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Abstract

The COVID-19 pandemic has exposed the vulnerability of healthcare services worldwide,

raising the need to develop novel tools to provide rapid and cost-effective screening and

diagnosis. Clinical reports indicated that COVID-19 infection may cause cardiac injury, and

electrocardiograms (ECG) may serve as a diagnostic biomarker for COVID-19. This study

aims to utilize ECG signals to detect COVID-19 automatically. We propose a novel method

to extract ECG signals from ECG paper records, which are then fed into one-dimensional

convolution neural network (1D-CNN) to learn and diagnose the disease. To evaluate the

quality of digitized signals, R peaks in the paper-based ECG images are labeled. Afterward,

RR intervals calculated from each image are compared to RR intervals of the corresponding

digitized signal. Experiments on the COVID-19 ECG images dataset demonstrate that the

proposed digitization method is able to capture correctly the original signals, with a mean

absolute error of 28.11 ms. The 1D-CNN model (SEResNet18), which is trained on the digi-

tized ECG signals, allows to identify between individuals with COVID-19 and other subjects

accurately, with classification accuracies of 98.42% and 98.50% for classifying COVID-19

vs. Normal and COVID-19 vs. other classes, respectively. Furthermore, the proposed

method also achieves a high-level of performance for the multi-classification task. Our find-

ings indicate that a deep learning system trained on digitized ECG signals can serve as a

potential tool for diagnosing COVID-19.

Introduction

Since the initial infection was reported in Wuhan, China at the end of 2019, COVID-19 has

become a global pandemic, infecting more than 500 million individuals and causing more

than 6 million deaths (until the end of April, 2022) [1]. COVID-19 is becoming an endemic

disease that will always be with us [1, 2]. COVID-19 disease, when it becomes an endemic dis-

ease, may still pose problems for many people, especially vulnerable groups like the elderly and

those with pre-existing medical conditions, owing to its rapid contagious [3]. As a result,
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detecting COVID-19 and developing an effective treatment strategy for patients require a fast

and accurate diagnosis.

To diagnose and screen COVID-19 infections, previous studies used a combination of

genome sequencing, nucleic acid molecular testing, clustered regularly interspaced short palin-

dromic repeats editing techniques, antigen/antibody detection, and computed tomography

imaging. Because of their excellent sensitivity and specificity, polymerase chain reaction

(PCR)-based assays are considered the gold standard for virus identification, and Reverse

Transcription PCR (RT-PCR) is the most commonly used diagnostic method [4]. However,

PCR-based detection has some drawbacks, including the need for a high-purity sample, expen-

sive laboratory equipment, expert training, and a long response time [5]. Other molecular

diagnostic techniques, such as clustered regularly interspaced short palindromic repeats

(CRISPR) and gene sequencing, suffer from the same limitations. Chest CT detection is also a

significant method to diagnose patients suspected of having a COVID-19 infection. Most

COVID-19 patients have characteristic radiologic findings in chest CT scans, such as multifo-

cal plaque consolidation and ground glass opacity, according to several studies [6, 7]. However,

Bernheim et al. [8] discovered that CT scans are unable to diagnose 56% of patients in the

early stages of symptom development. Some studies have also reported that some patients who

tested positive for RT-PCR show initially normal X-rays or chest CT scans due to the lung may

not be the target organ of the SARS-CoV-2 infection [8, 9].

Previous studies have shown that COVID-19 may be responsible for various cardiovascular

complications, which has been the impetus for studies using ECG signals to diagnose COVID-

19 [10]. The ECG is an excellent indication of pathological abnormalities in the cardiovascular

system. This research is aimed at the possibility of diagnosing COVID-19 using paper-based

ECG data and Deep Learning (DL) techniques, taking advantage of the most promising ECG

qualities including accessibility, dependability, cheap cost, real-time monitoring, and harm-

lessness. The technique presented in this research is expected to be an accurate and effective

alternative to fill the COVID-19 detection gap.

Several previous studies have also been conducted to evaluate the feasibility of using ECG

signals as a diagnostic method for COVID-19. Khan et al. [11] built a dataset of 1937 ECG

images of Cardiac and COVID-19 patients, which covered 5 classes: COVID-19, Abnormal

Heartbeat, Myocardial Infarction (MI), Previous History of MI (RMI), and Normal Person.

