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Rationale and Objective: Acute kidney injury (AKI)
is a common complication among hospitalized
adults, but AKI prediction and prevention among
adults has proved challenging. We used machine
learning to update the nephrotoxic injury negated
by just-in time action (NINJA), a pediatric program
that predicts nephrotoxic AKI, to improve accuracy
among adults.

Study Design: A retrospective cohort study.

Setting and Population: Adults admitted for > 48
hours to the University of Iowa Hospital from 2017
to 2022.

Exposure: A NINJA high-nephrotoxin exposure (≥3
nephrotoxins on 1 day or intravenous
aminoglycoside or vancomycin for ≥3 days).

Outcomes: AKI within 48 hours of high-
nephrotoxin exposure.

Analytical Approach: We collected 85 variables,
including demographics, laboratory tests, vital
signs, and medications. AKI was defined as
a serum creatinine increase of ≥0.3 mg/dL.
A gated recurrent unit (GRU)-based recurrent
neural network (RNN) was trained on 85%
of the data, and then tested on the remaining
15%. Model performance was evaluated with
precision, recall, negative predictive value, and
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area under the curve. We used an artificial
neural network to determine risk factor
importance.

Results: There were 14,480 patients, 18,180
admissions, and 37,300 high-nephrotoxin
exposure events meeting inclusion criteria. In
the testing cohort, 29% of exposures developed
AKI within 48 hours. The RNN-GRU model
predicted AKI with a precision of 0.60, reducing
the number of false alerts from 2.5 to 0.7 per
AKI case. Lowest hemoglobin, lowest blood
pressure, and highest white blood cell count
were the most important variables in the artificial
neural network model. Acyclovir, piperacillin-
tazobactam, calcineurin inhibitors, and angiotensin-
converting enzyme inhibitor/angiotensin receptor
blockers were the most important medications.

Limitations: Clinical variables and medications
were not exhaustive, drug levels or dosing were not
incorporated, and Iowa’s racial makeup may limit
generalizability.

Conclusions: Our RNN-GRU model substantially
reduced the number of false alerts for
nephrotoxic AKI, which may facilitate NINJA
translation to adult hospitals by providing more
targeted intervention.
cute kidney injury (AKI) is a common and widely
Arecognized source of morbidity and mortality in
hospitalized patients. The incidence of in-hospital AKI is
20%-25%,1,2 and it is associated with significant increases in
both short-term and long-term morbidity and mortality.3,4

One major cause of AKI development is the use of nephro-
toxic medications, which is a contributing factor in at least a
quarter of all inpatient AKI episodes.5-8 Medication classes
known to be associated with an increased risk of nephrotoxic
AKI include antibiotics, antifungals, antivirals, nonsteroidal
anti-inflammatory drugs, bisphosphonates, calcineurin in-
hibitors, checkpoint inhibitors, and chemotherapeutic agents,
among others.9 The wide variety of agents that are used to
treat myriad conditions account for the substantial incidence
of nephrotoxic AKI.

There is no specific therapy for nephrotoxic AKI once it
has occurred.7 Furthermore, inpatient nephrotoxic expo-
sures are preventable, so risk assessment and nephrotoxin
reduction in high-risk patients are important for preven-
tion of this iatrogenic AKI before it occurs. The nephro-
toxic injury negated by just-in time action (NINJA)
program has been shown to effectively reduce rates of
nephrotoxin exposure and nephrotoxic AKI in pediatric
populations. In a single-center study in children, the
NINJA program resulted in a 38% reduction in neph-
rotoxin exposure rate and a 64% reduction in nephrotoxic
AKI.10 A subsequent multicenter study observed a signifi-
cant and sustained 24% lowering in rates of nephrotoxic
AKI.11 Our previous work demonstrated that NINJA was
able to identify a high-risk adult cohort12; however, a
major concern was the relatively low positive predictive
value, which combined with the larger hospital volumes
would have resulted in an alert volume 10 times greater at
our adult hospital when compared with our children’s
hospital. High resource utilization and alert fatigue13 were
therefore identified as major barriers to the application of
NINJA in adult populations.

