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Abstract: Drug-coformer systems, such as coamorphous and cocrystal, are gaining recognition as highly effective strategies for 
enhancing the stability, solubility, and dissolution of drugs. These systems depend on the interactions between drug and coformer to 
prevent the conversion of amorphous drugs into the crystalline form and improve the solubility. Furthermore, mesoporous silica (MPS) 
is also a promising carrier commonly used for stabilization, leading to solubility improvement of poorly water-soluble drugs. The 
surface interaction of drug-MPS and the nanoconfinement effect prevent amorphous drugs from crystallizing. A novel method has 
been developed recently, which entails the loading of drug-coformer into MPS to improve the solubility, dissolution, and physical 
stability of the amorphous drug. This method uses the synergistic effects of drug-coformer interactions and the nanoconfinement effect 
within MPS. Several studies have reported successful incorporation of drug-coformer into MPS, indicating the potential for significant 
improvement in dissolution characteristics and physical stability of the drug. Therefore, this study aimed to discuss the preparation and 
characterization of drug-coformer within MPS, particularly the interaction in the nanoconfinement, as well as the impact on drug 
release and physical stability. 
Keywords: mesoporous silica nanoparticles, coamorphous, cocrystal, hydrogen bond, dissolution, physical stability

Introduction
The aqueous solubility of drugs is important in pharmaceutical formulation, influencing bioavailability, particularly in the 
creation of oral dosage forms. Drugs are subjected to adsorption from the intestinal sites after dissolving in the 
gastrointestinal fluid.1–3 Over the last two decades, approximately 75% of new chemical entities (NCEs) in pharmaceu-
tical study showed poor water solubility and have been successfully improved using traditional methods such as 
solubilizing, complexing, and salt formation. The limitations of these methods include their effectiveness in enhancing 
solubility, the permissible concentration of excipients, and the potential occurrence of different side effects associated 
with the excipients and co-solvents.4–6 Consequently, there is a need to explore innovative strategies to address the 
formulation of poorly water-soluble drugs.7

Amorphization is a promising strategy for improving the aqueous solubility of drugs. Generally, amorphous 
drugs have disordered structures and higher free energies compared to their crystalline counterparts.8,9 Due to this 
higher energy state, dissolution tends to occur more quickly, as their crystal structure is not disrupted. However, a pure 
amorphous API is thermodynamically unstable and easy to recrystallize during storage after being dispersed in dissolu-
tion medium. These properties contribute to the difficulty of using amorphous drugs alone in a solid formulation.10,11
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In the past decade, mixing specific low molecular weight compounds (coformer) with poorly water-soluble drugs at 
the molecular level has been developed as an alternative method to stabilize the amorphous drug and improve dissolution 
profiles. This coamorphous system is characterized as a single-phase amorphous solid system composed of binary or 
multi-components.12,13 Based on the selection of coformers, coamorphous systems can be grouped into two categories, 
namely drug-excipient and drug-drug. In drug-excipient coamorphous systems, the excipients such as sugars, nicotina-
mide, amino acids, and carboxylic acid, are extensively used as coformers to improve solubility and physical stability. 
Meanwhile, in drug-drug coamorphous systems, two drug components can effectively stabilize each other in the 
amorphous state to achieve the desired physical stability and dissolution profiles.14 The use of two pharmacologically 
relevant drugs in these systems has potential benefits for synergistic effects. The formation of intermolecular interactions, 
such as hydrogen bonding as well as π–π between drug and the excipient plays a role in preventing conversion of the 
amorphous drug into the crystalline form.15,16

Cocrystal is a neutral crystalline material formed by combining two or more distinct molecular compounds at 
different stoichiometry, distinguished from solvates or simple salts.17 The crystal structure of cocrystal is different 
from the starting material (drug and coformer), leading to unique physicochemical properties that surpass pure materials. 
These properties make cocrystal a highly attractive system in the pharmaceuticals field, particularly for poorly water- 
soluble drugs.18 The formation of cocrystal with a suitable coformer in the pharmaceutical field has the potential to 
improve solubility by modifying the crystal structure, thereby improving dissolution, stability, and bioavailability of 
poorly water-soluble drugs.19

The pharmaceutical industry has developed an interest in the use of mesoporous silica (MPS) in amorphous drug 
delivery systems due to their stabilization capacity.20 MPS is characterized by small pores ranging from 2–50 nm, with 
large specific surface areas greater than 300 m2/g, and considerable extra surface-free energy. Consequently, drug 
adsorption on an MPS surface enables the system to develop into a lower free energy state, stabilizing the amorphous 
form.21 MPS also prevents the crystallization of the amorphous form by spatial confinement when the pore width is less 
than the critical crystal nuclei. The encapsulated drug can also rapidly release and generate supersaturated solutions due 

Graphical Abstract

https://doi.org/10.2147/IJN.S449159                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2024:19 282

Budiman et al                                                                                                                                                         Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


to the displacement of drug molecules from the silica surface by water.22–24 This unique property improves dissolution 
and generates supersaturation, significantly increasing the use of the delivery systems.25

Recently, a novel method combining coamorphization/cocrystallization and encapsulation, known as the loading of 
drug-coformer into MPS has been introduced to improve the solubility, dissolution, and physical stability of poorly 
water-soluble drugs. Several studies have reported the successful incorporation of drug-coformer into MPS. Skerupska 
et al stated that cocrystal-loaded MPS showed higher molecular mobility compared to those outside the pores. The 
interaction mode between drug and coformer within MPS has also been investigated.7,26,27 Bi et al reported that the 
molecular state of the cocrystal system changed into a coamorphous state after being loaded into MPS leading to 
variation in physical stability and dissolution characteristics.28 Therefore, this study aims to summarize and discuss the 
characterization of drug-coformer within MPS, specifically the mechanism of drug-coformer interaction affecting 
pharmaceutical properties such as solubility, dissolution, and physical stability of drugs. The journals of drug-coformer 
loaded MPS used to compile this review were obtained from the Scopus, Pubmed, and Google Scholar databases that 
were released during the last ten years.

Drug-Coformer System
Cocrystal
Cocrystal is a promising strategy for precisely adjusting solubility, dissolution, and bioavailability, without changing their 
molecular structure. These multicomponent solids contain two or more distinct molecular components in a single 
homogeneous crystalline phase, with well-defined stoichiometry, as shown in Figure 1.29–31 Cocrystal is formed by 
hydrogen-bonded assemblies between the neutral molecules and coformer, leading to the change in the solubility 
characteristics.32 In recent years, cocrystal has gained significant attention from the pharmaceutical industry. This 
leads to the development of a pharmaceutical cocrystal composed of an active pharmaceutical ingredient (API) or 
a small molecule as coformer commonly selected from substances appearing on the GRAS (generally regarded as safe) 
status.33,34

The coformer is often selected based on its functional groups capable of forming hydrogen bonds with the drug 
molecules. The general guidelines have been developed to predict hydrogen bond interactions resulting in crystal 
formation.35,36 These guidelines are made based on the analysis of hydrogen bond interactions and the packing of 
molecular structures: (1) all acidic hydrogen atoms participate in hydrogen bonding within the crystal structure, (2) when 
there is an adequate supply of hydrogen bond donors, all good hydrogen bond acceptors participate in hydrogen bonding, 
and (3) intramolecular hydrogen bond in a six-membered ring form in preference to intermolecular hydrogen bond.37,38