This dataset facilitates subsequent studies to investigate the ability to detect COVID-19 based

on ECG signals. Ozdemir et al. proposed a method called hexaxial feature mapping to repre-

sent 12-lead ECG to 2D colorful images [12]. Specifically, Gray-Level Co-Occurrence Matrix

(GLCM) method was used to extract features and generate hexaxial mapping images. These

generated images are then fed into a new CNN architecture to diagnose COVID-19. Irmak in

[13] introduced a novel deep CNN model to demonstrate the feasibility of using ECG signals

to diagnose COVID-19 and yielded an overall classification accuracy of 98.57%, 93.20%,

96.74% for COVID-19 vs. Normal, COVID-19 vs. Abnormal Heartbeats and COVID-19 vs.

MI binary classification tasks, respectively. Attallah in [14] proposed a pipeline called ECG-

BiCoNet, which makes use of five different deep learning models with different structural

designs. Nevertheless, most of the abovementioned studies utilized ECG images as direct input

into machine learning algorithms. These approaches do not exploit the advantages of 1D sig-

nals such as high temporal resolution, saving computational costs and storage space. Further-

more, feeding images directly into a deep learning model makes the model sensitive to the

type of ECG report form (various ECG printout templates available depending on the type of

ECG machine and ECG file reading program) and image resolution.

In this study, a novel image-to-signal conversion algorithm is proposed, which extracts 1D

ECG signal from ECG printout images. This algorithm is then tested in COVID-19
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classification application to evaluate its efficiency and accuracy. To the best of our knowledge,

this is the first time the ECG signal extracted from ECG printouts was used to detect COVID-

19. This method allows us to normalize data from many sources, removes the model’s reliance

on image quality, and enhances computing performance by using 1D convolution.

In addition, the image-to-signal conversion also benefits ECG data storage. The majority of

ECG records were collected in paper-based form over the years [15]. However, it has the draw-

backs of being damaged over time and being difficult to archive data in order to establish an

electronic medical record database. A good storage effort may be a viable answer to these

issues. The digitization procedure is one of the most efficient ways to save ECG data. The ECG

printouts can be digitized to reduce storage space and to convey various vital morphological

and functional information for clinical and diagnostic scientific study. This digital data can be

then analyzed with a machine learning algorithm to detect heart abnormalities quickly. Previ-

ous studies have developed algorithms to convert paper data into 1D signals [15–18]. These

algorithms, however, were either too complicated or inadequately conceived for our experi-

mental data. In this study, we developed a simple, rapid, and effective method, based on a pixel

tracking algorithm for converting an ECG image to signals. After being extracted, the 12 signal

segments from 12 leads will be concatenated and fed into the SEResNet18 model [19], which

will classify ECG signals of individuals with COVID-19 and other CVDs. Several scenarios

were undertaken to demonstrate the capability of identifying COVID-19 based on ECG sig-

nals. In addition, we evaluated our approach by comparing it against previous studies. The

findings demonstrated that our approach performs competitively and ECG could be a useful

diagnostic tool for COVID-19.

In summary, our main contributions are threefold:

• First, we develop a high-precision COVID-19 vs. other CVDs vs. healthy individuals classifi-

cation system that takes the ECG image as direct input, then the ECG signal is extracted and

fed into a 1D-CNN.

• Second, a novel algorithm for converting ECG paper records to digital signals was devel-

oped, which took ECG images as input and converted them into electronic ECG recording

forms.

• Third, extracted 1D ECG signals are used as input for the machine learning model in the

COVID-19 diagnosis task for the first time, to the best of our knowledge. Extracting ECG

signals from images provides the following advantages: (i) computational cost savings due to

the use of 1D-CNN; (ii) application in converting ECG paper into soft files for archiving;

(iii) hand-crafted feature extraction methods can be applied to ECG signals for further

analysis.

• Last, by simulating the data settings of prior research and conducting extensive experiments,

we demonstrate that models using ECG signal as input outperform the current state-of-the-

art, which does the classification directly on the ECG image. Our codes for signal-to-image

conversion and modeling are made available at https://github.com/vinuni/DiECG-Cov.

