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ABSTRACT

Serial transcriptomics experiments investigate the
dynamics of gene expression changes associated
with a quantitative variable such as time or
dosage. The statistical analysis of these data
implies the study of global and gene-specific ex-
pression trends, the identification of significant
serial changes, the comparison of expression
profiles and the assessment of transcriptional
changes in terms of cellular processes. We have
created the SEA (Serial Expression Analysis) suite
to provide a complete web-based resource for the
analysis of serial transcriptomics data. SEA offers
five different algorithms based on univariate, multi-
variate and functional profiling strategies framed
within a user-friendly interface and a project-
oriented architecture to facilitate the analysis of
serial gene expression data sets from different per-
spectives. SEA is available at sea.bioinfo.cipf.es.

INTRODUCTION

Serial transcriptomics experiments study the dynamics of
gene expression associated with a parameter that defines
the course of the series. The most common type of serial
experiments are time-course studies, which investigate
gene expression changes during development, in response
to a given stimulus or due to their cyclic pattern. Series
can be short (three—five time points) or long (six or more
time points) and involve longitudinal data or independent
observations. Although time-course studies are the most
usual serial experiment, any transcriptomic data set whose
samples can be sequentially ordered within a quantitative
factor, such as dosage or OD growth measures, can be
defined as serial data.

The statistical assessment of (multi)serial gene expres-
sion experiments poses a number of challenges. On one
hand, analysis methods should capture the dynamics of
the data and propose models for describing the serial be-
haviour. These models should identify significant vari-
ations along the series and evaluate gene expression
differences between them when additional factors are con-
sidered. Moreover, the analysis of serial transcriptomic
data also implies solutions for the interpretation of
changes in terms of cellular functions; for example,
through the application of functional enrichment
strategies to the dynamics of gene expression. Finally,
for their effective translation to transcriptomics research,
methodologies need to incorporate user-friendly bioinfor-
matics solutions that make algorithms easily accessible to
experimentalists.
In recent years, a number algorithms have been de-

veloped for the analysis of time-course microarray data.
Many have been implemented as R packages and are
available at the Bioconductor Project (www.bioconduc
tor.org). Statistical strategies include linear models (1), em-
pirical Bayes (2), fuzzy algorithms (3) and Bayesian
approaches (4).
Other tools are offered as desktop Java applications.

The Short Time-series Expression Miner (STEM; 5)
assigns gene profiles to predefined clusters and evaluates
the significance of the clusters, which can then be func-
tionally interrogated by GO enrichment analysis. BATS
(Bayesian Analysis of Time Series), also developed for
one series data, applies a Bayesian approach to identify
differentially expressed genes and to estimate their profiles
(6). GenT�Warper (http://www.psb.ugent.be/cbd/papers/
gentxwarper/index.htm) is a tool for the alignment,
analysis and mining of gene expression time series based
on dynamic time warping techniques. The EDGE is a
R-package accompanied by a graphical user interface
that implements a splines-based approach to analyse
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time expression changes within one or between several
conditions (7).
Our group has published different statistical approaches

for the analysis of short time-course transcriptomics ex-
periments. These include regression-based (maSigPro; 8)
and multivariate approaches (ASCA-genes; 9), as well as
specific methodologies for functional and gene-set enrich-
ment analysis (maSigFun, PCA-maSigFun and
ASCA-functional; 10). Diverse strategies were developed
to address different aspects of the analysis of serial data
and were implemented in the R statistical language. The
maSigPro method was included in 2007 in the microarray
data analysis suite GEPAS (11). In the SEA suite, we have
combined and extended these approaches within a novel
webserver framework to provide the scientific community
with a complete web resource for the analysis of short
series transcriptomics. The SEA site offers five different
algorithms and a user-friendly environment to evaluate
gene expression data for gene-wise and functional-based
transcriptomic changes that are general or gene-specific, in
single or multiple series. To our knowledge, SEA is the
first integrated web-based suite for the analysis of serial
gene expression data that combines multivariate,
univariate and functional profiling strategies.