The current NINJA system was developed in a pediatric
population, which has less chronic disease morbidity and
fewer multiproblem admissions than adult populations,
so alerts were based only on medication usage and did
not factor in comorbidities, laboratory values, or other
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Table 1. Medications Within NINJA, by Class

Drug Class Drug Name
ACEI/ARB Captopril Lisinopril

Enalapril Losartan
Enalaprilat Valsartan

Antibiotics Ambisome Piperacillin
Amikacin Polymixin B
Amphotericin B Tazobactam
Clavulanic Acid Ticarcillin
Colistimethate Tobramycin
Gentamicin Vancomycin
Nafcillin
Pentamadine

Antivirals Acyclovir Tenofovir
Cidofovir Valacyclovir
Foscarnet Valganciclovir
Ganciclovir

Chemotherapies Carboplatin Methotrexate
Cisplatin Mitomycin
Ifosfamide

Calcineurin inhibitors Cyclosporine Tacrolimus
Iodinated contrast dye Diatrizoate meglumine Iopromide

Diatrizoate sodium Ioversol
Iodixanol Ioxaglate

meglumine
Iohexol Ioxilan
Iopamidol

PLAIN-LANGUAGE SUMMARY
Nephrotoxic acute kidney injury (AKI) is common and
can potentially be prevented through preemptive ad-
justments of medications, as demonstrated by the suc-
cess of the nephrotoxic injury negated by just-in time
action (NINJA) program in pediatric populations.
Translation of NINJA to the adult population has been
challenging, and major barriers include high alert vol-
ume in adults that can lead to high resource utilization
and alert fatigue. To address this issue, we developed a
machine learning model for nephrotoxic AKI in adults
that reduced the number of false alerts per AKI event
from 2.5 to 0.7, which can enhance future NINJA
implementation in adults by allowing for a more tar-
geted intervention with fewer alerts and more efficient
resource utilization.
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clinical parameters.14 Our goal in this project was to use a
machine learning algorithm and additional clinical data to
predict the development of nephrotoxic AKI more accu-
rately in adults, which can enhance future NINJA
implementation in adults by allowing for a more targeted
intervention with fewer alerts and more efficient resource
utilization.
NSAID Celecoxib Ketorolac
Ibuprofen Naproxen
Indomethacin

Others Deferasirox Sulfasalazine
Lithium Topiramate
Mesalamine Zoledronic acid
Pamidronate Zonisamide
Sirolimus

Abbreviations: ACEi, angiotensin-converting enzyme inhibitor; ARB, angion-
tensin receptor blocker; NSAID, nonsteroidal anti-inflammatory drug.
METHODS

Study Population

We obtained local IRB approval (HawkIRB 202008447)
and followed the STROBE reporting guidelines.15 All adult
patients aged ≥18 years who were admitted to the Uni-
versity of Iowa Hospital from 2017 to 2022 who had at
least one patient-day of high-nephrotoxin exposure were
eligible for inclusion. Exclusion criteria were as follows:
(1) admissions < 48 hours; (2) patients with a baseline
estimated glomerular filtration of < 15 mL/min/1.73m2

or patients on long-term dialysis before admission; (3) AKI
at the time of admission; (4) patients with < 2 creatinine
values during the admission; (5) absence of laboratory
testing during the hospitalization; and (6) absence of vital
sign data.

Nephrotoxin Exposure and AKI Definition

High-nephrotoxin exposure was defined based on the
NINJA definition as receiving ≥3 nephrotoxic medications
with systemic absorption in 1 day (Table 1)14 or intrave-
nous aminoglycoside or vancomycin for ≥3 days. Iodin-
ated contrast dye, amphotericin liposomal, and cidofovir
are marked as administered for 6 days after the day of
actual use and are the only agents treated in this fashion.
AKI was defined using Kidney Disease Improving Global
Outcomes (KDIGO) guidelines16 as a creatinine increase
of ≥0.3 mg/dL or 50% from baseline serum creatinine,
defined as the lowest creatinine within 6 months before
2

hospitalization, or at the time of hospitalization in the
absence of previous values.