Coformers used in the pharmaceutical cocrystal are generally hydrophilic molecules. Moreover, their mechanism in 
the solution consists of three main steps, namely (1) breaking intermolecular bonds of the drug-coformer, (2) breaking 
intermolecular bonds of each component in the solvent, and (3) forming intermolecular bonds between cocrystal 
molecules and the solvent molecules. The limitations of cocrystal in dissolving hydrophobic drug molecules in aqueous 

Figure 1 Illustration of cocrystal system. 
Notes: Data from Bavishi and Borkhataria.19
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media include their solvation and inability to break away from the crystal lattice. The presence of hydrophilic coformer 
molecules can also decrease the solvation barrier of cocrystals of hydrophobic drugs, proportional to the coformer. 
Consequently, the aqueous solubility of the coformer is correlated with the solubility of cocrystal.39,40

In dissolution medium, particularly when the solvent is introduced, the supersaturation of cocrystal is reached as the 
components dissolved. As illustrated in Figure 2, the solubility of cocrystal and drug as well as cocrystal and coformer 
intersect at eutectic points, indicating a stability region of the solid phase either for each component or mixture.

Coamorphous
Conversion of crystalline drugs into the amorphous state could improve the solubility and dissolution profile of poorly water- 
soluble drugs. In recent years, some low molecular weight excipients, such as amino and organic acids, have been used for the 
development of the amorphous system, namely coamorphous. The combination of two drugs is also intended to form 
coamorphous to improve dissolution and generate combination therapy, including ezetimibe and simvastatin,42 as well as 
famotidine and ibuprofen.43 Consequently, coamorphous systems, based on the types of coformers, could be classified into drug- 
excipient and drug-drug.

Coamorphous systems commonly generate a spring-parachute dissolution profile often observed in amorphous systems, as 
represented in Figure 3.44–46 This profile entails a rapid dissolution that occurred in the coamorphous system at the beginning of 
the dissolution test, followed by nucleation and crystal growth. The “Spring” effect is obtained from the high-energy state of the 
coamorphous system, promoting dissolution of the drug when it dissolves, along with the coformer, leading to the supersaturated 
solution of the drug. Several factors such as dissolution media, the difference of free energy between the crystal phase and 
amorphous phase, and release rates and coformers can influence the supersaturated solution of the drug in a coamorphous 
system.44 Meanwhile, the “Parachute” effect delays or prevents the recrystallization of the dissolved drug and maintains 
a supersaturated level for a certain period due to the interaction between drug and coformers.45 Numerous studies have reported 

Figure 2 Triangular phase diagram that illustrates dissolution paths (arrows) leading to cocrystal stability regions (shaded areas). The highest supersaturation of cocrystal 
can be achieved by saturation from both drug and coformer, conditions associated with water contents below the eutectic points. 
Notes: Used with permission of Royal Society of Chemistry, from Good D, Miranda C, Rodríguez-Hornedo N. Dependence of cocrystal formation and thermodynamic 
stability on moisture sorption by amorphous polymer. CrystEngComm. 2011;13(4):1181–1189;41 permission conveyed through Copyright Clearance Center, Inc.
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that strong interactions between drug and coformers could maintain supersaturation and prevent the recrystallization of the 
amorphous drug in the coamorphous system.47–49

Mesoporous Silica (MPS)
MPS is formed through a surfactant micelle templating method, using tetraethyl orthosilicate (TEOS) or 3-mercaptopropyl 
trimethoxysilane (MPTMS) as the silica precursor to produce the pore structures within the silica particle.50 The production of 
silica particles with different structures, particle sizes, pore sizes, and shapes can be generated by controlling various conditions 
such as surfactant type, temperature, pH, concentration, and ionic strength. Meanwhile, the most common architectures of MPS 
are hexagonally arranged cylindrical pores (hexagonal phase) and bicontinuous cylindrical porous networks (cubic phase).51

MPS has several advantages and uses various strategies to enhance oral delivery, in vivo uptake, and bioavailability of poorly 
water-soluble drugs, as illustrated in Figure 4. The ability of MPS to load a high concentration of drug in a molecular or an 
amorphous form and control drug release can significantly improve the bioavailability of poorly water-soluble drugs. Previous 
investigations have established that the characteristics of MPS, such as structure, surface, and pore size, can be engineered to 
precisely control drug release.52–55

Drug release from MPS depends on the wetting of the pores by the aqueous release media, either in dissolution 
medium or gastrointestinal fluids. The dissolution process relies on the size, connectivity, and length, as well as the 
existence of constrictions and “dead ends” in the structure. During this process, drug molecules are displaced by 
adsorption on the silica surface through interaction with the solvent. The interaction between dissolution medium and 
silica surface as well as the access to the porous architecture could be an important step for enhanced drug release.56,57 

The interaction of drug-drug, drug-silica, drug-solvent, and solvent-silica is also essential in drug release from MPS.

Figure 3 The spring and parachute concept to achieve high apparent solubility for poorly water-soluble drug. (1) The crystalline (stable) form has low solubility. (2) 
A metastable species (amorphous phase) shows peak solubility but quickly drops to the low solubility of the crystalline form. (3) Highly soluble drug forms are maintained for 
a long enough time in the metastable zone (coamorphous phase). 
Notes: Adapted from Progress in Crystal Growth and Characterization of Materials, Volume 62/Edition 3, Bavishi and Borkhataria, Spring and parachute: how cocrystals enhance 
solubility, pages 1-8, Copyright 2016, with permisison from Elsevier.19
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Biocompatibility and Toxicity of MPS Nanoparticles
Since MPS are inorganic nanoparticles and are difficult to degrade in the body, understanding the toxicity mechanism is 
necessary in the drug formulation to ensure maximum activity with minimum or no toxicity. The routes of administration 
could affect the distribution and toxicity of MPS. A previous study reported that hypodermic and intramuscular injections 
could cross the biological barriers into the liver with a low absorption rate. Meanwhile, in oral administration, the MPS 
nanoparticles are absorbed in the intestinal tract and persist in the liver. The MPS nanoparticles are localized in the liver 
and spleen when administered by intravenous injection. After intramuscular and hypodermic injections, an inflammatory 
response was also observed around the injection sites. The MPS nanomaterials were mainly excreted through urine and 
feces.58 The particle shape, size, and composition of MPS nanoparticles also play critical roles in biodistribution and 
toxicity. An increase in the composition of MPS nanoparticles can decrease in vivo biodegradation, systematic absorp-
tion, and excretion, especially in liver distribution and urinary excretion. The renal damage during the period of urinary 
excretion, including vascular congestion, and renal tubular necrosis can be induced by MPS shape-dependency.59 The 
cytotoxicities of MPS nanoparticles are caused by mitochondrial dysfunction, membrane peroxidation, and DNA 
damage, leading to cell death. However, low concentrations of MPS nanoparticles are more biocompatible than their 
higher doses. The silanol groups on the MPS surface can cause hemolysis of mammalian red blood cells, thus their use 
for intravenous drug delivery is limited. In contrast, positively charged ammonium functionalization on the MPS surface 
prevents the toxicity of MPS nanoparticles due to their exclusion from endocytosis. Short rod-shaped MPS nanoparticles 
are easily trapped in the liver, while long rods of MPS nanoparticles are distributed in the spleen. PEG functionalization 
on the surface of MPS nanoparticles is predominant in the lungs and excreted in urine and feces. The clearance rate of 
short rod MPS nanoparticles is more rapid than long rod MPS nanoparticles by both routes of excretion. This indicated 
that the clearance rate of MPS nanoparticles is primarily dependent on their particle shape.60

Drug-Coformer Within MPS Systems
Previous studies have reported the loading drug and coformer into MPS as shown in Table 1.