THE SEA WEBSITE

The SEA website is based on Web 2.0 technology features
such as AJAX and high-level JavaScript libraries
(JQuery). The server has been developed in Java
language, which calls R scripts for the different statistical
algorithms. The server architecture has been designed to
support a multi-user environment. Web client interface is
served by a Tomcat Java Server front-end that is
replicated in two physical machines to guarantee a per-
manent service availability. Moreover, each front-end
responds to every user action (run a job, check results,
check data list, etc.) submitted by the client web
browser. When a new job is launched, the corresponding
data form is processed by one of the server front-ends, a
new job instance is created in the user database, and the
data are prepared for tool execution. Finally, the job is
run in a local cluster controlled by a batch-queuing system
(Sun Grid Engine, SGE), thereby ensuring that every job
is initiated when all its required computing resources are
available. This architecture implies that all tools offer a
Linux command line interface that allows an easy execu-
tion of jobs in a batch-based high-performance computa-
tional environment. The SEA web not only allows tools to
be executed by a guest user (no log-in is required), but also
offers user session persistence by means of user/password
registration. In this case, users can upload and save data in
his/her private area and organize jobs in different projects
and revisit them at any time. In all cases, data privacy is
guaranteed and no exchange between registered and an-
onymous accounts is possible. The SEA suite includes five
different methods for univariate, multivariate and func-
tional analysis of serial gene expression, each of which is
available under a different tab, plus two additional tabs
for data upload and graphical output.

Three pieces of data are required by the SEA algo-
rithms: expression values, experimental design (covariates)
and functional annotation (in the case of running the func-
tional analysis options).These three elements must be
provided as tab-delimited files and uploaded into the ap-
plication before any analysis is started. The expression
data file must contain genes in rows and arrays in
columns. Array names and gene names should be
located in the first row and column, respectively. The
covariates file includes experimental design information,
presented in a table format with as many columns as
arrays and as many rows as experimental factors. Each
cell contains the value of the experimental factor in the
sample of the array. Finally, the functional annotation is
provided in a simple two column—gene[tab]annotation—
format, with multiple annotations of the same gene
arranged in different rows. Alternatively, users can use
annotation data available at the SEA database. In this
case, no annotation file upload is necessary.

Once the data is uploaded, these are stored at the user
account and can be used in any of the tools contained in
the site. Users can visualize uploaded data at the ‘Data
list’ panel on the right side of the user interface. Each
analysis method has a separate input-from to select data
and indicate specific additional parameters. Optionally, a
name and description can be given for the analysis job
which is launched by a click on the Run button. Data
and parameters are then sent to the server, checked for
consistency and the job name is returned to the ‘Job list’
panel where the progress of the computations can be
followed. Once completed, the user can access or visit
the results page by clicking on the job name. Results are
provided as downloadable text (generally lists of signifi-
cant features) and png files (informative graphs) which are
also displayed at the HTMLuser-interface. In the follow-
ing, we comment briefly the procedure of each method to
clarify the meaning of the different input parameters and
the interpretations of the corresponding results.

maSigPro

maSigPro (MicroArray Significant Profiles; 8) applies
linear regression to model gene expression in time-course
microarray data and selects differentially expressed genes
through a two-step algorithm. First, responsive genes are
identified by fitting a generic regression model with time as
quantitative variable and series as dummy variables, and
genes are selected at a given FDR. Second, step-wise re-
gression is applied to selected genes to adjust the model
and identify gene-specific variation patterns. At this stage,
genes can also be passed through a selection filter based on
the R2-value of the second regression model. This value
measures the goodness of fit, and therefore allows for the
selection of genes with consistent expression trends.
maSigPro returns lists of genes with statistically significant
changes over time and across different series. maSigPro
was originally conceived for the analysis of multiple
short time-course transcriptomic data, but can be
applied in a straight forward manner to the analysis of
single series data (i.e. where only one condition is
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evaluated) and for other, non-timed, serial experiments
based on any quantitative factor.

The SEA implementation of maSigPro first requires the
selection of expression data and covariate files. Once a
covariate file is selected, it is parsed to identify experimen-
tal factors. The user is then prompted to select the quan-
titative factor (such as time or dosage) and, if more than
one factor is present, the qualitative factor (for example,
strain or treatment). Note that the qualitative factor can
be also numeric, but this will be treated as a categorical
rather than quantitative variable. Currently, maSigPro
and derived algorithms can only deal with a maximum
of two factors at a time. Other parameters to choose are
the ‘polynomial degree’ of the linear regression model, the
significance value ‘alpha’ and the ‘R2 cut-off’ value for
gene selection.

maSigPro result is basically a set of lists of differentially
expressed genes, one for each contrasting series. Each list
contains genes with significantly different profiles between
a given series and the control series. For example, if the
experiment compares the differences in transcriptional re-
sponses to a treatment between a mutant strain (S) and the
wild type (W) over time, the list named SvsW will contain
all the genes that respond differently in mutant and wild
type. Next to the lists of selected genes, an additional R
object is created that can be re-directed to the
maSigVisualization module for graphical display of the
significant profiles (explained subsequently).