This paper is structured as following. In Methods section, the image-to-signal conversion

method is explained. In section Experiments, the used dataset is presented first, followed by a

description of the experimental settings and evaluation criteria that we employ to assess model

performance. In Results section, the experimental results are presented and analyzed. The

main findings and limitations of the study are summarized and some useful suggestions are

provided in Discussions. Finally, the entire study are summarized in the Conclusion section.
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Methods

Our proposed approach for identifying COVID-19 from ECG images involves two steps: con-

verting images into 1D signals and feeding these signals into a CNN model that distinguishes

between COVID-19, other CVDs, and normal ECG. The schematic diagram for the proposed

system is illustrated in Fig 1.

Image-to-signal conversion algorithm

ECG data is often stored in paper form, which consumes storage space, and as a machine

learning model input, 2D image data requires more computational cost than time series data

(1D signal). For those reasons, we extract the 1D ECG signal from the scanned ECG paper and

use that signal as input to the classifier. The procedure for extracting the ECG signal consists

of 5 steps as depicted in Fig 2. First, the scanned image is converted to a binary image. From

the binary image, the isoelectric lines of the ECG signal are found, and from the position of

these lines, the image of each lead is separated. Since the binary image contains noise and

Fig 1. Schematic diagram of COVID-19 identification system. The process consists of 2 steps: converting ECG images to signals and classifying the

resulting ECG signals.

https://doi.org/10.1371/journal.pone.0277081.g001

Fig 2. Procedure for converting paper-based ECG scans to 1D signals. The process of converting image to signal consists of 5 steps: image binarization,

isoelectric line detection, lead separation, noise removal and signal extraction.

https://doi.org/10.1371/journal.pone.0277081.g002
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artifacts, a noise removal algorithm is required. Finally, from the signal image of each lead, the

ECG signal is extracted and concatenated to form a time series ECG signal.

Image binarization. ECG scans are converted from colored to binary by Otsu’s method

[20] to facilitate further processing.

Isoelectric lines detection. It is critical to find the position of the isoelectric lines in the

ECG recording, which can deduce the area of each lead on the image. Due to the characteristic

of the isoelectric lines, when projecting the ECG image in the vertical direction, the data points

(black points as shown in Fig 3a) will be concentrated with high intensity at their position. As

shown in Fig 3b, the vertical histogram of the image has peaks at the positions of the isoelectric

lines. Thus, finding the position of the isoelectric lines can be done by finding the peaks of the

histogram. As shown in Fig 3d, the isoelectric lines are detected (the black horizontal lines)

and shared by four signals corresponding to four ECG leads each.

Lead seperation. From the position of the detected isoelectric lines, we separate the image

of each lead by zoning vertically from the upper isoelectric line minus L pixels to the lower iso-

electric line plus L pixels (L depends on the characteristics of ECG images, specifically the

Fig 3. Vertical and horizontal histograms of the ECG image. (b) and (c) are the vertical and horizontal histograms of image (a), respectively. (b) has peaks

corresponding to positions of the horizontal lines at the top of the paper and the isoelectric lines of the ECG signal. (c) has three peaks corresponding to

lines separating the leads. In (d), the black line depicts the positions of all isoelectric lines.

https://doi.org/10.1371/journal.pone.0277081.g003
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thickness of ECG lines). The boundary between leads sharing an isoelectric line is detected

based on the horizontal histogram of the image. Fig 3c shows the horizontal histogram of the

image in Fig 3a. Due to the presence of characters referring to the name of leads in the ECG

paper, the segment of image containing those characters is cropped. Once the vertical and hor-

izontal boundaries of the leads found, we crop the image of each lead for further processing.

Fig 4a and 4b are instances of an ECG printout and image of lead V2 cropped from it.