Preparation Drug-Coformer Loading into MPS
The loading of drugs into MPS can be accomplished through various methods. Based on the previous studies, the loading 
drug and coformer into MPS are divided into two, namely solvent-free and solvent-based methods, as shown in Figure 5.

Solvent-Based Methods
The solvent-based methods for loading drug-coformer into MPS are challenging. This is because the procedure requires 
multiple stages using large amounts of solvents, which are often difficult to control in terms of filling factor. The removal 

Figure 4 Schematic illustration of the relationship between drug loading, porous silica properties, drug dissolution, and oral absorption. 
Notes: Copyright © 2003 Taylor & Francis Ltd. Adapted from Capovilla G, Beccaria F, Montagnini A, et al. Short-term nonhormonal and nonsteroid treatment in West 
syndrome. Epilepsia. 2003;44(8): 1085–1088.51
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Table 1 The Studies of Drug-Coformer Loaded MPS

No Drug Coformer Type of MS Preparation Method Interaction Within MPS Dissolution Study References

1 Fluorinated 
benzoic acid (FBA)

Benzoic acid (BA) MCM-41 and 
SBA-15

Melt method π- stacking interactions - [7]

2 Naproxen (NPX) Picolinamide (PA) MCM-41 and 
SBA-15

Thermal solvent-free (TSF) Hydrogen bonding where the 
carboxyl group of NPX plays the 
role of acceptor, while the amide 
residue of PA is a donor

- [27]

3 Ibuprofen (IBU) Nicotinamide (NA) MCM-41 Thermal solvent-free (TSF) Noncovalent interactions 
between the hydroxyl group and 
aromatic protons of NA and IBU

Release of IBU from IBU:NA within MPS is slower 
compared to IBU within MPS

[26]

4 Valsartan Vanillin Mesoporous 
silica 
particles 
(MPSs)

The adsorption method Hydrogen bonding interactions The amount of VAL dissolved in the first 60 
minutes was significantly increased

[61]

5 Ibuprofen (IBU) Nicotinamide (NA) MPS 
Microspheres

The adsorption method The molecular interactions 
between the carboxyl group of 
IBU and the acylamino group of 
NA

Nanoconfined coamorphous (NCA) system 
showed the highest equilibrium solubility nearly 
2-fold higher than that of IBU/MPS

[28]

6 Ritonavir (RTN) Saccharin (SAC) Taiyo’s 
mesoporous 
silica (TMPS)

Solvent evaporation method Hydrogen bond formation 
between the thiazole groups of 
RTN and SAC

Hydrogen bond achieved the maintenance of RTN 
supersaturation for a long time

[62]

7 Caffeine Oxalic acid SBA-16 Solvent evaporation method Intermolecular bond of caffeine 
and oxalic acid

- [63]

8 Praziquantel (PZQ) glutaric acid (GLU) SBA-15 Melting method The intermolecular hydrogen 
bond between the hydroxyl group 
of GLU with carbonyl groups of 
PZQ

PZQ-GLU confined in nanopores of SBA-15 
showed a similar dissolution profile with PZQ-GLU 
cocrystal as well as SBA-15/PZQ

[64]

9 Benzoic acid (BA) Perfluorobenzoic 
acid (PFBA), and 
4-fluorobenzoic 
acid (4-FBA)

MCM-41 “Wet methods” (diffusion supported loading – 
DiSupLo) and “solvent-free methods” 
(mechanical ball-mill loading – MeLo, thermal 
solvent free – TSF)

Strong interaction between meta 
protons of 4-FBA and para 
protons of BA

The amount of BA from BA-coformer within MPS 
in dissolution medium was higher compared to 
cocrystal system. However, the amount of BA was 
lower compared to BA/ MPS

[65]

10 Ibuprofen Flurbiprofen MCM-41 Diffusion supported loading – DiSupLo) There is no confirmation about 
the interaction between Ibu and 
Flu molecules with distances 
below 5 Å within MPS

Dissolution of binary system-loaded MPS was 
similar to dissolution of each drug-loaded MPS

[66]
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of the solvent to the acceptable levels specified in the guidelines of the International Conference on Harmonization (ICH) 
Q3 (R5) is necessary, as some residual solvents commonly used may remain in MPS despite its disposal.68 To address 
these issues, less toxic and safer solvents, such as ethanol and supercritical, or near-critical, CO2 can be used as an 
alternative in the drug loading process or for human pharmaceutical applications.69–71 The selection of a solvent has 
a significant impact on the loading process into MPS. Moreover, the highest API solubility in the solvent is not 
necessarily the best candidate for achieving a high filling factor.

The Adsorption Method
The adsorption method is a simple method for loading drug and coformer into the pores of MPS. Subsequently, MPS is 
dispersed in the concentrated drug-coformer solution, allowing drug molecules to be adsorbed on the pore walls. Drug- 
coformer loaded MPS are separated from the solution by centrifugation or filtration, followed by drying of particles to 
remove the residual solvent.72 This method is suitable for thermally sensitive substances, as the loading process does not 
require high temperatures. However, it is inefficient in some cases due to the need for a high concentration of drug in the 
solutions to achieve effective drug loading. When the concentration is excessively high, drug molecules block the 
mesopores of MPS, potentially reducing the available surface area for drug loading.73 Bi et al, and Ali et al have 
successfully used the adsorption method to incorporate the IBU-NA and VAL-VAN into MPS.28,61

The Solvent Evaporation Method
The solvent evaporation method is often used to incorporate drugs into MPS through the combination of adsorption and 
rapid solvent evaporation.74 During this process, silica is dispersed in the volatile organic solution, namely ethanol and 
dichloromethane, containing the drug, followed by drying through fast solvent evaporation using a rotary evaporator75 to 
obtain drug-loaded MPS.52,76 This method allows sufficient time for drug molecules to rearrange and aggregate inside 
MPS. The solvent evaporation process may affect the physical state of the drug, its localization, and the rate of drug 
release.74 A previous study by Budiman et al reported the loading of drug-coformer into MPS using the solvent 
evaporation method to successfully load RTN and SAC into MPS.62 Ohita et al also reported cocrystal formation of 
caffeine-oxalic acid within MPS.63

Diffusion-Supported Loading (DiSupLo)
Diffusion-supported loading (DiSupLo) is a novel and efficient method for loading drug-coformer into the pores of MPS. 
In this method, physical mixture of drug-coformer and MPS, with the desired proportion is transferred to an opened 
weighing vessel as a solid matter. This is followed by placing the mixture in a closed vessel containing ethanol for 3 h at 
room temperature. The layer thickness of physical mixture of drug-coformer should be small and experimentally 
optimized. Finally, the ethanol is thermally removed to obtain drug-loaded samples. The DiSupLo is environmentally 
friendly and economical due to its fast process requiring a minimum amount of solvent. Furthermore, it is the simplest 
method for loading drug-MPS into MPS pores without special equipment and specific experimental conditions such as 
high temperature, stirring, high pressure, and grinding.66 This method allows for a high drug-coformer loading degree 
and incorporates the whole drug-coformer with an appropriate weight ratio of the starting drug-coformer/MPS mixture. 

