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Abstract

We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirich-
let Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct
component communities. It produces easily interpretable results, can represent abrupt and gradual
changes in composition, accommodates missing data and allows for coherent estimates of uncer-
tainty. We illustrate our method using tree data for the eastern United States and from a tropical
successional chronosequence. The model is able to detect pervasive declines in the oak community
in Minnesota and Indiana, potentially due to fire suppression, increased growing season precipita-
tion and herbivory. The chronosequence analysis is able to delineate clear successional trends in
species composition, while also revealing that site-specific factors significantly impact these succes-
sional trajectories. The proposed method provides a means to decompose and track the dynamics
of species assemblages along temporal and spatial gradients, including effects of global change
and forest disturbances.
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INTRODUCTION

Multivariate analyses in community ecology were initially
applied to vegetation data (Williams & Lambert 1959; Whit-
taker 1967) and since have been applied to a broad range of
ecological communities from benthic invertebrates (Clarke
1993) to microbes (Ramette 2007). While the multivariate
toolbox that community ecologists have utilised includes a
breadth of analyses (Gauch 1982; McCune et al. 2002;
Borcard et al. 2011; Legendre & Legendre 2012), these tools
do not always conform to the conceptual models that eco-
logists use. For instance, a common conceptual model for var-
iation in species abundance posits that a particular set of
species might be gradually replaced by another set of species
along an environmental gradient, resulting in an intermediate
transition area with a mixed composition (i.e. not dominated
by any given community). Unfortunately, the multivariate
clustering methods commonly employed to identify these sets
of species (e.g. hierarchical or k-means cluster analysis) are
best suited for abrupt changes in species compositions and fail
to adequately represent the gradual transitions described
above.
For the first time, we propose the use of a probabilistic

model called Latent Dirichlet Allocation (LDA) for biodiver-
sity data. More specifically, when we refer to biodiversity

data, we mean a matrix with the abundance of each species at
each site. This method generates biologically interpretable
results because it decomposes each sampling unit into distinct
component communities; and characterises each of these
component communities in terms of the relative abundance of
species. Furthermore, the model adequately represents the
uncertainty associated with its estimates and properly handles
missing data. LDA was originally proposed in 2003 for appli-
cations involving text-mining (Blei et al. 2003) but over time
this model has become a key tool for the machine learning
community, being applied to a wide range of problems such
as fraud detection (Xing & Girolami 2007), digital image
analysis (Vaduva et al. 2013) and bioinformatics (Liu et al.
2010).
We start by providing a succinct description of LDA. Then,

we illustrate its use with simulated data and contrast the infer-
ence provided by our method with that from standard cluster-
ing tools used for the analysis of biodiversity data. Finally, we
apply LDA to two real-world applications: spatial and tempo-
ral patterns in temperate forest species composition and
inferred temporal patterns in secondary Neotropical forest
succession. These applications illustrate the fresh insights that
can be gained through the use of LDA. We conclude with a
discussion of the limitations of this method and suggestions of
topics for future research.
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MATERIAL AND METHODS

Analogy between text-mining and analysis of biodiversity data

The LDA model was originally devised for text-mining and it
is still widely used in this area. One of the goals in text-mining
is to determine the underlying topics (e.g. ‘genetics’, ‘neuro-
physiology’, ‘laser’, etc.) of documents in a corpus based on
the frequency of words used in each document. Each topic is
characterised by a distribution over words. For instance, the
topic ‘genetics’ might have a high frequency of words like
‘DNA’, ‘chromosomes’ and ‘mutation’, whereas other words
are likely to have much lower frequency in this topic, such as
‘foliage’ and ‘landscape’.
The relationship between text-mining and the analysis of

biodiversity data is straightforward, although previously unac-
knowledged. We want to characterise each sampling unit
(document) in terms of its component communities (topics).
Each component community (topic) corresponds to a distribu-
tion over species (words). For example, an early successional
forest community might have a high relative abundance of
fast-growing species that are intolerant to shade, whereas
other species would have a lower relative abundance. The
data that we require for this model consist of a matrix of
sampling unit by individual species abundance (document by
word table). To our knowledge, the analysis of biodiversity
data with this text-mining tool (LDA) is a novel application.

