
study residue interaction networks in protein molecular dynamics, PeerJ. 6
(2018) e5998. https://doi.org/10.7717/peerj.5998.

[5] Ribeiro AST, Ortiz V. MDN: A web portal for network analysis of molecular
dynamics simulations. Biophys J 2015;109:1110–6. https://doi.org/10.1016/j.
bpj.2015.06.013.

[6] Brown DK, Sheik Amamuddy O, Tastan Bishop Ö. Structure-based analysis of
single nucleotide variants in the renin-angiotensinogen complex. Glob Heart
2017;12:121. https://doi.org/10.1016/j.gheart.2017.01.006.
5070
[7] Brown DK, Tastan Bishop Ö. Role of structural bioinformatics in drug discovery
by computational SNP analysis. Glob Heart 2017;12:151–61. https://doi.org/
10.1016/j.gheart.2017.01.009.

[8] Penkler D, Sensoy Ö, Atilgan C, Tastan Bishop Ö. Perturbation-response
scanning reveals key residues for allosteric control in Hsp70. J Chem Inf
Model 2017;57:1359–74. https://doi.org/10.1021/acs.jcim.6b00775.

[9] Brown DK, Penkler DL, Sheik Amamuddy O, Ross C, Atilgan AR, Atilgan C,
Tastan Bishop Ö. MD-TASK: a software suite for analyzing molecular dynamics
trajectories, Bioinformatics. 33 (2017) 2768–2771. https://doi.org/10.1093/
bioinformatics/btx349.

[10] Ross C, Nizami B, Glenister M, Sheik Amamuddy O, Atilgan AR, Atilgan C,
Tas�tan Bishop Ö. MODE-TASK: large-scale protein motion tools. Bioinformatics
2018;34:3759–63. https://doi.org/10.1093/bioinformatics/bty427.

[11] Liang Z, Verkhivker GM, Hu G. Integration of network models and evolutionary
analysis into high-throughput modeling of protein dynamics and allosteric
regulation: theory, tools and applications. Brief Bioinform 2019;00. https://doi.
org/10.1093/bib/bbz029.

[12] David CC, Jacobs DJ. Principal component analysis: a method for determining
the essential dynamics of proteins. Methods Mol Biol 2014;1084:193–226.
https://doi.org/10.1007/978-1-62703-658-0_11.

[13] Ross C, Atilgan AR, Tastan Bishop Ö, Atilgan C. Unraveling the motions behind
Enterovirus 71 uncoating. Biophys J 2018;114:822–38. https://doi.org/
10.1016/j.bpj.2017.12.021.

[14] Dehury B, Tang N, Mehra R, Blundell TL, Kepp KP. Side-by-side comparison of
Notch- and C83 binding to c-secretase in a complete membrane model at
physiological temperature. RSC Adv 2020;10:31215–32. https://doi.org/
10.1039/D0RA04683C.

[15] Keretsu S, Ghosh S, Cho SJ. Molecular modeling study of c-KIT/PDGFRa dual
inhibitors for the treatment of gastrointestinal stromal tumors. Int J Mol Sci
2020;21:8232. https://doi.org/10.3390/ijms21218232.

[16] Fischer A, Häuptli F, Lill MA, Smieško M. Computational assessment of
combination therapy of androgen receptor-targeting compounds. J Chem Inf
Model 2021;61:1001–9. https://doi.org/10.1021/acs.jcim.0c01194.

[17] Wang S, Xu Y, Yu X-W. A phenylalanine dynamic switch controls the
interfacial activation of Rhizopus chinensis lipase. Int J Biol Macromol
2021;173:1–12. https://doi.org/10.1016/j.ijbiomac.2021.01.086.

[18] Wang S, Xu Y, Yu X-W. Propeptide in Rhizopus chinensis lipase: new insights
into its mechanism of activity and substrate selectivity by computational
design. J Agric Food Chem 2021;69:4263–75. https://doi.org/10.1021/
acs.jafc.1c00721.

[19] Sanyanga TA, Nizami B, Tastan Bishop Ö. Mechanism of action of non-
synonymous single nucleotide variations associated with a-carbonic
anhydrase II deficiency. Molecules 2019;24:3987. https://doi.org/
10.3390/molecules24213987.