Variables

Variables used to develop our machine learning algorithm
included age, sex, race, patient comorbid conditions
including: diabetes, liver disease, coronary artery disease,
congestive heart failure, peripheral vascular disease, ma-
lignancy, and cerebrovascular disease (defined by Inter-
national Classification of Diseases-10 codes on the
admission record using the method of Quan et al)17; daily
laboratory values (white blood cell count, hemoglobin,
platelets, serum creatinine, and blood urea nitrogen; daily
vital signs (highest temperature, highest daily mean arte-
rial pressure [MAP]; lowest daily MAP); admitting service
(categorized as medicine, surgery, heart and vascular,
neurology or neurosurgery, and other); baseline creati-
nine; and daily medication administration data for the 57
nephrotoxic medications listed in Table 1.
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Predicted Outcomes

Nephrotoxic AKI, defined as AKI development within 48
(primary) or 72 (secondary) hours of a high-nephrotoxin
exposure.

Data Preprocessing (Time Series Analysis)

Patients missing demographic data or those without labo-
ratory or vital sign data were excluded. For patient-days
missing laboratory or vital sign values, we first forward-
filled data, and then backward-filled to fill all patient-days.
For patient-days with multiple laboratory or vital sign
values, the median value was selected, with the exception of
mean arterial pressure, in which the maximum and mini-
mum values were recorded as separate variables.

Machine Learning Algorithm Development (Time

Series Analysis)

For the primary time series analysis, we used a recurrent
neural network (RNN) with gated recurrent unit (GRU)
model. The model features sequential layers of GRUs,
starting with 64 and followed by layers with 32 and 16
GRUs, which help the network understand how data
change over time. In addition, a dense layer with 16 GRUs
was included to uncover significant patterns while
ensuring the model remained stable and focused on
important features, and a final dense layer provided
outcome predictions. To improve the model’s perfor-
mance, we used the Adam optimizer with a specific
learning rate of 0.0001 and a weight decay value of 1e-5.
The model’s learning process was guided by the binary
cross-entropy loss function, and early stopping and
reduced learning rate techniques were used to prevent
overfitting. The entire network was trained over 200
epochs using a defined batch size of 256 and a validation
split of 20%. To determine model performance, we
applied the algorithm to the independent test set, which
had not been used in the training of the final model. We
calculated the precision (defined as the percentage of pa-
tients with alerts that go on to develop AKI, also known as
positive predictive value [PPV]), recall (the percentage of
patients who developed AKI who were identified by the
alert system), negative predictive value (NPV), F1-statistic
(a machine learning metric combining precision and
recall), and the area under the curve for both the 48-hour
and 72-hour AKI prediction models.18 For the purposes of
these calculations, true positives were defined as cases that
generated an alert and developed AKI within the specified
timeframes and true negatives were defined as cases that
did not generate an alert and then did not develop AKI
within the specified timeframes. False positives were cases
with an algorithm alert that did not develop AKI, and false
negatives were those cases without an alert who did
develop AKI within the 48-hour or 72-hour timeframe.
We used Python v3, Tensorflow 2.14, cuda 11.7, Shapley
additive explanations, scikit-learn and pandas (The Python
Software Foundation for all analyses.
Kidney Med Vol 6 | Iss 12 | December 2024 | 100918
Data Preprocessing (Risk Factor Importance

Analysis)

The RNN-GRU model selected for the time series analysis
is well-suited to longitudinal prediction but does not allow
determination of relative predictor importance.19 To give
an idea of the relative importance of each risk factor, we
also developed an artificial neural network (ANN) model
that allows for this analysis. Longitudinal data from each
unique admission was compressed into a single row.
Laboratory values and vital signs were divided into 2
separate variables consisting of the highest and lowest
values before AKI. At least one patient-day was required to
qualify as high-nephrotoxin exposure by NINJA criteria for
inclusion. Finally, medications with a clear class effect,
specifically angiotensin-converting enzyme inhibitors
(ACEi) and angiotensin receptor blockers (ARBs), contrast
agents, nonsteroidal anti-inflammatory drugs, and calci-
neurin inhibitors, were grouped together (Table 1).