Noise and artifacts removal. The binary image is embedded in noise and artifacts from

the grid and adjacent signals (as shown in Fig 4b). We built a simple yet effective algorithm

that separates the image of the ECG signal from noise and artifacts. The first step involves ini-

tializing a point that belongs to the isoelectric line and has a pixel value of 0. This point has

coordinate (n, b) (b is the y-intercept of the isoeletric line). Pixels satisfying the following three

conditions i) located on the same column as the starting point; ii) having a value of 0 and iii)

less than N pixels away from the starting point; are retained. Pixels with a value of 0 in the nth

column of the image and are less than N pixels away from the isoelectric line are considered

pixels of the ECG signal in that column. Similar to L, the value of N depends on the character-

istics of ECG images, specifically the thickness of ECG lines. The maximum coordinate (cmax)

and the minimum coordinate (cmin) of pixels 0 in that column are calculated. In the next col-

umn, pixels with coordinates from cmin − N to cmax + N are considered; and among them, pix-

els with value 0 are retained. cmax and cmin values of this column are again calculated, and the

search for ECG pixels in the next column is carried out.

From the starting point, we track in two directions: to the left edge of the image and to the

right edge of the image. At the end of the process, only ECG pixels are retained. The noise

removal algorithm is detailed in Algorithm 1 and Fig 5. Fig 4c is the result of the ECG tracking

algorithm applied to Fig 4b with N = 10. This image contains no noise and artifacts, and is the

input for the ECG signal extraction.

Algorithm 1 Noise and artifacts removal algorithm
Ensure: Separate the image of ECG signal from noise and artifacts in
img and save it to img_copy
W = img.shape[1]
img_copy = 255�np.ones_like(img)
Initialize n .Random point for ECG image tracking
col = img[b − N: b + N, n] .b: baseline position
col = np.where(col)
img_copy[col + cmin, n] = 0

Fig 4. Image processing for ECG signal extraction. (a) is a binary image of the ECG signal, (b) is an image of the lead V2 signal cropped from (a), (c) is the

image of signal after removing noise and artifacts. In (c), there are small noise spots around the signal. These spots were filtered out in (d), leaving only the

ECG signal image.

https://doi.org/10.1371/journal.pone.0277081.g004
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cmax = max(col)
cmin = min(col)
for i in range(n+1, W) do
col = img[cmin − N: cmax + N, n]
col = np.where(col==0)
img_copy[col + cmin, n] = 0
cmax = max(col)
cmin = min(col)

Fig 5. ECG pixel tracking algorithm. (a) Signal image with noise and artifacts; (b) ECG pixel tracking algorithm with N = 6; (c)
Image of signal without noise and artifacts.

https://doi.org/10.1371/journal.pone.0277081.g005
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end for
for i in range(n-1, -1, -1) do
col = img[cmin − N: cmax + N, n]
col = np.where(col==0)
img_copy[col + cmin, n] = 0
cmax = max(col)
cmin = min(col)

end for
Signal extraction. The image containing only the ECG pixels is the subject of the image-

to-signal conversion.

Extraction of 1D ECG signals from images is conducted by scanning the image horizon-

tally. The amplitude of the ECG signal at a specific column is equal to the average of the pixel 0

positions of that column minus the isoelectric line position. For columns missing pixel 0, the

signal amplitude is taken as the value of the signal point immediately preceding it. Once the

scanning is done, the length of the resulting signal is equal to the number of image’s columns.

Each ECG printout has reference pulses in the form of a square pulse (as shown in Fig 6).

In Fig 6a, 6b and 6d, the reference square pulses have a width corresponding to 0.1 s and a

Fig 6. Four types of 12-lead ECG reports in the COVID-19 ECG images dataset.

https://doi.org/10.1371/journal.pone.0277081.g006
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height corresponding to 0.5 mV. In Fig 6c the reference pulse is 0.2 s and 0.5 mV for width

and height, respectively. Determining the width and height of these square pulses makes the

image-to-signal conversion consistent in time and amplitude. In addition, the scale conversion

also helps to display the signal accurately in terms of amplitude and time. In this study, we con-

vert all the records to the same sampling frequency of 200 Hz. Fig 7a depicts an ECG signal

image, and Fig 7b depicts the signal extracted from Fig 7a.

Signal quality assessment. Once the 1D ECG data have been obtained, we assess its qual-

ity to guarantee that the image-to-signal conversion algorithm functions properly and that the

resulting signal can be used as input for the machine learning model. After randomly selecting

50 samples from each category, we hand-labeled the R peaks of the lead II signal in these

images and regarded the resulting positions as ground truths to evaluate our algorithm against.