[20] Khairallah A, Ross CJ, Tastan Bishop Ö. Probing the structural dynamics of the
Plasmodium falciparum tunneling-fold enzyme 6-pyruvoyl tetrahydropterin
synthase to reveal allosteric drug targeting sites. Front Mol Biosci 2020;7.
https://doi.org/10.3389/fmolb.2020.575196.

[21] Borges B, Gallo G, Coelho C, Negri N, Maiello F, Hardy L, et al. Dynamic cross
correlation analysis of Thermus thermophilus alkaline phosphatase and
determinants of thermostability. Biochim Biophys Acta - Gen Subj
2021;1865:129895. https://doi.org/10.1016/j.bbagen.2021.129895.

[22] Alnami A, Norton RS, Pena HP, Haider S, Kozielski F. Conformational flexibility
of a highly conserved helix controls cryptic pocket formation in FtsZ. J Mol Biol
2021;433:167061. https://doi.org/10.1016/j.jmb.2021.167061.

[23] Amusengeri A, Tastan Bishop Ö, Discorhabdin N. A South African natural
compound, for Hsp72 and Hsc70 allosteric modulation: combined study of
molecular modeling and dynamic residue network analysis. Molecules
2019;24. https://doi.org/10.3390/molecules24010188.

[24] Penkler DL, Atilgan C, Tastan Bishop Ö. Allosteric modulation of human
Hsp90a conformational dynamics. J Chem Inf Model 2018;58:383–404.
https://doi.org/10.1021/acs.jcim.7b00630.

[25] Kimuda MP, Laming D, Hoppe HC, Tas�tan Bishop Ö. Identification of novel
potential inhibitors of pteridine reductase 1 in Trypanosoma brucei via
computational structure-based approaches and in vitro inhibition assays.
Molecules 2019:1–25. https://doi.org/10.3390/molecules24010142.

[26] Penkler DL, Tastan Bishop Ö. Modulation of human Hsp90a conformational
dynamics by allosteric ligand interaction at the C-terminal domain. Sci Rep
2019;9. https://doi.org/10.1038/s41598-018-35835-0.

[27] Chebon-Bore L, Sanyanga TA, Manyumwa CV, Khairallah A, Tastan Bishop Ö.
Decoding the molecular effects of atovaquone linked resistant mutations on
Plasmodium falciparum Cytb-ISP complex in the phospholipid bilayer
membrane. Int J Mol Sci 2021;22:2138. https://doi.org/10.3390/
ijms22042138.

[28] Sheik Amamuddy O, Verkhivker GM, Tastan Bishop Ö. Impact of early
pandemic stage mutations on molecular dynamics of SARS-CoV-2 M pro. J
Chem Inf Model 2020;60:5080–102. https://doi.org/10.1021/acs.
jcim.0c00634.

[29] Manyumwa CV, Tastan Bishop Ö. In silico investigation of potential
applications of gamma carbonic anhydrases as catalysts of CO2
biomineralization processes: a visit to the thermophilic bacteria
Persephonella hydrogeniphila, Persephonella marina, Thermosulfidibacter
takaii, and Thermu. Int J Mol Sci 2021;22:2861. https://doi.org/10.3390/
ijms22062861.

[30] Amusengeri A, Tata RB, Tastan Bishop Ö. Understanding the pyrimethamine
drug resistance mechanism via combined molecular dynamics and dynamic