Model characterisation

In this model, each sampling unit (e.g. a site, a river, a field
plot, an organ, etc.) contains information regarding the taxo-
nomic identity (e.g. species or operational taxonomic unit) of
individuals within this unit. Each sampling unit l (l = 1,. . .,P)
has an associated vector of probabilities hl = [h1l, . . ., hcl],

where
PC

i¼1 hil ¼ 1, which describes the relative abundance of

component communities 1,. . .,C at this site (i.e. the relative
frequency of individuals from each of these communities).
Similarly, each component community j is characterised by a

vector of probabilities /j = [/1j, . . ., /sj], where
PS

i¼1 hij ¼ 1,

which describes the relative abundance of species 1,. . .,S in
this component community. These parameters define the con-
ceptual factorisation depicted in Fig. 1. In this figure, the
matrix containing the relative abundance data D is factorised
into a matrix h that describes the relative abundance of each

component community in each sampling unit and a matrix /

that describes the relative abundance of each species in each
component community.
A simple example helps to illustrate the type of outcomes

this model can provide. Say we have three species (bars with
no lines, diagonal lines and vertical lines in Fig. 2a) and three
sampling units (three groups of vertical bars in Fig. 2a). In
this example, the data matrix in terms of relative abundance

is D ¼
0:1 0:8 0:1
0:45 0:45 0:1
0:8 0:1 0:1

2
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3
5. If we assume three component

communities (C = 3), the algorithm might perfectly fit the
data in two ways:
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(Fig. 2b); or

Figure 1 Conceptual matrix factorisation implied by the Latent Dirichlet

Allocation model (adapted from Steyvers & Griffiths 2004). The matrix

containing the relative abundance data D is factorised into a matrix h

that describes the relative abundance of each component community in

each sampling unit and a matrix / that describes the relative abundance

of each species in each component community.

(a)

(c)

(b)

(d)

Figure 2 Example of the inference provided by the Latent Dirichlet

Allocation model. We provide a simple example involving three species

(no lines, diagonal lines and vertical lines) and three sampling units (three

groups of vertical bars). Data are shown in panel (a) and the resulting

inference from the LDA model in the remaining panels. Panels (b and c)

assume three component communities (colour coded as red, green and

blue) while panel (d) assumes only two component communities (colour

coded as red and green).
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(2) Each sampling unit is composed of a single component
community (red, green and blue), in which case
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(Fig. 2c).

Either way, these results would not be very enlightening.
However, if we assume two component communities (C = 2),
then the algorithm is still able to perfectly fit the data by
assuming that sampling unit one is composed solely by the
red component community, sampling unit three is composed
only by the green component community and sampling unit
two is a 50–50 mixture of the red and green component com-
munities (Fig. 2d). This would imply that

fh1; . . .; hPg ¼ 1
0
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This last example illustrates that sampling units can be
mixed (i.e. have individuals coming from different component
communities). The ability to represent a sampling unit as
being composed by multiple component communities (e.g.
Fig. 2d) is a distinct feature of our method since standard
multivariate techniques typically assign each sampling unit to
a single group. This feature is important because it allows for
the model to represent both sharp and gradual changes in spe-
cies composition (e.g. due to environmental or temporal
change). Additional details regarding LDA (e.g. the data-
generating model, how it was fit and the folding-in and data
imputation operations) are available in the online supporting
information.
An important decision refers to the number of component

communities. Similar to most clustering methods (Jain 2009),
the number of component communities has to be chosen
a priori. Our approach is to fit models with different number
of component communities and choose the best model based
on a model selection criterion such as the Akaike information
criterion (AIC), which balances model fit with model complex-
ity. To calculate AIC, we used the maximum a posteriori
probability estimates which, given the uniform (within the
simplex) priors adopted in our analysis, approximate the
maximum likelihood estimates.
The development and application of clustering methodolo-