The selected samples are also fed into our proposed image-to-signal conversion, and the gener-

ated signals were exposed to NeuroKit2’s [21] R peak detection algorithm to obtain the posi-

tions of R peaks. Finally, we evaluate our algorithm by comparing its output against the

ground truths, specifically by quantifying the difference in the RR intervals (the time elapsed

between two successive R-waves) using the mean absolute error (MAE) metric.

Experiments

Experimental setups

Dataset. COVID-19 ECG images dataset—a publicly available dataset of ECG images of

cardiac and COVID-19 patients was used in this study. Khan et al. from the University of

Management and Technology shared the dataset to Mendeley Data [11]. The dataset contains

photos of 1937 paper-based ECG reports. ECG records for 250 COVID-19 patients, 77 MI

patients, 548 individuals with irregular heartbeats (recovered from COVID-19 or MI), 203

patients with MI history (RMI), and 859 people without any cardiac abnormalities were ana-

lyzed by experts. The provided dataset is the first ECG dataset for COVID-19 disease that has

been shared and is completely anonymized. We did not seek approval from an ethics commit-

tee and participants’ consent for this study because (i) the previous study during which the

dataset was collected already obtained necessary approval, (ii) the dataset is completely

Fig 7. (a) Image of an ECG signal in lead II after preprocessing and (b) the resulting signal after image-signal

conversion.

https://doi.org/10.1371/journal.pone.0277081.g007
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anonymized and contains no personal information which can be used to identify patients, and

(iii) no further data are collected during this study.

The ECG images in the dataset are from a 12-lead system (I, II, III, aVR, aVL, aVF, V1, V2,

V3, V4, V5, and V6) at a sampling rate of 500 Hz. ECG data were gathered using an EDAN

SE-3 series 3-channel electrocardiograph, and some of the signals were applied with a 0.67–25

Hz bandpass filter, while others were processed with a 0.5–100 Hz bandpass filter and a 50 Hz

notch filter, according to the paper-based ECG reports.

The dataset has some limitations. In particular, the dataset is considerably imbalanced,

with 859 samples of normal ECG (the class with the most samples) and 77 samples of MI

ECG (the class with the fewest samples). Besides, the dataset consists of four different types of

reports, which are different in (i) image size and resolution; (ii) ECG report template; (iii)

grid background, and (iv) reference pulse. Four types of ECG printout templates are shown

in Fig 6. Using the signal extracted from the ECG image is not only reduces the computa-

tional cost but also removes disparities in ECG printout templates, making the prediction

more objective.

Experiments. To evaluate the capability of diagnosing COVID-19 based on ECG data,

three classification tasks are covered: (i) COVID-19 and normal ECG; (ii) COVID-19 and oth-

ers; (iii) COVID-19, normal and others. As the number of samples in MI and RMI classes is

relatively small, the merging of MI, RMI, and abnormal into a class could alleviate the effects

of data imbalance. The number of images used in each problem is detailed in Table 3.

To evaluate the effectiveness of this method, we also compare its performance against the

results of previous studies performed on the COVID-19 ECG images dataset. We simulate the

data splitting of previous studies and execute similar classification tasks [12–14].

Implementation details. In this study, all experiments were conducted using Intel core

i9-10900X CPU @ 3.70GHz, RAM 31 GB hardware and NVIDIA GeForce RTX 3080 Ti GPU.

We trained 110 epochs for each model, with a mini-batch size of 16, and evaluated model per-

formance after each epoch. Checkpoint with the highest F1-score against the test set was con-

sidered the best model for each training procedure. As the backbone of the COVID-19 vs.