ASCA-genes

ASCA-genes (9) is an adaptation of the ASCA method
[analysis of variance (ANOVA) simultaneous component
analysis] developed by Smilde and co-workers (12) for the
analysis of multifactorial experiments in transcriptomics.
Basically, ASCA uses ANOVA to decompose data vari-
ation associated to experimental factors and principal
component analysis (PCA) to discover principal patterns
of variation within these factors. ASCA-genes combines
this multivariate descriptive analysis of time course ex-
pression data with a gene selection procedure. This gene
selection is based on two statistics: leverage, which is a
measure of the importance of a gene’s contribution to
the multivariate fitted ASCA-model, and the squared pre-
diction error (SPE), which is an evaluation of the
goodness of fit of the model to a particular gene.
Threshold values for these parameters can be derived by
resampling methods or using the mixutre approaches
minAS and gamma (Tarazona,S. et al., manuscript in
preparation). ASCA-genes have been implemented in ex-
periments comprising one, two or three experimental
factors, one of which is typically, but not necessarily, a
quantitative factor.

The ASCA-genes input form at SEA requires the selec-
tion of expression data and covariate files. No indication
of quantitative or qualitative factors is required, as all
factors are treated as categorical in the ANOVA decom-
position step of the ASCA methodology. Additional par-
ameters permit the interaction between factors to be
considered and the second factor to be joined to this inter-
action if wished. The latter option is recommended when a

study aims to investigate all effects of a given treatment,
both at the start value of the experiment and along the
series. Additionally, a criterion for selecting significant
genes should also be indicated.
The program returns a summary of the distribution of

data variability between experimental factors and the per-
centage of this variability, which is explained by the ASCA
model. It should be noted that, due to the ANOVA treat-
ment embedded in ASCA, a separate PCA submodel is
generated for each experimental factor or combination
of factors. If we take the example of the previous section
once again and use ASCA-gene default parameters,
two submodels will be returned: time (capturing
major time-dependent gene expression changes) and
Strain+Time�Strain (capturing the effect of the mutant
strain and its interaction with Time). Consequently,
further output files are provided for each submodel.
These are gene leverage/SPE scatter plots where the im-
portance/error of each gene in the submodel is repre-
sented, trajectory plots to indicate major expression
trends associated to the submodel, a list of significant
genes (those with individual profiles similar to the
submodel major trends), and a list of outlier genes
(those exhibiting odd but significant changes).

maSigFun

maSigFun (10) derives from the above mentioned
maSigPro methodology, and represents an immediate ex-
tension of this method to gene sets. In maSigFun, the re-
gression model is not computed gene-wise, as in
maSigPro, but rather to the data matrix composed by
the expression values of all genes belonging to a gene set
or functional class. In this way, one regression model is
fitted for each functional category. In this approach, indi-
vidual genes are considered as different observations of the
expression profile of the class, and significant features are
typically functional categories with few and highly
correlated genes.
SEA input form for maSigFun is similar to that of

maSigPro, with the additional feature that annotation
data are also required. These can be provided by the user
in an annotation file or taken from the site database.
Currently, SEA offers access to the most common func-
tional annotation schemas (Gene Ontology, KEGG,
InterPro, etc.) for major model species. The output of
maSigFun is likewise similar to that of maSigPro, but
allows lists of significant functional groups, instead of
genes, to be obtained. As in maSigPro, the trajectory
charts for significant functional categories can be plotted
through the maSigVisualization module.