gies have a long history, with thousands of clustering
algorithms developed and applied across multiple scientific
disciplines (Jain 2009; Fortunato 2010). As a result, we simply

focus on clarifying what sets LDA apart from existing cluster-
ing methods. The originality of LDA is that it combines sev-
eral features into a single tool. For instance, LDA allows for
sampling units to be composed of multiple component com-
munities (somewhat similar to fuzzy clustering), it accounts
for missing data and provides uncertainty estimates (similar to
probabilistic clustering). A more detailed comparison of LDA
with existing clustering methods is given in the online support-
ing information.

Simulations

We illustrate model performance with an example based on
simulated data, which although simplistic, clearly shows the
differences between the method we propose and three more
traditional multivariate methods. We simulate data showing
gradual changes in the proportion of three component com-
munities (colour coded as black, red and green; y-axis in
Fig. 3a) along a single axis, which could represent time, lati-
tude or any environmental gradient (x-axis in Fig. 3a). We
place 1000 sampling units systematically distributed along this
gradient. Thus, Fig. 3a displays the vectors hl for
l = 1,. . .,1000 and reveals that the black component commu-
nity gradually gives way to the red component community
which eventually is replaced by the green component commu-
nity as we move along the gradient from sampling unit 1 to
1000. We assume 200 species and 100 individuals per sampling
unit. Despite these three component communities sharing all
species, we chose to have very different relative abundances of
species in each component community. Fig. 3b displays the
vectors /j for j = 1,2,3 showing that species 1–67, 68–133 and
134–200 are more abundant in communities 1, 2 and 3 respec-
tively. We fitted multiple LDA models by varying the number
of component communities from 2 to 10 and chose the best
model based on AIC.
Missing data are common when combining multiple biodi-

versity surveys or when combining biodiversity with environ-
mental indicator species surveys (De Caceres et al. 2012) due
to differences regarding the list of taxa that are monitored.
Thus, we also explored the performance of LDA in the pres-
ence of missing data. To this end, we used the same parame-
ters and data as described previously but we assumed that
50% of the sampling units had missing data for 50% of the
species. Sampling units and species with missing data were
selected at random.
We compared results from LDA on the complete simulated

data with that of four commonly used clustering tools,
namely: (1) hierarchical clustering (HC) with analysis of simi-
larity permutation tests (ANOSIM; Clarke 1993), (2) HC with
multi-response permutation procedure (MRPP; reviewed by
McCune et al. 2002), (3) k-means (KM) clustering and (4)
model-based clustering (MC). Both LDA and MC were run
10 times to assess the robustness of their results.

Case study 1: Spatial distribution of tree communities in the

Eastern United States

The first case study uses LDA to explore spatial and temporal
patterns in tree communities across the eastern United States

© 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
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using tree data [diameter at breast height (DBH) > 12.7 cm]
from the Forest Inventory Analysis (FIA) program (Wouden-
berg et al. 2010). These data come from 672 m2 plots sampled
between 2008 and 2012. We selected all plots that were fully
forested in the Eastern United States and that had at least 10
trees. Our final data set contained 34 174 plots (out of 86 102
plots), 219 species and 989 047 trees. To detect temporal

changes, we also relied on FIA data from earlier inventories
conducted in Minnesota and Indiana. These states were
chosen because they had the earliest forest inventories con-
ducted with the same measurement protocol of current FIA
inventories. These earlier inventories for Indiana and Minne-
sota were conducted in 1998 and 1999–2003, encompassing
675 and 2013 plots respectively. We fitted multiple models to

(a) (b)

(c) (d)