http://refhub.elsevier.com/S2001-0370(21)00374-3/h0005
https://doi.org/10.1093/nar/gkz399
https://doi.org/10.1093/nar/gkz399
https://doi.org/10.3389/fmolb.2020.582702
https://doi.org/10.3389/fmolb.2020.582702
https://doi.org/10.1016/j.bpj.2015.06.013
https://doi.org/10.1016/j.bpj.2015.06.013
https://doi.org/10.1016/j.gheart.2017.01.006
https://doi.org/10.1016/j.gheart.2017.01.009
https://doi.org/10.1016/j.gheart.2017.01.009
https://doi.org/10.1021/acs.jcim.6b00775
https://doi.org/10.1093/bioinformatics/bty427
https://doi.org/10.1093/bib/bbz029
https://doi.org/10.1093/bib/bbz029
https://doi.org/10.1007/978-1-62703-658-0_11
https://doi.org/10.1016/j.bpj.2017.12.021
https://doi.org/10.1016/j.bpj.2017.12.021
https://doi.org/10.1039/D0RA04683C
https://doi.org/10.1039/D0RA04683C
https://doi.org/10.3390/ijms21218232
https://doi.org/10.1021/acs.jcim.0c01194
https://doi.org/10.1016/j.ijbiomac.2021.01.086
https://doi.org/10.1021/acs.jafc.1c00721
https://doi.org/10.1021/acs.jafc.1c00721
https://doi.org/10.3390/molecules24213987
https://doi.org/10.3390/molecules24213987
https://doi.org/10.3389/fmolb.2020.575196
https://doi.org/10.1016/j.bbagen.2021.129895
https://doi.org/10.1016/j.jmb.2021.167061
https://doi.org/10.3390/molecules24010188
https://doi.org/10.1021/acs.jcim.7b00630
https://doi.org/10.3390/molecules24010142
https://doi.org/10.1038/s41598-018-35835-0
https://doi.org/10.3390/ijms22042138
https://doi.org/10.3390/ijms22042138
https://doi.org/10.1021/acs.jcim.0c00634
https://doi.org/10.1021/acs.jcim.0c00634
https://doi.org/10.3390/ijms22062861
https://doi.org/10.3390/ijms22062861


O. Sheik Amamuddy, M. Glenister, T. Tshabalala et al. Computational and Structural Biotechnology Journal 19 (2021) 5059–5071
residue network analysis. Molecules 2020;25:904. https://doi.org/
10.3390/molecules25040904.

[31] Chennubhotla C, Bahar I, Levitt M. Signal propagation in proteins and relation
to equilibrium fluctuations. PLoS Comput Biol 2007;3:e172. https://doi.org/
10.1371/journal.pcbi.0030172.

[32] Frappier V, Chartier M, Najmanovich RJ. ENCoM server: exploring protein
conformational space and the effect of mutations on protein function and
stability. Nucleic Acids Res 2015;43:W395–400. https://doi.org/10.1093/nar/
gkv343.

[33] Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: Assessing changes in
stability and flexibility upon single and multiple point missense mutations.
Protein Sci 2021;30:60–9. https://doi.org/10.1002/pro.3942.

[34] Yang J-F, Wang F, Chen Y-Z, Hao G-F, Yang G-F. LARMD: integration of
bioinformatic resources to profile ligand-driven protein dynamics with a case
on the activation of estrogen receptor. Brief Bioinform 2020;21:2206–18.
https://doi.org/10.1093/bib/bbz141.

[35] Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD. Bio3d: an R
package for the comparative analysis of protein structures. Bioinformatics
2006;22:2695–6. https://doi.org/10.1093/bioinformatics/btl461.

[36] McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX,
et al. MDTraj: A modern open library for the analysis of molecular dynamics
trajectories. Biophys J 2015;109:1528–32. https://doi.org/10.1016/j.
bpj.2015.08.015.

[37] Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, et al. 3.0:
A tool for the analysis of transport pathways in dynamic protein structures.
PLoS Comput Biol 2012;8:e1002708. https://doi.org/10.1371/journal.
pcbi.1002708.

[38] Django, [Computer Software], Django Softw. Found. (2013). https://
djangoproject.com (accessed September 26, 2020).

[39] Bootstrap, [Internet], (2020). http://getbootstrap.com (accessed September 26,
2020).

[40] Knockout.js, [Internet], (2020). http://knockoutjs.com/ (accessed September
26, 2020).

[41] Brown DK, Penkler DL, Musyoka TM, Bishop ÖT, Lisacek F. An open source
workflow management system and web-based cluster front-end for high
performance computing. PLoS ONE 2015;10:e0134273. https://doi.org/
10.1371/journal.pone.0134273.

[42] Jamroz M, Kolinski A, Kmiecik S. CABS-flex: server for fast simulation of
protein structure fluctuations. Nucleic Acids Res 2013;41:W427–31. https://
doi.org/10.1093/nar/gkt332.

[43] Hospital A, Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpí JL. MDWeb and
MDMoby: an integrated web-based platform for molecular dynamics
simulations. Bioinformatics 2012;28:1278–9. https://doi.org/10.1093/
bioinformatics/bts139.

[44] Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlić A, Rose PW. NGL viewer:
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