Machine Learning Algorithm Development (Risk

Factor Importance Analysis)

The ANN model incorporated sequential layers, including
dense layers with varying units (256 and 128) activated by
ReLU. Dropout layers (0.5) were added for robustness,
and L1 and L2 regularization techniques were used for
feature stability. The final dense layer, activated by sig-
moid, produced binary classification outputs. For optimi-
zation, the Adam optimizer with tailored learning rates and
decay was employed. Training utilized binary cross-
entropy loss with early stopping and learning rate
(0.001) to prevent overfitting. The ANN was trained on a
subset of data (batch size 128) and Shapley additive ex-
planations was employed to assess feature importance.
RESULTS

Patient Characteristics and Nephrotoxins

After inclusions and exclusions, there were 37,300 patient-
days that met criteria for high-nephrotoxin exposure from
14,480 patients and 18,180 unique admissions (Fig 1).
Hospital characteristics of patients with a high-
nephrotoxin exposure are shown in Table 2. The most
encountered nephrotoxins among patients with high-
nephrotoxin exposure were vancomycin (68%), iopami-
dol (63%), and piperacillin-tazobactam (45%). Lisinopril
and acyclovir were given for at least 1 day in 15%-20% of
such admissions, and ibuprofen, losartan, ketorolac, tacro-
limus, and valacyclovir were each prescribed in 5%-10% of
admissions. Notably, this cohort had long hospital stays
(median 9 days) and a high rate of in-hospital mortality
(31%) when compared with the general inpatient
population.

NINJA Performance

In the testing cohort, 1,591 out of 5,555 patients (29%)
who would have received a NINJA alert due to high-
3



Unique Admissions >2 days at University of 
Iowa Hospital, 2017 - 2022 

N = 105,585

N = 18,781

N = 18,275

N = 18,249

N = 18,180

Baseline CreaƟnine ≥4.0 mg/dL
N = 26

Missing BMI values
N = 69

Missing Laboratory or Vital Sign Data
N =506

Absence of high nephrotoxin exposure by 
NINJA criteria

N = 86,804

Figure 1. Cohort definition flowsheet.
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nephrotoxin exposure, developed AKI within 48 hours.
Therefore, NINJA would have issued 2.5 false alerts per
case of AKI. Although this approach has perfect sensitivity
(100%), the PPV is only 0.29 (95% CI, 0.29-0.29).
Similarly, at 72 hours, 1,775 (32%) patients with high-
nephrotoxin exposure had developed AKI (2.1 false alerts
per case of AKI).

RNN-GRU Model Performance (48 hours)

In comparison, the RNN-GRU model generated 1,705
alerts, of which 1,027 (60%) developed AKI within 48
hours. Therefore, the RNN-GRU model had a PPV of 0.60
(95% CI, 0.58-0.62), and a rate of 0.7 false alerts per case
of AKI. Of the 1,591 patients who developed AKI, the
model identified 1,027 correctly, giving a recall of 0.65
(0.63-0.67). The weighted F1-score was 0.78 (0.77-
0.79), demonstrating good combined precision and recall.
There were 564 false negatives out of 3,850 nonalerts,
giving a NPV of 0.85 (0.84-0.86), and the area under the
curve was 0.82 (0.81-0.83).

RNN-GRU Model Performance (72 hours)

At 72 hours, 1,775 (32%) patients with high-nephrotoxin
exposure out of 5,555 had developed AKI. The 72-hour
RNN-GRU model generated 2,250 alerts with a PPV of
0.57 (0.55-0.58), and a rate of 0.8 false alerts per case of
AKI. Comparisons of performance characteristics for all
models are given in Table 3.

Risk Factor Importance

The most important risk factors for AKI prediction in the
ANN model are given in Fig 2. Components of the com-
plete blood count, specifically the lowest hemoglobin and
highest white blood cell count, were 2 of the 3 most
predictive risk factors, along with the lowest MAP. Baseline
creatinine was the 4th most predictive of AKI develop-
ment. Acyclovir, piperacillin-tazobactam, calcineurin in-
hibitors, and angiotensin-converting enzyme inhibitor/
4

angiotensin receptor blockers (ACEi/ARBs) were the 4
most important pharmacologic risk factors.
DISCUSSION

Use of a machine learning model to predict AKI devel-
opment in a cohort of patients with high-nephrotoxin
exposure decreased the number of false alerts from 2.5
to 0.7 per case of AKI, which addresses a major barrier to
the implementation of nephrotoxic AKI prevention pro-
grams in the adult population.