Figure 3 Simulated data. We assume three component communities (black, red and green) and display in Panel (a) how their relative abundances (hl,

y-axis) changes along a gradient (x-axis). Panel (b) shows the relative abundance (y-axis) of each of the 200 species (x-axis) for these three component

communities (/j). Panels (c and d) show inference from LDA based on the complete data set, where 95% credible intervals for the estimated parameters

are depicted in lighter colours. Panels (e and f) show LDA results for the data set with missing observations. Panel (g) shows inference from k-mean

clustering (KM), hierarchical clustering (HC) and model-based clustering (MC) on the complete data set. The designated cluster of each sampling unit is

shown with a vertical colour-coded line. Panel (h) shows the relative abundance of species in each cluster based on the KM results with three groups.
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our FIA data, varying the number of component communities
from 3 to 26. We then selected the optimal number of compo-
nent communities based on AIC and report the results from
the best model.

Case Study 2: Secondary forest chronosequence in Costa Rica

The second case study explores secondary successional
patterns of tree composition in wet tropical forests. Data

for this case study come from six secondary forest and two
old-growth forest sites in Costa Rica. Within each site, data
were collected using 1-ha plots and are segregated by size
class: sapling (1–4.9 cm DBH), small tree (5–10 cm DBH)
and large tree (> 10 cm DBH). While data on small and
large trees contained information on all species, the sapling
data only contained information on canopy tree species. A
summary of these data by plot and size class is given in
Table S2.

(e) (f)

(g)
(h)

Figure 3 (continued).
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Because we are primarily interested in the species composi-
tion of trees DBH > 10 cm, we initially perform our analysis
on data from this size class. Then, using the same component
communities determined by this initial analysis, we examine
how the composition of the smaller sizes classes is changing,
under the implicit assumption that species composition of
small trees and saplings represent the future species composi-
tion of large trees. To handle the missing species in the sap-
ling data, we used the folding-in operation in conjunction
with data imputation (see the online supporting information).
We fitted our model to the large tree data assuming two to
seven component communities and chose the optimal number
of communities based on AIC.

RESULTS

Simulations

We were able to correctly identify the model with three com-
munities as the best model in all model runs. The 95% credi-
ble interval provided by LDA suggests that this method
performs well in identifying the relative abundance of the
component communities in each sampling unit (Fig. 3c) and
the relative abundance of species in each component commu-
nity (Fig. 3d). Even in the presence of substantial amounts of
missing data (50% of the sampling units had 50% of the spe-
cies with missing data), LDA was still able to retrieve the true
parameters, albeit exhibiting much more uncertainty than
when using the complete data (Fig. 3e and f).
Overall, our results reveal that the commonly used cluster-

ing methods tend to find 3 to 5 significant clusters, often
assigning sampling units that have approximately an equal
share of two component communities (i.e. mixed sampling
units) to distinct groups (Fig. 3g). Additional simulations
confirm that these clustering methods tend to require many
more groups than LDA to result in a similar fit to the data
(see online supporting information), suggesting that LDA’s
capability to accommodate mixed sampling units results in
much more parsimonious groupings, which is critical for the
visualisation/interpretation of biodiversity data. The results
of the k-means clustering (KM) method also reveal prob-
lems in characterising the relative abundance of species in
these communities (Fig. 3h). By assigning several mixed
sampling units with a large fraction of the red community
to the green community (top row in Fig. 3g), KM tends to
characterise the green community with a much higher rela-
tive abundance of species 68–133 (which are characteristic
of the red community) than warranted (bottom row in
Fig. 3h).