Figure 5 The different methods used to load drug-coformer into MPS. 
Notes: Adapted from Trzeciak K, Chotera-ouda A, Bak-sypien II, Potrzebowski MJ. Mesoporous silica particles as drug delivery systems—the state of the art in loading 
methods and the recent progress in analytical techniques for monitoring these processes. Pharmaceutics. 2021;13(7):950.67 Creative Commons Attribution License.
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Trzeciak et al have successfully incorporated ibuprofen and flurbiprofen into MCM-41 using the DiSupLo method.66 

Meanwhile, a cocrystal of BA-4-FBA was formed within MPS after being prepared by the DiSupLo method.65

Solvent-Free Methods
Solvent-free methods can achieve a high degree of drug loading without consuming significant time. Moreover, the 
concentration of drug in MPS is easily predictable, as it is directly influenced by the ratio between API and MPS. This 
method is an environmentally friendly method and does not require an organic solvent for drug loading.67

The Melt Method
The melt method is carried out by heating a physical mixture of cocrystal and MPS above the melting point of the 
cocrystal.25,77 This method is efficient and significantly reduces the time for incorporating drug-coformer (cocrystal) into 
MPS. However, its limitations include suitability for thermally stable drug and coformer characterized by a low viscosity 
after melting. The high molten viscosity of drug-coformer can reduce the penetration of drug-coformer into MPS and 
block mesopores.23,78 Skerupska et al reported a series of studies, where drug-coformers (benzoic acid-fluorinated 
benzoic acid, naproxen-picolinamide, and ibuprofen-nicotinamide) were incorporated into MPS using the melt method. 
The result showed that the interaction mode between drug and coformer was formed within MPS after being evaluated 
using two-dimensional solid-state NMR spectroscopy.7,26,27 Salas-Zuniga also stated that the PZQ-GLU cocrystal was 
formed after incorporation into MPS using the melt method.64

Co-Milling
Co-milling is a common method of producing sub-micrometric particles and facilitating solid-state amorphization.79,80 

Previous studies have reported that milling using a planetary ball mill is an effective method for incorporating organic 
compounds such as benzoic acid and 4-fluoro benzoic acid into the pores of MPS.81 The results suggest that the guest- 
loading process is highly controllable, with a maximum loading capacity of over 50% at a 1:1 ratio. This shows the 
potential of the co-milling method as an alternative to incorporating drug-coformer into MPS. Moreover, this method is 
simple and time-efficient, making it applicable on an industrial scale. Treciak et al also reported the incorporation of BA 
and 4-FBA into MPS using a co-milling method. Solid-state NMR studies clarified that the interaction mode between the 
BA and 4-FBA was similar to cocrystal, indicating the formation of BA −4-FBA within MPS.65

Characterization of Drug-Coformer Loaded MPS
Nitrogen Adsorption/Desorption Analysis
Physical gas sorption is a well-established method used to characterize the textural properties of solid surfaces and changes 
after various actions. This method can precisely determine the amount of gas adsorbed on the surface material measuring the 
porous properties and structure. The isotherm obtained from the adsorption measurements can provide information on the pore 
volume (PV), surface area (SA), and pore size distribution (PSD).82–84 Regarding MPS, the changes in the porous structure 
and drug-loaded MPS are estimated based on the course of nitrogen adsorption-desorption isotherms of type IV at 77K and 
a wide range of relative pressures (p/p0).67 Skorupska et al reported the nitrogen adsorption/desorption analysis to assess the 
loading of NPX: PA into the pores of SBA-15. According to BET calculations, the SA, PV, and mean pore diameter of SBA-15 
are 747 m2g−1, 1.21 cm3g−1, and 100 Å, respectively. A significant decrease in specific surface area of 24% and 39% was 
observed for samples with NPX:PA cocrystal/MPS ratios equal to 1:1 and 1:2 (weight-to-weight). The SA of NPX:PA 
cocrystal/MPS was also found to be 177.9 m2g−1 and 287.9 m2g−1, respectively. The analysis of MPS volumes, relative 
pressures, and pore diameter indicated the successful encapsulation of the NPX:PA cocrystal into MPS. After short-term 
ethanol diffusion, MPS diameter for the NPX:PA/SBA-15 was slightly smaller compared to NPX:PA/SBA-15. This 
phenomenon occurred due to the high affinity of the polar solvents in the pores of MPS nanoparticles.27

Scanning Electron Microscopy (SEM)
SEM serves as a powerful tool for investigating various nanostructured materials, including MPS. This tool can provide 
detailed structural characterization on the nanometer scale such as external diameter, surface area, morphology, and pore 
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architecture. Furthermore, it is one of the most popular microscopic tools for characterization of nanomaterials. SEM creates 
images of the sample including API within MPS by scanning the surface with an electron beam, visualizing, and providing 
a 3D view.67 Salas-Zuniga et al (2022) used SEM analysis to examine the morphology of SBA-15, PZQ-GLU cocrystal, and 
PZQ-GLU/SBA-15 50:50 w/w.64 The micrographs of SBA-15 particles showed a uniform rod-like morphology, as described 
by Zhang et al,85 while the PZQ–GLU cocrystal indicated a smooth surface composed of micrometer-sized crystals. PZQ- 
GLU/SBA-15 50:50 w/w showed rod-like morphology and there were no visible crystalline particles at the surface. This 
indicated that cocrystal of PZQ-GLU was loaded inside the nanopores of SBA–15.86 Ali et al also reported SEM images of 
VAL-VAN coamorphous loaded MPS, indicating a rougher surface morphology.61 The smooth appearance of VAL-VAN 
coamorphous loaded MPS was due to its partial entry into the pore volume, leading to a uniform texture of the particles.87

Powder X-ray Diffraction (PXRD)
Powder X-ray diffraction (PXRD) has been used to analyze the degree of crystallinity of drug-coformer within MPS. In 
a previous study by Ali et al (2019) the X-ray diffraction results were reported for VAL-VAN within MPS. The X-ray 
diffractogram showed distinct crystalline peaks for VAL between 20° and 40°, indicating its crystalline nature.61 

However, these peaks disappeared in X-ray patterns of VAL-VAN coamorphous and VAL-VAN/MPS, indicating that co- 
amorphous forms were retained in the pores of MPS.88–90 Salas-Zuniga et al (2022) also reported the PXRD results of 
PZQ within SBA-15 and PZQ-GLU within SBA-15. As illustrated in Figure 5, the PXRD pattern of SBA-15 showed 
a wide halo typical of amorphous MPS, while the PZQ-GLU cocrystal showed diffraction peaks of crystalline materials. 
When SBA-15 and PZQ-GLU were combined at a 50:50 weight-to-weight ratio, broad halo and low-intensity diffraction 
peaks, resembling a cocrystalline solid, were observed, as presented in Figure 6. Diffractograms in composites with 
a decreased cocrystal concentration showed an amorphous phase-like appearance.64 Based on these results, PXRD 
measurement can be used to determine the maximum amount of drug-coformer (cocrystal) within MPS, which is 
attributed to the presence of diffraction peaks typical of cocrystal.