Normal classifier, we apply multiple architectures, then select the model with the best perfor-

mance to train other classification tasks. The utilized architectures are SEResNet18 [19],

ResNet18 [22], ResCNN [23], Sequence Stroke Net [24], LSTM Fully Convolutional Network

(LSTM FCN) [25], GRU Fully Convolutional Network (GRU FCN) [26], InceptionTime [27],

XceptionTime [28] and Time Series Transformer (TST) [29]. We adopted Adam optimizer

[30] (β1 = 0.9, β2 = 0.999 and learning rate = 1e-3), cooperating with Cosine annealing learn-

ing rate [31] with the maximum number of iteration set to 25 and the learning rate stop decay-

ing at 100th epoch. As a criterion for training, the label smoothing cross-entropy loss function

with a smoothing factor of 0.1 was used. We selected the most suitable hyper-parameters using

simple grid search strategy and experimental results.

To evaluate the performance of the models, a nested cross-validation method was

employed for each trial. The dataset was first divided into 5 folds, with 1 set used for testing

and the rest used for training and validation. In each iteration, we used 4-fold cross-valida-

tion to further split the data between training and validation. Classification performance

was evaluated for each fold, and then the average classification performance of each model

was calculated. To ensure that the data distributions in training, validation and test sets were

the same as in the original dataset, stratified splitting was adopted for both cross-validation

steps.

We used all of the samples in the dataset that are relevant to the considered classes for each

classification task. The number of images used for each task is listed in Table 3.
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Evaluation metrics

To evaluate the quality of the ECG signals extracted from the images, we used mean absolute

error (MAE) as the evaluation metric. The mean of the RR intervals in the ground truth and

the resulting signal is calculated, then MAE value is calculated. Eq 1 gives the formula for com-

puting the MAE.

MAE ¼
PN

i¼1
jmRRi �

^mRRi j

N
ð1Þ

Where N is total number of ECG images; mRRi is the mean of RR intervals calculated from ith

image; ^mRRi is the mean of RR intervals of the corresponding signal.

In terms of the CNN model, model performance is assessed utilizing well-known evaluation

metrics such as Accuracy, F1-score, Specificity, Sensitivity, and AUC (Area Under the Curve

of the Receiver Operating Characteristic).

Results

Experimental results and implications

ECG signal quality assessment. Extracted signal quality assessment was evaluated on a

certain number of samples in the dataset. The number of samples in each class, as well as the

MAE of the RR interval, are listed in Table 1. Despite starting with 50 samples in each class,

the RR interval cannot be calculated for samples with only one R peak and thus the reported

sample counts were less than 50.

The MAE values range from 11.09 ms to 63.75 ms, as shown in Table 1. Normal class has

the lowest MAE (11.09 ms) due to the regular and stable ECG waveform. Class MI has the

highest MAE of 63.75 ms, due to the unstable of ECG form of patients with MI disease. The

MAE values for COVID-19, Abnormal, and RMI classes are 16.07 ms, 25.73 ms, and 27.57 ms,

respectively. Overall, the mean MAE of the tested samples is 28.11 ms, which is 3.7% of the RR

interval for a person with an 80 bpm heart rate (equivalent to a mean RR interval of 750 ms).

ECG signal classification. Table 2 compares the COVID-19 vs. normal classification

results between different models. With an f1-score of 0.9842 and an AUC of 0.9735, the SERes-

Net18 model outperforms the others. The XceptionTime model has the best classification

accuracy (98.58%), while the ResNet18 model has the fastest inference time (18.34 ms per sam-

ple). According to the obtained results, we choose the SEResNet18 with some modifications as

the backbone for other classification tasks. Convolution (Conv) layers are modified with a

larger kernel size (kernel_size = 7) and a stride parameter of 1 in order to capture longer pat-

terns in ECG data. For ECG data in specific and time-series data in general, this technique has

been recommended to be more effective [27, 32].

Table 1. Evaluation results of ECG signal quality obtained from image-to-signal conversion algorithm. Evaluation

was performed on 226 random samples belonging to 5 classes, with mean absolute error of RR interval of 28.11 ms.

Number of images MAE (ms)

COVID-19 42 16.07

MI 41 63.75

RMI 48 27.57

Abnormal 47 25.73

Normal 48 11.09

Total 226 28.11

https://doi.org/10.1371/journal.pone.0277081.t001
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Table 3 covers all of the experimental results for each classification task. Patients positive

for COVID-19 were distinguished from normal patients and patients negative for COVID-19

with high accuracy of 98.42% and 98.50%, respectively. The classification accuracy and AUC

were 83.17% and 0.8748 in the case of classifying patients with COVID-19, Normal and

remaining classes. The majority of misclassified samples include COVID-19 ECGs with identi-

cal characteristics to those of normal ECGs, indicating that the ECG waveform of the patients

has not changed.