Case study 1: Spatial distribution of tree communities in the

Eastern United States

Our algorithm identified 11 tree component communities (the
dominant characteristic species of each component communi-
ties are listed in Table S1). A map of our results indicates that
several of these component communities are spatially segre-
gated in rough latitudinal bands, as expected. Component
communities that conform to this pattern were (from south to

north) communities 11, 3, 7, 4, 2, 6 and 10 (Fig. 4a). On the
other hand, component communities 1, 5, 8 and 9 were more
dispersed spatially and did not exhibit clear latitudinal pat-
terns. While some component communities matched well with
the forest types groups adopted by FIA (e.g. component com-
munities 3, 8 and 11), several of the other component commu-
nities did not. These results indicate that LDA can provide an
alternative perspective on forest types, which may aid on the
task of defining and delineating forest types. Our results also
reveal how certain component communities are present
throughout a much larger region, albeit not being the domi-
nant community (e.g. component community 9 in Fig. 4a).
Because forest types play a central role for the practice of for-
estry (e.g. for planning forest stand treatments or assessing
forest resources across large-scales), it is critical that the
actual relative abundance and spatial range of these forest
types be correctly determined.
Determining where these forest types are changing is partic-

ularly important in the face of global change. For instance,
we find a ubiquitous decline in Indiana and Minnesota
of component community 4, which is dominated by oaks
(Quercus alba, Quercus prinus and Quercus velutina) (Fig. 4b).
The large-scale compositional changes documented here might
be a direct consequence of fire suppression in the region,
potentially being a signature of the wide-spread ‘mesophica-
tion’ process of Eastern US forests (Nowacki & Abrams
2008). These changes may also be attributed to increases in
growing season moisture, which has resulted in the decline of
drought-tolerant tree species such as oaks, as well as increased
herbivory (McEwan et al. 2011). Regardless of causal factor,
the ability to detect these changes using a tool that does not
focus on individual species is particularly striking for Minne-
sota, given that component community 4 already had a very
low relative abundance (< 6%) in the original 1999–2003
inventory. Because traditional clustering algorithms do not
account for mixed plots, subtle changes as these are unlikely
to be detectable through these more standard methods.

Case Study 2: Secondary forest chronosequence in Costa Rica

Based on AIC, we found the optimal number of component
communities to be three. Component community one is
dominated by animal-dispersed and mostly large-seeded spe-
cies, including three canopy palms. On the other hand, com-
ponent communities two and three are dominated by a
mixture of wind- and bird-dispersed species, mostly small
seeded (Table S3).
The species composition of each component community

(described above) seems to agree well with expected succes-
sional patterns, but also illustrates complexity in successional
trajectories. For example, our analysis reveals that the old-
growth forest sites (LEPviejo and SV) are dominated by
component community one, regardless of size class (Fig. 5a).
Furthermore, this analysis reveals a clear successional trend
of species composition changing from being dominated by
component community 2, to dominated by 3 and finally
dominated by 1, both within each plot for increasingly smal-
ler trees [i.e. arrows connecting results for large trees (blue),
small trees (purple) and saplings (red)] and between plots as
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Figure 4 Spatial and temporal patterns for tree plots in Eastern United States. Panel (a) depicts the spatial distribution of the proportion of each

component community. Each subpanel corresponds to a component community (numbers in the lower right corner, see Table S1) except for the colour key

in the lower right. Panel (b) shows temporal patterns of relative abundance of the oak community in Minnesota (left subpanels) and Indiana (right

subpanels). Upper subpanels show the relative abundance of community 4 in earlier and current forest inventories (numbers in red are the proportion of

plots indicating a decline in relative abundance). Lower subpanels show the spatial distribution of this decline, based on an inverse-distance weighted

interpolation. Data from Minnesota refer only to re-measured plots while data from Indiana were grouped into latitude–longitude bins because no plots

were re-measured. Only bins with at least four plots in 1998 and 2008–2012 are used.
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a summary of the old-growth component community patterns. Vertical bars correspond to 95% credible intervals and results are displayed separately for
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time since abandonment increases (top to bottom panels in
Fig. 5a). However, Fig. 5a also highlights substantial hetero-
geneity in species composition among the successional plots,
even after accounting for differences in time since abandon-
ment. For instance, LSUR clearly stands out from the other
plots because it tends to have a community composition
much more similar to older plots (i.e. LEP and CR) com-
pared to other plots of similar initial age (i.e. BEJ and JE).
On the other hand, TIR seems to be much more similar to
the younger sites than implied by its age. These findings sug-
gest that site-to-site differences prior to abandonment and
during initial successional stages (e.g. proximity to seed
sources and soil fertility) might have long-term effects on
these sites, potentially overwhelming the effect of time since
abandonment.
We summarise the results for the old-growth component