Differential Scanning Calorimetry (DSC) Measurement
DSC is used to characterize the physical state, location of drug, and coformer within MPS by observing their glass 
transition temperature of melting point. Observations have shown that when drug and coformer are confined in the pores 
of MPS, the melting point of cocrystal and/or Tg of coamorphous system would be lower compared to the crystalline 
state. Salas-Zuniga et al conducted a DSC measurement of PZQ-GLU-loaded SBA-15 at a 50:50 w/w ratio. In this study, 

Figure 6 PXRD patterns of PZQ-GLU cocrystal loaded SBA-15 with various weight ratios. 
Notes: Adapted with permission from Salas-Zúñiga R, Mondragón-Vásquez K, Alcalá-Alcalá S, et al. Nanoconfinement of a pharmaceutical cocrystal with praziquantel in 
mesoporous silica: the influence of the solid form on dissolution enhancement. Mol Pharm. 2022;19(2):414–431.64 [41]. Copyright 2022 American Chemical Society.
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the crystalline solid of PZQ and PZQ-GLU showed a single melting transition at 138.8 °C and 123.0 °C, respectively. 
However, composite SBA-15/PZQ did not show an endothermic peak for crystalline PZQ, which was indicative of the 
amorphous state of the confined drug. Regarding PZQ-GLU loaded SBA-15 at 50:50 w/w ratio, two broad Tg were 
observed at lower temperatures (Tonset = 63.0 °C and Tonset = 117.2 °C) compared to the bulk cocrystal.64 Confined 
nanocrystals in MPS were reported to show a broadening of the melting peak and depression of the melting 
temperature.91–93 The decrease in the melting temperature due to nanocrystallization of the drug has been explained 
quantitatively by the Gibbs−Thomson equation.94,95 A previous study also reported that the Tg of the drug was commonly 
reduced by confinement in a porous structure of MPS due to an intrinsic size effect. This phenomenon indicated that the 
mobility of drug within MPS was higher than outside MPS.95–98

Budiman et al conducted an analysis of the MDSC curve of RTN-SAC 1:1 coamorphous within TMPS, as shown in 
Figure 7. The result showed that the heat capacity changes (ΔCp) of the glass transition event or RTN-SAC coamorphous 
decreased with a reduction in the RTN-SAC concentration. At a low weight ratio of RTN-SAC 1:1 coamorphous/TMPS 
= 3:7, the glass transition was not detected in the MDSC curve, indicating that all of the RTN and SAC were successfully 
incorporated into TMPS. Furthermore, the glass transition event for the RTN-SAC 1:1 coamorphous/TMPS with a higher 
RTN-SAC weight ratio was observed. This indicated that the RTN amorphous or SAC was unloaded in the TMPS. Based 
on the results, the Tg of RTN-SAC 1:1 coamorphous/TMPS = 5:5 and 7:3 were different from coamorphous. This 
phenomenon occurred because the remaining compositions of RTN and SAC unloaded into the TMPS were lower than 
1:1, resulting in a reduced Tg at a higher RTN-SAC coamorphous weight ratio.62

Fourier Transform Infrared (FT-IR) Spectroscopy
FT-IR spectroscopy is a universal study tool used to examine the chemical status of MPS surfaces. In recent years, FT-IR 
spectroscopy has become an indispensable tool for pharmaceutical analysis. Understanding the position of the absorption 
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Figure 7 Reversing heat flow MDSC curves of RTN crystal, RTN-SAC 1:1 coamorphous, RTN-SAC 1:1 coamorphous/TMPS = 7:3, 5:5, and 3:7. 
Notes: Adapted from International Journal of Pharmaceutics, Volume 600, Budiman A, Higashi K, Ueda K, Moribe K, Effect of drug-coformer interactions on drug dissolution 
from a coamorphous in mesoporous silica, pages 120492. Copyright 2021, with permisison from Elsevier.62
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bands of Si–O bond serves as the basis for analyzing MPS using FT-IR spectroscopy.99–101 According to previous 
investigations, the changes in the appearance of functional groups on the FT-IR spectra of MPS and drug indicates the 
interactions occurring between drug and MPS.102 The reduction in the intensity of drug functional group bands loaded 
into MPS can be attributed to a strong molecular interaction between drug and MPS.103 In binary systems loaded into 
MPS, it is often challenging to investigate the interaction between drug and coformer. Consequently, FT-IR spectra are 
initially investigated to acquire insight into a probable molecular interaction between drug and coformer as comparative 
data for drug-coformer interaction within MPS. Bi et al used FT-IR spectroscopy as the first investigation to clarify the 
interaction between IBU and NA within MPS, as illustrated in Figure 8. In cocrystal system, the N-H stretching peaks of 
NA shifted from 3364 cm−1 to 3401 cm−1 and from 3160 cm−1 to 3182 cm−1, while the C=O stretching peak of IBU 
adjusted from 1721 cm−1 to 1707 cm−1. These results indicated the formation of hydrogen bonds between the carboxyl 
group of IBU and the acylamino group of NA. The cocrystal system showed a π-π interaction between IBU and NA 
molecule when the two peaks were at 1506 cm−1 (IBU) and 1485 cm−1 (NA), reflecting the skeleton vibrations of the 
aromatic rings, merged into a single one (1516 cm−1). The IBU-NA-loaded MPS showed the same spectrum properties as 
cocrystal system. The similarity between the IR spectra of The IBU-NA loaded MPS and cocrystal system yields an 
indirect confirmation of the existence of IBU-NA interaction in MPS.28

FTIR spectroscopy was used to investigate the molecular interactions of VAL and VAN within MPS. The spectra obtained 
confirmed the formation of a co-amorphous system, followed by its subsequent loading into MPS. The resulting spectrum 
corroborated the co-amorphous formation system and its incorporation into MPS, with VAN showing an O-H peak of VAN 
above 3100 cm−1.104 Meanwhile, the observed absence of VAN in the VAL-VAN mixture suggested the possibility of 
intermolecular interactions occurring in the coamorphous system. The shift of the C=O peak of VAL from 1728 cm−1 to 
1715 cm−1 was also attributed to hydrogen bonding interactions, which can immobilize the O-atom leading to a retarded C=O 
stretching. As the majority of VAN and VAL peaks disappeared, only the Si-O-Si peak at 1099 cm−1 was observed, suggesting 
the confinement of VAL-VAN coamorphous in the pores of MPS. Additionally, the presence of diverse Si-OH groups was 
included in the interaction within the coamorphous system, resulting in the disappearance of the VAN and VAL peaks.61