ASCA-functional

ASCA-functional (10) is a GSA strategy for multifactorial
gene expression experiments based on the ASCA
modelling described previously. In ASCA-functional,
genes are ordered according to their PCA loadings at
the selected components of the ASCA submodels, and
this ranking is used for gene set enrichment analysis
with the partitioning GSA method FatiScan (13). The
PCA loading of a gene in the principal component is a
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measure of the contribution of that gene to that compo-
nent, i.e. how well the gene follows the pattern represented
by the component. Genes with high positive loadings
behave like the component, genes with high negative
loadings follow the opposite trajectory and genes with a
loading close to zero are not correlated with the compo-
nent’s profile. Therefore, ordering genes by their loadings
value is a way of ranking according to a given expression
pattern, namely that represented by the component. The
program returns a GSA result for each of the loading lists
tested. Using again the mutant strain example, let us
imagine that the ASCA analysis identified three significant
patterns: one global expression trend associated to Time
(i.e. general induction of gene expression upon treatment)
and two patterns associated to Strain+TimevsStrain (early
differences between genotypes and late differences between
genotypes). In this case, ASCA-functional would return
three lists of significant functional categories: one with
functions that are generally regulated in time, one for
the differential early response between strains, and one
with the functions that are differentially regulated at late
time points.

PCA-maSigFun

PCA-maSigFun (10) is a combination of PCA and
maSigPro. The method identifies the major gene expres-
sion changes within each functional class and evaluates
whether these changes are significantly associated to the
serial parameters. First, PCA is applied to the
gene-expression submatrix associated to the genes belong-
ing to each functional category or gene set. The scores of
the relevant principal component(s) of these PCAs are
considered as joint expression profile(s) for the gene set,
and can thus be regarded as meta-genes of the functional
category. maSigPro is then applied to these meta-genes to
assess whether the functional patterns are significant
changing profiles.
Input and output forms of PCA-maSigFun are equiva-

lent to those of maSigFun, and similarly, results can be
redirected to the visualization module for graphical
printing.

maSigVisualization

While ASCA-genes and ASCA-functional modules
contain their own graphical output, results of the
univariate methods are visualized through the
maSigVisualization tab. Basically, the visualization
module takes a list of significant features, applies a clus-
tering algorithm to divide these into groups of similar
elements, and creates trajectory plots for the resulting
clusters. In these plots, expression values are averaged
by experimental conditions and presented according to
the (multi)serial nature of the data. An additional text
output file indicates the cluster assignment of each gene
or functional class. maSigVisualization accepts and recog-
nizes all the maSig output objects and adjusts the input
form to query for required visualization parameters. In all
cases, a ‘Series to see’ is requested, i.e. the list of significant
features to be displayed. In the case of maSigPro and
maSigFun results, the number of clusters and clustering

algorithms must also be indicated. For PCA-maSigFun,
the visualization module returns the profile of each
selected category, together with box-plots indicating the
importance of each gene in the meta-gene. A gene is con-
sidered ‘important’ if its corresponding loading is greater
than a given threshold, which can be defined by the user or
computed by re-sampling, minAS and gamma procedures,
as in ASCA-genes.

ANALYSIS OF SERIAL DATA WITH SEA

To illustrate the use of SEA and highlight characteristic
aspects of the different algorithms, we have applied all five
tools to an example of a transcriptomic data set of a plant
abiotic stress study. These example data and others are
available at the SEA web page. The study investigates
the transcriptional response to three different abiotic stres-
sors (salt, cold and heat) in potato seedlings using the NSF
10k potato array (14). A common reference design is used.
The data set contains four series (one control and three
types of stress: heat, salt and cold), three time points, three
replicates per experimental condition and 9124 genes.
Gene Ontology functional annotation of this dataset was
generated using the Blast2GO software (15).