community (community 1) in Fig. 5b to emphasise two unique
features of our statistical model. The first feature is that we
can only display these results because our model allows for
plots to have varying proportion of each component commu-
nity, rather than each plot being assigned to just one compo-
nent community. The second feature refers to the 95%
credible intervals that our model generates. In the absence of
these intervals, it would not be possible to judge if the
observed trends are really meaningful or if they are over-
whelmed by the uncertainty in these parameter estimates.

DISCUSSION

We have described a new exploratory method to analyse bio-
diversity data which is based on the LDA model. This model
has parameters that are biologically meaningful and straight-
forward to interpret. Furthermore, LDA allows for sampling
units (field plots in our case studies) to be decomposed into
multiple component communities, which is a key characteristic
when analysing changes in species composition through time
(as in the secondary succession data and FIA data) or along
an environmental gradient (as in the simulated data). We
emphasise that LDA can represent both gradual and abrupt
transitions, whereas traditional clustering methods only repre-
sent abrupt transitions. To the extent that real assemblages
are truly heterogeneous mixtures of species groups, LDA
seems to be a superior method relative to existing multivariate
approaches.
We have shown that LDA is able to delineate forest types

in Eastern United States as well as quantify their dynamics
through time. This capability to assess which tree species
assemblages are expanding or shrinking in dominance is
essential for managing and forecasting the forest carbon land
sink and other ecosystem services. For instance, our method
has detected a ubiquitous decline in the oak community in
Indiana and Minnesota. While in hindsight this could have
been achieved by analysing data from individual species, our
results highlight that LDA is capable of identifying these pat-
terns using data from all species jointly, even in states where
the oak component community is far from being the domi-
nant community (e.g. Minnesota). There are multiple reasons
for the observed oak decline. Historically, frequent distur-
bances in the form of fire, grazing, farming and timber har-

vesting, have led to the accumulation of oaks, resulting in a
pulse of oak regeneration. However, with the more recent
reduction in these disturbances, particularly with fire suppres-
sion, oak regeneration has substantially declined while the
extant oaks have approached physiological maturity (Spetich
et al. 2002; Johnson et al. 2009; Wang et al. 2013). More gen-
erally, this historical trend of replacement of fire-tolerant sun-
loving species by more fire-sensitive, shade-tolerant, meso-
phytic species, has been described as the ‘mesophication’ of
forests in the Eastern United States (Nowacki & Abrams
2008).
In relation to the Costa Rican data, our results clearly

show that the group of species that uniquely characterises
old-growth forests is beginning to establish in second-growth
forests, but are present primarily as small individuals (sap-
lings and small trees) rather than as trees above 10 cm diam-
eter. Our results could be interpreted to suggest that
component communities 2 and 3 are early and late succes-
sional communities because they tend to dominate newer and
older secondary growth sites respectively. However, this inter-
pretation is complicated because of inherent differences
between sites beyond time since abandonment, including geo-
graphical distances (i.e. plots closer to each other are likely
to have similar species composition), proximity to old-growth
forest as an important seed source and soil fertility. For
instance, LSUR is a very young site that nevertheless is com-
pletely dominated by community 3. One potential reason
could be because it is adjacent to a large extent of old-
growth forest at La Selva Biological Station, which might
have accelerated succession at this site. On the other hand,
TIR is a site that is not that young but that has very similar
species composition to the younger sites JE and BEJ, which
might be because it is the most isolated site and may have
severe recruitment limitation, particularly for large-seed, ani-
mal-dispersed species. Our new results highlight potential
local and landscape differences that appear to influence early
colonisation. Importantly, prior to this analysis, it was not
apparent that second-growth forests in this region had two
distinct types of tree component communities because these
differences were masked by the abundance of generalist tree
species. These results suggest that future research should be
geared towards understanding the role of distance to seed
sources in shaping species composition.
LDA is based on a fully probabilistic generative model that