In this analysis, we applied a RNN with GRU model to
an adult inpatient population to predict the development
of AKI after high-nephrotoxin exposure. This model
resulted in a higher PPV without a substantial decrease in
the number of AKI cases identified. We then used an ANN
to identify key factors for the prediction of AKI. Overall,
the RNN-GRU machine learning model we developed may
allow for more targeted AKI prevention efforts and greater
efficiency of resource utilization.

Our machine learning model incorporates clinical var-
iables in addition to medication data to better predict
which patients with high-nephrotoxin exposure would
develop AKI, with the goal of increasing the efficiency of
AKI prevention programs. The highly successful NINJA
program was originally developed in pediatrics and pro-
actively identifies high-risk patients before the develop-
ment of AKI.10,11 Our recent study subsequently
demonstrated that the NINJA high-nephrotoxin exposure
criteria can be applied to adult inpatients to identify a
population at risk of AKI.12 However, the total number of
alerts generated was more than 10-fold greater in adults
than in our children’s hospital, and only 29% of patients
with high-nephrotoxin exposure alerts went on to develop
AKI. Our RNN-GRU machine learning model was able to
greatly improve predictive accuracy by adding clinical
features to NINJA high-nephrotoxin exposure criteria.
Using the NINJA high-nephrotoxin exposure criteria, 2.5
Kidney Med Vol 6 | Iss 12 | December 2024 | 100918



Table 3. Performance Characteristics for NINJA and the 2
Machine Learning Models

Characteristics NINJA
RNN-GRU
(48 h)

RNN-GRU
(72 h)

Positive
predictive value

0.29 0.60 (0.58-0.62) 0.57 (0.55-0.58)

Negative
predictive value

N/A 0.85 (0.84-0.86) 0.85 (0.84-0.86)

Recall 1.0 0.65 (0.63-0.67) 0.72 (0.70-0.74)
F1-statistic 0.29 0.78 (0.77-0.79) 0.74 (0.72-0.75)
Area under the
curve

N/A 0.82 (0.81-0.83) 0.81 (0.79-0.82)

Sensitivity 100% 65% (62%-67%) 72% (70%-74%)
Specificity N/A 83% (82%-84%) 74% (73%-76%)
Positive
likelihood ratio

N/A 3.8 (3.5-4.1) 2.8 (2.6-3.0)

Negative
likelihood ratio

N/A 0.43 (0.40-0.46) 0.38 (0.35-0.41)

False alerts per
AKI

2.45 0.66 (0.61-0.72) 0.75 (0.72-0.82)

Note: Because the NINJA model functionally assumes all high-nephrotoxic
exposures will develop AKI, it has no “negative” values, rendering several
metrics incalculable within this approach.
Abbreviations: AKI, acute kidney injury; NINJA, nephrotoxic injury negated by
just-in time action; RNN, recurrent neural network; GRU, gated recurrent unit.

Table 2. Demographics, Comorbidities, Laboratory Results, Vital
Signs, and Medication Usage During the Index Hospitalization
for Patients With at Least One High-Nephrotoxin Exposure Day

Characteristicsa

High-Nephrotoxin
Exposure

(n = 18,180)
Age, y, median (IQR) 61 (49-70)
Female sex 7,861 (43.3)
Caucasian race 16,330 (89.9)
Body mass index, median (IQR) 28 (24-34)
Comorbid conditions
Chronic pulmonary disease 2,920 (16.1)
Diabetes mellitus 2,666 (14.7)
Congestive heart failure 2,075 (11.4)
Cerebrovascular disease 2,063 (11.4)
Peripheral vascular disease 1,366 (7.5)
Cirrhotic liver disease 1,227 (6.8)
Myocardial infarction 784 (4.3)