It is also crucial to discover whether the network is making the decision based on the rele-

vant segment of the ECG signal or somewhere else. For different classes of ECG data, heat

maps based on the Grad-CAM technique [33] were constructed. Fig 8 shows heat maps gener-

ated with the best-performing models and Fig 9 depicts t-SNE plots [34] to visually highlight

the capacity to distinguish between COVID-19 and other conditions.

Comparison with state-of-the-arts

Table 4 summarizes the experimental results and comparisons against previous studies using

the same ECG dataset. The proposed method has an accuracy of 0.6% higher than that of pre-

vious studies in the COVID-19 vs. Normal classification problem and up to 6.72% and 6.43%

higher in the other classification problems in terms of to accuracy and F1-score, respectively.

Discussions

In addition to having hazardous effects on human health, the COVID-19 pandemic has

placed a significant strain on the healthcare system. To alleviate this problem, a rapid and

Table 2. Classification results of COVID-19 vs. normal of the different models based on evaluation metrics are F1-score, accuracy, sensitivity, specificity, AUC and

inference time.

F1 score Accuracy (%) Sensitivity (%) Specificity (%) AUC Inference time (ms)

SEResNet18 0.9842 97.72 97.35 98.14 0.9735 36.95

ResNet18 0.9738 98.20 96.89 97.94 0.9689 18.34

ResCNN 0.9761 98.35 97.09 98.18 0.9709 19.61

Sequence StrokeNet 0.9684 97.84 96.12 97.68 0.9612 24.63

LSTM FCN 0.9723 98.08 96.81 97.73 0.9681 48.80

GRU FCN 0.9703 97.93 96.89 97.23 0.9689 81.23

Inception Time 0.9780 98.49 97.18 98.52 0.9718 81.28

Xception Time 0.9792 98.58 97.28 98.67 0.9728 44.40

TST 0.9733 98.17 96.62 98.14 0.9662 32.93

https://doi.org/10.1371/journal.pone.0277081.t002

Table 3. Results of classifying COVID-19 patients with other groups. Three classification tasks were completed in order to determine whether ECG signals might be

used to diagnose COVID-19.

Classification task Number of images Accuracy (%) F1-score (%) Sensitivity (%) Specificity (%) AUC (%) Inference time (ms)

1 COVID-19 250 98.42 97.72 97.35 98.14 97.35 36.95

Normal 859

2 COVID-19 250 98.50 96.55 95.39 97.93 95.39 66.20

Others 1687

3 COVID-19 250 83.17 85.38 84.81 86.28 87.48 77.56

Normal 859

Others 828

https://doi.org/10.1371/journal.pone.0277081.t003
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straightforward method for COVID-19 diagnosis is required. The use of a deep learning meth-

odology using 1D signals converted from ECG images to detect COVID-19 shows potential as

a novel diagnostic procedure.

When compared against previous works on the same dataset, our method performed com-

petitively. The following reasons may contribute to the proposed method’s better performance:

Fig 8. (a, b) Grad-CAM visualization of ECG image with COVID-19. (c, d) Grad-CAM visualization of ECG image

with MI. Signal segments significant to the classifier are depicted in darker color.

https://doi.org/10.1371/journal.pone.0277081.g008
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(i) white pixels contain no information, although they account for a major portion of the

image; (ii) the amount of data required to train a 2D CNN is greater than that of 1D CNN [35]

while the experimental dataset contains a modest number of samples (250 images for COVID-

19 class), and (iii) it is thought that for ECG signal processing, a CNN with a larger kernel size

and a lower stride value (compared to values often used in image processing) would be more

effective in capturing the temporal correlation of adjacent signal points [32].

This study contributes to the literature in numerous ways in this regard. These contribu-

tions can be summarized as follows:

• Our work, together with previous research, demonstrated the capability to automatically dis-

tinguish COVID-19 patients by ECG signals with high sensitivity, cost-effectiveness, and

non-invasiveness.