Raman Spectroscopy
Raman spectroscopy is a method used for identifying the molecular composition from the vibration frequencies of molecular 
bonds.105–108 This method has been used to evaluate small Raman shifts, allowing for the direct differentiation of inter-
molecular bonds in addition to intramolecular bonds.109,110 The deformations of the Raman peak in intramolecular 
bonds show the adsorption of molecular crystals on the surfaces,111,112 playing an important role in cocrystallization of 
porous materials. Therefore, Raman spectroscopy could be a potential method of analyzing pharmaceutical cocrystal in MPS 

Figure 8 FTIR spectra for each sample. 
Notes: Reprinted from Journal of Pharmaceutical Sciences, Volume 106/Edition 10, Bi Y, Xiao D, Ren S, Bi S, Wang J, Li F, The binary system of ibuprofen-nicotinamide under 
nanoscale confinement: from cocrystal to coamorphous state, pages 3150–3155,28 Copyright 2017, with permisison from Elsevier.
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with high resolution in frequency and spatial regions. Ohta et al reported the Raman spectra of caffeine-oxalic acid cocrystal 
with that of SBA-16, and compared to caffeine, (b) oxalic acid, and (c) caffeine-oxalic acid cocrystal without SBA-16. The 
spectrum of the intramolecular bond in cocrystal above 400 cm–1 is similar to caffeine but the peak frequencies of the two 
spectra are slightly different. This is because the intermolecular bond of caffeine and oxalic acid modified the electron 
distribution of the intramolecular bond in caffeine. Subsequently, each vibrational mode is slightly modified when the 
molecules are trapped in SBA-16. This phenomenon occurs because the intermolecular interactions from SBA-16 modify 
the electron distribution of the intra- and inter-molecules. The peak frequencies at 32, 56, and 83 cm–1 are slightly shifted when 
cocrystals are synthesized in SBA-16, indicating a dominant formation on the surface of SBA-16 without aggregation.63

The Raman spectra are examined in the range from 530 to 670 cm−1 to provide a more detailed description of the 
formation mechanism of cocrystal in SBA-16. In caffeine crystals and caffeine-oxalic acid cocrystal, two peaks 
originating from intramolecular bond of δ(CNC) and δ(OCN) in a caffeine molecule are observed in this region.113–115 

These peak's alterations in frequency and bandwidth are observed when caffeine crystals and cocrystal are added to SBA- 
16. The Raman spectra of cocrystal with SBA-16 are shown in Figure 9 along with the curve fitted using the four spectra 
(pink) and SBA-16 (sand). For each spectrum, the molar ratios of cocrystal (caffeine/oxalic acid) are (a) 27/13, (b) 54/27, 
(c) 80/40, and (d) 107/54 μmol, respectively. By comparing the pink and black curves for all spectra, the cocrystal with 
SBA-16 can be broken down into its parts. These include cocrystal without SBA-16, caffeine with and without SBA-16, 
and the background of SBA-16. This analysis offers valuable insights into the cocrystallization of caffeine and oxalic 
acid within SBA-16, as shown by the peak intensities of each component at different molar quantities.63

The formation of caffeine-oxalic acid cocrystal in SBA-16 is explained by the relative peak intensities of each 
component at different molar quantities, as shown in Figure 10(a). This procedure can be divided into two categories. In 
the first phase (A), where the amount of caffeine is smaller than 67 μmol, the peak intensity of caffeine with SBA-16 
linearly increases, while the cocrystal remains constant. This observation indicates that caffeine and oxalic acid are 

Figure 9 Raman spectra of cocrystal with MPS (black line) and the curve (pink line) fitted by cocrystal without MPS (red line), caffeine crystal with and without MPS (blue 
and green lines), and background of MPS (sand line). 
Notes: Adapted from Analytical Sciences, Volume 33/Edition 1, Ohta R, Ueno Y, Ajito K, Raman spectroscopy of pharmaceutical cocrystals in nanosized pores of mesoporous 
silica, pages 47–52, Copyright 2017, with permisison from Springer Nature.63
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trapped on the surface of SBA-16, forming monolayers without, as schematically shown in Figure 10(b). In the second 
phase (B) presented in Figure 10(c), the peak intensity of caffeine with SBA-16 saturates at roughly 67 μmol, indicating 
that caffeine and oxalic acid have completely occupied the surface of SBA-16. After saturation occurs, the peak intensity 
of cocrystal without SBA-16 increases in tandem with caffeine without SBA-16. As illustrated in Figure 10(d), cocrystal 
is produced on the monolayer caffeine and oxalic acid, stacking by layers without aggregation. The growth rate proceeds 
slowly enough to regulate the thickness for a few-nanometer-scale cocrystal due to the huge surface area of SBA-16. 
Additionally, by selecting the proper molar ratios of caffeine and oxalic acid, it is possible to create a bi-layer and tri- 
layer cocrystal. In this situation, the use of 134 and 201 μmol would yield bi-layer and tri-layer cocrystal, respectively.63

Solid-State NMR (SS NMR)
Solid-state (SS) NMR is a valuable tool used for investigating the molecular and physicochemical properties of API, 
providing the broadest possible spectrum of structural information on condensed matter.116 Furthermore, SS NMR can be 
applied to any solid physical state either crystalline or amorphous, and materials of different complexity, from pure APIs 
and excipients to amorphous solid dispersions.117 The development of fast magic angle spinning (MAS)118–121 and 
single-pulse experiment (SPE), makes the SS NMR the main method to study mesoporous materials, particularly 
drugs confined in MPS, drug-coformer interaction within MPS, and API-MPS interactions.122,123 The cross- 
polarization/magic angle spinning experiments have been conducted by Bi et al using a double-tuned cross- 
polarization/magic angle spinning probe to justify the formation of coamorphous systems of IBU-NA loaded MPS. 
The spectra of the NCA system show a 0.4–0.5 ppm downfield shift of the methyl resonances of IBU and a 0.6 ppm 
upfield shift of the carboxyl resonance when compared to the spectrum of physical mixture of IBU and NA-loaded MPS. 
These changes in chemical shifts are attributed to the molecular interactions between IBU and NA within MPS. 
Theoretically, the very weak molecular interaction of drug-coformer in a coamorphous system offers a unique opportu-
nity to distinguish the coamorpous system from the physical mixture of each amorphous component.28 Skorupska et al 
reported the 1H MAS and 19F MAS spectra of BA/FBA within MCM41 recorded with the spinning rate of 28 kHz at 
ambient temperature. The differences in spectra between BA/FBA cocrystal and BA/FBA loaded MCM41 were 
observed, with significantly better resolution in the proton spectra for BA/FBA loaded MCM41, particularly in the 
fluorine data. This indicated that cocrystal-loaded MPS was in a fast exchange regime due to rapid molecular motion.7