Prehospital serum creatinine, median (IQR) 0.7 (0.5-0.9)
Highest serum creatinine, median (IQR) 1.1 (0.8-1.5)
Highest white blood count, median (IQR) 13.9 (9.8-19.8)
Lowest white blood count, median (IQR) 6.6 (4.7-8.8)
Highest hemoglobin, median (IQR) 11.8 (10.1-13.4)
Lowest hemoglobin, median (IQR) 9.0 (7.4-10.8)
Highest platelet count, median (IQR) 319 (225-451)
Lowest platelet count, median (IQR) 184 (116-260)
Highest temperature, median (IQR) 99.8 (99.3-99.9)
Lowest mean arterial pressure, median
(IQR)

65 (57-72)

Medications
Vancomycin 12,259 (67.5)
Iopamidol (contrast dye) 11,371 (62.6)
Piperacillin-Tazobactam 8,206 (45.2)
Lisinopril 3,510 (19.3)
Acyclovir 3,115 (17.1)
Ibuprofen 1,614 (8.9)
Losartan 1,606 (8.8)
Ketorolac 1,535 (8.4)
Tacrolimus 1,275 (7.0)
Valacyclovir 1,052 (5.8)

Admission service
Medicine 7,544 (41.5)
Other 4,297 (23.6)
Surgery 3,477 (19.1)
Heart and vascular 1,448 (8.0)
Neurology and neurosurgery 1,404 (7.7)

ICU admission 4,522 (24.9)
Length of stay, d, and median (IQR) 9 (5-16)
In-hospital mortality 5,563 (30.6)
Abbreviation: ICU, intensive care unit; IQR, interquartile range.
aPresented as N (%) unless otherwise indicated.

Griffin et al
false alerts were generated for each true case of AKI,
compared with our RNN algorithm, which generated only
0.7 false alerts per case of AKI. The RNN model correctly
identified and predicted 1,027 of 1,591 cases (65%) of
AKI in our validation dataset. Thus, the number of alerts
Kidney Med Vol 6 | Iss 12 | December 2024 | 100918
was decreased by half, while two-thirds of eventual AKI
cases were still predicted by the model.

One potential downside of our model that must be
considered is an increase in false negatives. Our model
performed well with an NPV of 0.85, but because the
previous NINJA algorithm alerted for every patient with a
high-nephrotoxin exposure, there were functionally no
false negatives previously. As noted above, this perfect NPV
came at the expense of false positives, which led to alert
fatigue and increased resource utilization. Because we
anticipate that these will be the biggest barriers to program
uptake, we felt that the large gains in PPV sufficiently
balanced the lower NPV at present; however, this balance
could be reevaluated and updated in successive iterations
of the model.

The RNN-GRU model is well-suited to modeling lon-
gitudinal medical data and has a number of inherent ad-
vantages that significantly improve predictive power over
other machine learning approaches and over traditional
modeling techniques such as logistic regression.20 How-
ever, one downside is the black-box nature of this model,
which makes it impossible to determine how the model is
making its predictions. To add clarity on which risk factors
may be most impactful in nephrotoxic AKI prediction, we
used an explanatory ANN model to evaluate predictive risk
factor importance. It is important to note that the outcome
and output variables used in these models are slightly
different: the RNN-GRU model predicts AKI within
48 hours of high-nephrotoxin exposure, whereas the ANN
model predicts nephrotoxic AKI during the course of a
hospitalization. These caveats notwithstanding, the risk
factor importance analysis yielded several interesting ob-
servations. First, laboratory data and vital signs were the
5



Figure 2. Factor analysis showing the most important prediction
variables in the ANN algorithm for nephrotoxic AKI prediction.
Red correlates with higher likelihood and blue with lower likeli-
hood of AKI development. ACEi, angiotensin-converting enzyme
inhibitor; ARB, angiontensin receptor blocker; ICU, intensive
care unit; NSAID, nonsteroidal anti-inflammatory drug; WBC,
white blood cell.

Griffin et al
most important features, which is likely why the RNN-
GRU model’s accuracy was so much greater than NINJA
high-nephrotoxin exposure criteria alone. This suggests
that NINJA might benefit from formally incorporating
more clinical data, ideally through the implementation of
an effective machine learning model such as our RNN-
GRU model. Second, the most important medications
were acyclovir, piperacillin-tazobactam, calcineurin in-
hibitors, and ACEi/ARBs, providing direction on which
medications may be most important in predicting AKI for
high-risk patients.