allows for straightforward quantification of uncertainty. This
is an important characteristic of our model because it allows
scientists to judge if the observed changes in species composi-
tion (e.g. due to global change) are greater than the uncer-
tainty associated with these results. Furthermore, because of
this generative model, LDA deals with missing data within a
single coherent modelling framework. In other words, instead
of having to devise a distinct model for imputation (e.g. multi-
variate regression) to then analyse the completed data, LDA
assumes missing data are additional parameters to be esti-
mated and imputes values while jointly estimating all the
other parameters.
We acknowledge that the method we propose also has

several limitations. One important limitation is the need to
specify a priori the number of component communities,
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similar to most clustering methods. Our approach for model
selection based on AIC is a viable work-around but has some
issues. For instance, AIC is admittedly an unusual criterion
for model selection in a Bayesian framework. Yet, it has been
our experience that the more commonly used Deviance Infor-
mation Criterion is not numerically very stable. We believe
the use of AIC as a rough indicator of the trade-off between
model complexity and goodness-of-fit is reasonable, particu-
larly given the exploratory nature of LDA. Furthermore,
model selection in a Bayesian framework is an area of active
research and all information criteria have their limitations
(Gelman et al. 2013). A different but more complicated
approach is to estimate the number of communities as part of
the fitting of the model, as in Teh et al. (2006).
It is important to acknowledge that the communities them-

selves may change substantially according to the number of
component communities, potentially modifying the resulting
interpretation and conclusions. Of course, this problem is not
unique to LDA as most clustering methods have the same
problem. Our opinion is that, to some extent, this is not a
problem of the method per se but the fact that the concept of
communities is (to some extent) a human construct that, nev-
ertheless, is useful to summarise the otherwise overwhelming
information in biodiversity datasets.
A second limitation of the LDA model is that many biodi-

versity surveys are based on occupancy, cover or incidence
(presence/absence) data and thus lack abundance data. In
these cases, our method cannot be applied as it currently is. A
third limitation of LDA is that it implicitly conditions on the
total number of species in the original data set. Thus, infor-
mation on the abundance of new species has to be discarded
when making predictions for new sampling units. Finally, a
fourth limitation is that, similar to many existing clustering
methods (e.g. model-based and k-means clustering), the results
from LDA may change from one run to another. While
assessing the robustness of LDA’s results is important, this
can be very computationally challenging for large data sets
such as the FIA data.
For this paper, we have relied on our own customised

Gibbs sampler. Yet, some software packages have imple-
mented LDA and made it widely available for users. We have
made R code available that relies on the ‘topicmodels’ pack-
age to analyse the simulated data in this article (see support-
ing information). Unfortunately, more specialised uses of the
model, such as those involving the missing data imputation,
may not be readily available in these packages.
We believe that one of the next steps in further developing

this model for biodiversity data is to incorporate other types
of information beyond abundance. In the case of forests, data
from other sources, such as satellite imagery and LiDAR,
could also help to characterise forest types/communities as
well as interpolate results for areas without field plots. While
we have used this model primarily as an exploratory pattern
finding tool, another potential extension is to model the pro-
portion of each community as a function of covariates using a
Dirichlet regression, perhaps even accommodating for spatial
autocorrelation, thus moving towards a more explanatory tool
for biodiversity analysis. Several methodological and scientific
questions could be addressed by future research. For instance,

how can we account for phylogenetic and trait information
when defining component communities? How do species
assemblages change over time and space due to anthropogenic
stressors (e.g. climate change, fire, selective logging, nitrogen
deposition or presence of invasive species)? We believe that
this novel model will soon become indispensable in the toolkit
of ecologists.
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