Skorupska et al also used an SPE 13C MAS measurement to investigate NPX:PA cocrystal loaded MCM-41 to confirm the 
location of drug-coformer within MPS. The 13C CP/MAS NMR was conducted to show the spectrum of physical mixture of 
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NPX:PA/MCM-41, as presented in Figure 11a. Specifically, the 13C CP/MAS spectrum observed in the NPX:PA/MCM-41 
after thermal treatment was only the NPX component. When conducting the SPE 13C MAS measurement with a short 
relaxation delay, which was suitable for mobile components, mainly PA resonances were monitored in the sample of NPX:PA/ 
MCM-41 after thermal treatment. Based on these results, the molecular dynamics between NPX and PA were significantly 
different, consisting of rigid NPX and mobile PA, which were observed and unobserved in the cross-polarization, respectively. 
This showed that the PA was located inside the pore, while NPX was on the silica surface of MPS.27

A 1H−19F HOESY MAS measurement was conducted to further analyze the interactions between BA and FBA 
within MPS. This method was found suitable in a system with fast molecular motion. Figure 12 showed a HOESY 
spectrum with clear correlation peaks suggesting the proximity between proton and fluorine spins. This indicated that the 
cross-peaks reflected the π- π-stacking interactions more possibly rather than contacts inside the isolated heterodimer.27

Previous studies have conducted SS NMR to confirm the interaction of RTN-SAC within TMPS. 13C PST/MAS NMR 
(υ = 15 kHz) was performed to detect both mobile and rigid components. For RTN amorphous/TMPS, the relative peak 
intensity of thiazole groups peaks at 179 ppm increased in the 13C PST/MAS NMR spectrum compared to the 13C CP/MAS 
NMR spectrum, as presented in Figure 13. The difference in spectra between the 13C PST/MAS NMR and 13C CP/MAS 
NMR was detected at 179 ppm in the sample of RTN amorphous/TMPS. The enhanced peak in the PST/MAS NMR 
spectrum suggested that the thiazole groups in RTN were highly mobile in the RTN amorphous/TMPS. In contrast, the 
difference in spectra between the 13C PST/MAS NMR and 13C CP/MAS NMR was not significant in the RTN-SAC 1:1 
coamorphous/TMPS. This indicated that the mobility of the thiazole groups in RTN within TMPS was suppressed through 
hydrogen bond interaction of RTN-SAC, as observed in the RTN-SAC coamorphous.62

Evaluation of Dissolution Performance
The dissolution study was conducted to evaluate the behavior of drugs in the drug-coformer loaded MPS after dispersion 
in dissolution medium. Understanding this dissolution behavior is important in solid formulation development and 
regulatory assessment. Bi et al conducted the in vitro drug release experiments of IBU-NA/MPS under non-sink 
conditions. The results showed that IBU-NA cocrystal and IBU crystal reached their equilibrium solubility state after 
150 min. In contrast, the IBU amorphous/MPS and IBU-NA/MPS showed rapid release, which was achieved within 5 
min. This phenomenon occurred due to the nanosized effect of drugs induced by the confinement of MPS leading to 
monomolecular dispersion of drugs in the dissolution medium. Specifically, IBU-NA/MPS showed higher equilibrium 

Figure 11 13C MAS NMR of each sample.27 

Notes: Adapted with permission from Skorupska E, Jeziorna A, Potrzebowski MJ. Thermal solvent-free method of loading of pharmaceutical cocrystals into the pores of 
silica particles: a Case of naproxen/picolinamide cocrystal. J Phys Chem C. 2016;120(24):13169–13180. Copyright 2016 American Chemical Society.
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solubility compared to that of IBU/MPS. The high solubility of IBU in IBU-NA/MPS was attributed to the hydrotropic 
effect of NA and the confinement effect of MPS. Moreover, the addition of an equal amount of NA into IBU/MPS in pure 
water can achieve the same solubility with IBU-NA/MPS, confirming the hydrotropic effect of NA.28

A previous study showed a different result as presented in Figure 14 compared to the report of Bi et al.62 In the RTN/ 
MPS system, the rapid release occurred at the beginning of the dissolution test, suggesting good dispersibility in the 
dissolution medium. Meanwhile, in the RTN-SAC coamorphous/MPS, dissolution of RTN was initially slow compared to 
the RTN amorphous/MPS at the beginning of the dissolution test. The high concentration of RTN was maintained to be 
longer in the presence of SAC than in amorphous/MPS. A similar result was also observed in the physical mixture (PM) 
of the RTN amorphous/TMPS + SAC crystal, indicating that SAC crystal did not affect the dissolution of RTN 
amorphous/MPS. This result suggested that the incorporation of coformer into mesopores extended the maintenance 
time of drug supersaturation through hydrogen bond interaction between drug and coformer within MPS.62

Trzeciak et al and Salas-Zuniga et al reported no significant difference in the dissolution profile of drugs between 
drug/MPS and drug-coformer/MPS systems. Although the rapid supersaturation of drugs occurs at the beginning of the 
dissolution test in the confined solids in MPS, the concentration of RTN gradually decreases due to RTN recrystallization 
in the dissolution medium even in the presence of coformer. This phenomenon occurs because the water contacting to 
drug or coformer can break their interaction after dispersion into water. The dissolution profile in the drug-coformer/MPS 
system could be similar to drug/MPS, despite the drug-coformer interaction being observed in the solid state.64,66

Physical Stability
In the drug-coformer-loaded MPS system, a physical stability test was conducted to evaluate the impact of drug-coformer 
interaction within MPS in the stabilization of the amorphous drug. The physical stability of VAL-VAN loaded MPS was 
monitored by evaluating their dissolution profiles upon storage. However, the dissolution profile of VAL in VAL-VAN 
loaded MPS did not significantly change over 8 weeks compared to the observation made on day 0. VAL-VAN 
coamorphous showed a significant decrease in the rate of dissolution (~35%) after the storage period due to the 
recrystallization, in comparison with day 0 (~94%). Physical stability improvement of VAL-VAN coamorphous after 
loaded MPS was attributed to the nanoconfinement effect, preventing the recrystallization and maintaining a stable 
dissolution profile of the amorphous drug.61,124 Physical stability of drug-coformer loaded MPS was also monitored from 
PXRD measurements. After 45 days of storage at 60 oC, some small crystalline peaks were observed on the PXRD 

Figure 12 1H−19F HOESY MAS NMR spectra of BA/FBA loaded MCM-41 = 1:1 w/w with a spinning rate of 12 kHz. 
Notes: Adapted with permission from Skorupska E, Jeziorna A, Potrzebowski MJ. Thermal solvent-free method of loading of pharmaceutical cocrystals into the pores of 
silica particles: a Case of naproxen/picolinamide cocrystal. J Phys Chem C. 2016;120(24):13169–13180.27 Copyright 2016 American Chemical Society.
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pattern of drug amorphous/MPS, while the drug-coformer/MPS system maintained the halo patterns. This indicated that 
the presence of coformer within MPS can further improve physical stability of the amorphous drug.28 To confirm the 
impact of drug-coformer interaction within MPS on physical stability of the amorphous drug, the dispersed solid sample 
in dissolution medium of drug amorphous/MPS and coamarphous/MPS system were collected through centrifugation, 
leading to the preparation of freeze-dried samples. The PXRD patterns showed that some crystalline peaks of the drug 
were observed for the sample of drug amorphous/MPS due to recrystallization occurring during the dissolution test. In 