When looking at variable importance, it is important to
note that predictive importance within the model does not
necessarily indicate causation. For instance, being admitted
to a medicine service was predictive of AKI development,
which is likely because of underlying differences in patient
populations and reasons for admission not captured fully
by other variables. Similarly, ACEi/ARB agents were
among the most predictive medications for AKI develop-
ment but may not truly induce tubular damage in the way
the nephrotoxin label implies,21 depending on clinical
circumstances. This observation has implications for future
implementation of nephrotoxic AKI prevention programs
in adults. For instance, it would not be advisable to transfer
high-risk patients off medicine teams, and ACEi/ARB
discontinuation may or may not be appropriate depending
on clinical circumstances. For medications with more
established nephrotoxicity, it is still important to consider
whether an alternative agent is likely to provide similar
benefit to avoid potential harms from inadequate treatment
of underlying diseases.
6

NINJA has been shown to be effective in reducing rates
of nephrotoxic AKI in both a single-center study and in a
large multicenter validation,10,11 Within the larger
context of AKI alert systems, the impact of NINJA on
clinical outcomes is an outlier. Several early trials using
decision support tools in patients with reduced kidney
function (due to either AKI or chronic kidney disease)
demonstrated improvements in prescription patterns and
appropriate medication dosing but did not examine
clinical outcomes.22,23 More recent trials of AKI alert
systems have shown improvements in physician aware-
ness and discontinuation of nephrotoxic medications, but
no significant improvements in clinical outcomes such as
AKI progression, dialysis, or death.24-26 Notably, alert
systems to date have focused on intervention after AKI
development, a point that may be too late in the clinical
course to make meaningful impacts. The preventative
focus of NINJA and the live communication between
pharmacists, nephrologists, and primary teams may
explain why this program has been able to successfully
improve patient outcomes whereas other AKI alert sys-
tems have not. However, NINJA’s approach does come at
the cost of a higher number of alerts and greater resource
utilization, which have been major hurdles to NINJA
implementation in adults. Application of our RNN-GRU
algorithm addresses these issues by substantially
increasing predictive accuracy, which will allow for a
more targeted intervention.

Important next steps toward nephrotoxic AKI reduction
in adults should include further validation of this algo-
rithm at other institutions and among diverse patient
populations. The NINJA system should then undergo
prospective efficacy trials and given the growing ability of
electronic medical record systems to incorporate real-time
machine learning prediction algorithms,27,28 we believe
this model should be a component of these future trials.
Adequate power will be needed to determine whether AKI
related to certain classes of medications are more amenable
to intervention and AKI prevention than others. Some
medication classes, such as ACEi/ARB and iodinated
contrast, might be less nephrotoxic than others,21 so
incorporation of additional markers of tubular damage into
the NINJA algorithm should also be considered.

This study has several limitations. Although we
collected 18 nondrug variables, it is possible that other
important clinical characteristics were not included.
Similarly, we collected data on 57 nephrotoxic medica-
tions, but this is not an exhaustive list. Additional medi-
cations and classes (eg immune checkpoint inhibitors)29

are likely to be added to the NINJA nephrotoxic list in
the future, which would require updating of these algo-
rithms. In addition, NINJA does not currently incorporate
medication dose or drug levels,14 which may be important
risk factors for AKI. As noted above, there were differences
in outcomes and variables in the RNN-GRU model when
compared with the ANN model, and so our feature
importance may not fully capture the relative importance
Kidney Med Vol 6 | Iss 12 | December 2024 | 100918
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of these inputs within the time series model. Finally, our
population reflects the University of Iowa Hospitals and
Clinics population (89% Caucasian), which may limit
generalizability of findings and underscores the need for
validation of this model in other settings.

In conclusion, application of a RNN-GRU machine
learning model was able to substantially reduce the num-
ber of false alerts for nephrotoxic AKI in adults, which may
facilitate NINJA translation to adult hospitals by allowing
for more targeted intervention with less resource
utilization.
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