• To classify paper-based ECG data, a new and effective technique was developed, in which

signals from a standard 12-lead ECG are extracted from the image and utilized as input to a

1D CNN model. This is the first time the ECG signal extracted from ECG printouts was used

to detect COVID-19, to the best of our knowledge.

Fig 9. t-SNE plots of ECG data of different classes separated at the models’ last convolutional layer.

https://doi.org/10.1371/journal.pone.0277081.g009

Table 4. Comparison to state-off-the-arts. To evaluate the efficacy of our method in comparison to others, data was split in a way that simulates related studies. Dashes

(-) represent values not reported in the original paper. Our results are in bold.

Ref Classification problem Method Accuracy F1-score

[12] 2-class classification (COVID-19 and normal) Hexaxial feature mapping 96.25% 0.9630

Ours 96.85% 0.9685

2-class classification (COVID-19 and others) Hexaxial feature mapping 93.30% 0.9320

Ours 96.78% 0.9570

[13] 2-class classification (COVID-19 and normal) Novel CNN 98.57% -

Ours 99.12% 0.9870

2-class classification (COVID-19 and abnormal) Novel CNN 93.20% -

Ours 95.01% 0.9398

[14] 2-class classification (COVID-19 and normal) ECG-BiCoNet 98.80% 0.9880

Ours 99.02% 0.9901

3-class classification (COVID-19, normal and abnormal) ECG-BiCoNet 91.73% 0.9150

Ours 98.45% 0.9793

https://doi.org/10.1371/journal.pone.0277081.t004
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• The following benefits are provided by the image-to-signal conversion: (i) Less computa-

tional costs;(ii) More robust classification, regardless of the ECG report template and the res-

olution of ECG images; (iii) Less storage costs by using 1D data instead of 2D;

• Our experiments confirmed the differences in ECG data of patients with COVID-19 and

persons without any cardiac findings, as well as patients with other CVDs. The findings of

the experiments might indicate the presence of COVID-19-induced cardiovascular changes.

There are some drawbacks to our proposed method. Firstly, similar to all current image-

signal conversion algorithms, our proposed algorithm is sensitive to the shape of the ECG

signal. The algorithm cannot differentiate the ECG signal in different leads if their amplitude

is too high and combine together (signals with excessive amplitude are caused by noise or

abnormal electrical activity of the heart due to CVDs). Furthermore, although the proposed

method has been tested with variety of experimental scenarios, it still has to be evaluated with

different datasets. In future works, we expect to integrate a COVID-19 diagnosis module into

a mobile application, which will help medical practitioners by providing a quick and accurate

approach to identifying COVID-19. Finally, although our method only produced the final

diagnosis, an additional output that highlights the anomalies in the ECG [36] of COVID-19

patients can also be helpful to cardiologists. Other potential approaches will be considered

include training deep learning models with hierarchical disease dependencies [37] or demo-

graphic data [38].

Conclusion

In this work, a novel and effective method for automatically detecting COVID-19 utilizing

ECG printouts is proposed. The proposed approach is based on an image-to-signal conversion

algorithm, which extracts 1D ECG signal from scanned ECG printouts and feeds it into the 1D

SEResNet18 model. We have run experiments on various scenarios and analyzed the findings.

We also simulated the data set-up of prior research to develop classification models, then com-

pared the performance of those models with their findings to evaluate the effectiveness of uti-

lizing the extracted signal. The findings suggest that the ECG signal may be used to distinguish

COVID-19 patients from other groups, and the proposed technique outperforms previous

studies using the same dataset. Additionally, the capacity of the proposed method to distin-

guish COVID-19 ECG can serve as evidence that there are changes in ECG signals of COVID-

19 patients. The proposed ECG-based COVID-19 diagnose is easily extended to real-time sys-

tems and executed on mobile applications in our future works. In addition, we also intend to

further interpret the model’s decision and discover how COVID-19 patients’ ECG changes

compared to healthy people. As a result, it may benefit healthcare providers by offering a quick

and accurate way to detect COVID-19, as well as reducing hospital costs by avoiding unneces-

sary hospital visits.
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