Figure 13 13C CP/MAS NMR spectra (υ = 15 kHz) and 13C PST/ MAS NMR spectra (υ = 15 kHz) of RTN amorphous/TMPS and RTN-SAC 1:1 coamorphous/TMPS. 
Notes: Adapted from International Journal of Pharmaceutics, Volume 600, Budiman A, Higashi K, Ueda K, Moribe K, Effect of drug-coformer interactions on drug dissolution 
from a coamorphous in mesoporous silica, pages 120492. Copyright 2021, with permisison from Elsevier.62
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contrast, the sample of RTN-SAC 1:1 amorphous/TMPS showed a small RTN peak, indicating that drug-coformer 
interaction within MPS could improve physical stability of the amorphous drug after dispersion in water.62

Author Perspective
Molecular State of the Drug-Coformer Within MPS
The molecular state of the drug-coformer within MPS is discussed in Figure 15. In the pores of MPS, the molecular 
mobility of each component can be used to confirm the localization of drug and coformer. The cocrystal of BA-FBA 
within MPS showed high molecular mobility compared to the cocrystal without MPS, suggesting its location in the 
center of MPS due to an intrinsic effect. Meanwhile, in the case of the cocrystal of NPX-PA, NPX mobility was different 
from PA. NPX was observed in the cross-polarization (low mobility), while PA was not found in the cross-polarization 
(high mobility). This suggested that PA was located in the center of MPS, while NPX was on the silica surface. 
According to Chen et al, the two Tgs (Tg low and Tg high) were observed in the nifedipine confined in the porous media, 
commonly found in the small molecules loaded with the porous nanoconfinement. The change in Tg was affected by the 
interaction between the surface of MPS and the molecules, as well as the size of the confinement. The Tg of the 
amorphous drug within MPS was lower compared to the amorphous counterpart without MPS, indicating its high 
molecular mobility due to an intrinsic size effect. In contrast, the surface interaction between the pore wall and molecules 
led to a lower molecular mobility and a higher Tg compared to the amorphous drug located outside MPS. According to 
a previous study, the mobility of RTN was suppressed after loaded MPS, which was different from the commonly 
observed small molecules. The strong surface interactions between RTN and MPS could restrict the mobility of adsorbed 
RTN, forming a monolayer on the mesoporous surface.98,125,126 Strong interactions between the C=O of RTN and the Si- 
OH of MPS through hydrogen bonding have been reported.21 Consequently, when the RTN-SAC was incorporated into 
MPS, the RTN should be located in the surface or walls of MPS due to the surface interaction between RTN and MPS.

Drug Release Mechanism
The speculated mechanism of drug dissolution from drug-coformer-loaded MPS is summarized in Figure 16. The high 
supersaturation of drug within MPS occurred due to monomolecular dispersion in dissolution medium through the 
interaction of water molecules with the drug. This made the drug rapidly dissolve at the beginning of the dissolution test. 
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Moreover, drug-coformer interaction and the nanoconfinement effect of MPS contributed to the improvement of 
solubility and stability from poorly water-soluble drugs. Based on the previous studies, the mechanism of drugs in the 
drug-coformer-loaded MPS system was divided into three parts, as illustrated in Figure 16. These included (1) the 
presence of coformer can increase the solubility of the amorphous drug due to the hydrotropic effect from coformer after 
dispersion in water. The hydrophobic interaction between drug with the hydrophobic part of the coformer was formed, 
leading to aggregation activity above its minimum hydrotrope concentration (MHC).127 (2) The presence of the coformer 
could suppress the water contact with the drug in MPS. This was because the hydrophilic part of the drug was occupied 
through hydrogen bonding with the coformer, leading to a slower dissolution rate compared to drug amorphous/MPS. 
The remaining hydrogen bond between the drug and coformer in the solution could inhibit drug crystallization and 
maintain supersaturation. Therefore, the formation of drug-cofomer interaction in the mesopore contributed to the 
maintenance of drug supersaturation for extended periods. (3) The presence of the coformer did not affect the dissolution 
behavior of the drug, as the remaining molecular interaction between the drug and coformer in the solution was not 
observed. Although the drug-coformer interaction was observed in the solid state, the dissolution profile of the drug in 
the drug-coformer/MPS system could be similar to drug/MPS.

The Impact of This System on the Drug Therapy
The monomolecularly dispersed drug within MPS can then rapidly dissolve into the dissolution medium which plays 
a critical role in the absorption improvement of the poorly water-soluble drug. Previous studies reported that poorly 
water-soluble drugs’ absorption was enhanced when API was in a supersaturated state, which was commonly observed in 
the drug-loaded MPS. The addition of coformer in the MPS could increase the solubility or maintain the supersaturated 
solution of amorphous drugs in the aqueous compartment of the body, such as interstitial space resulting in the 
bioavailability improvement of amorphous drugs. Based on the Fick law of diffusion, the mechanism of drug absorption 
commonly occurs by passive diffusion, in which the drugs will move from a higher concentration to a lower concentra-
tion of drugs until equilibrium is reached. Thus, the solubility of the drug in the aqueous compartment of the body could 
significantly affect the amount of drug absorption via passive diffusion. The drug absorption of the drug’s crystal was 
lower compared to that of its amorphous state because of its poor water solubility.

Meanwhile, in the system of drug-coformer loaded MPS, the amount of drug absorption would be higher compared to 
drug-loaded MPS because the presence of coformer within MPS could improve the solubility of drugs and maintain the 
supersaturated solution in the aqueous compartment of the body through the intermolecular interaction between drug and 
coformer in the MPS. As a result, it was assumed that the absorption of poorly water-soluble drugs in the drug-coformer 
/MPS formulation was mainly passive diffusion where only molecularly dissolved API was absorbed by the intestinal 
epithelium. Furthermore, the permeability of the drug could only be increased by high concentrations of dispersed API. 
Therefore, the presence of coformer in drug-loaded MPS systems could enhance the concentration of molecularly 

Figure 15 Schematic illustration of drug-coformer/MPS located (a) in the center of MPS, and (b) on the surface of MPS.
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dissolved API leading to the improvement of drug absorption. Improving the bioavailability of poorly water-soluble 
drugs could enhance their pharmacokinetics, efficacy, and safety.

Conclusions
In conclusion, this study contributes to elucidating mechanisms of drug-coformer within MPS and its dissolution and 
drug distribution in an aqueous environment. The drug-coformer within MPS system emerged as an appealing alternative 
for improving the limitations associated with the utilization of binary systems, such as drug loaded MPS and co- 
amorphous/cocrystal systems. The presence of coformer within MPS has the potential to improve their pharmaceutical 
properties, including solubility, dissolution profile, and physical stability. However, there were challenges in the 
preparation of the drug-coformer within MPS system, especially in choosing an appropriate coformer and 
a preparation method. Moreover, it would be difficult to characterize the mechanism of drug-coformer within MPS 
including the interaction mechanism due to their complex systems. Therefore, these could be challenges for researchers 

Figure 16 Schematic illustration of drug dissolution from drug-coformer/MPS.
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when developing an amorphous formulation of the drug-coformer within MPS system. Furthermore, this study provided 
fundamental insights into the drug-coformer within MPS system, which is significant when formulating strategies for 
improving the pharmaceutical properties of poorly water-soluble drugs.
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