We begin the analysis by exploring data from a global
perspective using the ASCA-genes module. After loading
the example data, we select default option values. By se-
lecting ‘Include interaction between factors’, we allow the
model to analyse Time�Treatment interactions and by
choosing ‘Join interaction with second factor’, we study
the Treatment and the Time�Treatment effects together.
Once the job is completed we can visit the results page by
selecting this option on the Job panel. The variability
analysis of this data set reveals that a great deal
(54.56%) of the variation in the data set is associated to
the Time�Treatment factor, while a lower percentage
(9.24%) is due solely to the Time factor. This means
that changes in gene expression are mostly associated to
the time-dependent effects of the different treatments.
Furthermore, these variations can be effectively
summarized by PCA submodels with one and two com-
ponents, respectively. Looking at the leverage/SPE plots
for both submodels we can observe that most genes have
values close to 0 at both parameters and only some present
high values and are in the selection areas (Figure 1a).
Genes in the red region are well-modeled, as they have
high leverages, while genes in the blue area are odd- or
bad-modeled, as they present high SPE values. Trajectory
plots show the expression pattern of these components.
For example, the trajectory plot for the first component
of the Treatment+Time�Treatment submodel (Figure 1b)
reveals that a large number of genes respond differently in
salt/cold and control/heat treatments, with differences
starting to emerge at time point 3, peaking at 9 h and
being maintained until the end of the experiment.
Analysis of the trajectory plots for the remaining two
ASCA-genes components indicates that the greatest tran-
scriptional change is at time-point 9, and that early differ-
ences between salt and cold treatments can also be found
for some genes (Supplementary Figure 1).
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ASCA-genes results suggest that the major transcrip-
tional pattern, depicted in Figure 1b, would be interesting
for analysis by GSA. Therefore, we can run ASCA-
functional on this data set and visualize the FatiScan
results obtained for the genes ranked by the loadings of
the first component of the Treatment+Time�Treatment
submodel. When this is done, a significant number of
enriched functional categories are found. Processes
associated to upper ranking positions (up-regulated in
cold/salt stresses) relate to ‘protein synthesis and degrad-
ation’, ‘lignin biosynthesis’, diverse hormone signaling
pathways and response to several stimuli.
‘Photosynthesis’, ‘microtubule-based movement’, ‘RNA
binding’ and ‘lypoxigenase activity’ were functions
associated to bottom rank genes, i.e. they were down-
regulated in these stress conditions. A full list of significant
features obtained by ASCA-functional and other SEA
modules can be found at the SEA site.

Having obtained a global impression of the transcrip-
tional effects of the three abiotic stressors on potato seed-
lings, we can now carry out a gene-wise analysis of serial
changes using the maSigPro approach. After loading data
into the maSigPro module, we choose Time as a quanti-
tative factor, Treatment as a qualitative factor and control
as the reference series. Default parameters indicate that
second-degree regression model will be applied and
genes will be selected at a significance level of 0.05 and a
R2-value above 0.7. A total of 1315 genes are found to be
statistically significant. SEA provides this result by clas-
sifying significant genes by series according to the profile
contrast considered. In this selection we have 417 genes
with changes for the control series, 1300 with differences
between cold and control, 766 genes with different profiles
in heat and control and 1167 significant genes for the salt
versus control comparison. These lists are provided as text
files ready for download. We can now red-direct the
maSigPro R object to the maSigVisualization module to
create plots of the significant gene profiles. Selecting the
maSigVisualization tab, the maSigPro result is parsed and

we are asked to select the list of significant genes (‘Series to
see’) we wish to visualize. For example, we can choose the
ColdvsControl series and cluster significant genes in nine
groups by hierarchical clustering (‘hclust’). Supplementary
Figure 2 shows the typical output of maSigPro visualiza-
tion. For each cluster, a trajectory plot is generated that
summarizes gene expression over time and at each treat-
ment for the genes belonging to that group. It should be
noted that, although the selected gene list contains only
those genes with significant profile differences in the cold
vs. control comparison, on the plots all series are included.
We can observe in this figure that most populated clusters
indicate differences between cold/salt and heat/control
treatments, which is the main transcriptional behavior
already detected by ASCA-genes. In addition, other
types of genes are revealed by this method. For example,
cluster 7 includes genes with an exclusive early
up-regulation upon cold treatment.
The remaining two modules address further questions

concerning functional aspects of the data. By running
maSigFun (degree 2, R2=0.4, a=0.05) we identified 10
functional categories with consistent expression patterns
and significant differences between treatments (data at the
SEA site). Finally, we run PCA-maSigFun in order to go a
step further in the functional analysis. This tool indicates
that a total of 37 functional groups have subsets of genes
with highly correlated significant profile changes. Plotting
this result using the maSigVisualization module helps to
understand the expression profile of the class and the par-
ticipation of the class members in this profile. Figure 2
shows the PCA-maSigFun graphical output for ‘glutamate
metabolic process’. On the left panel, we can observe the
trajectory plot for the class, which again reveals the sig-
nificant treatment differences discussed previously. On the
right panel, the gene loadings bar plot indicates that five of
the eight members of this class follow the expression
pattern displayed on the left in a significant manner,
four of them with a positive correlation and one with a
negative correlation.

Figure 1. ASCA-genes graphical output for potato stress data. (a) leverage/SPE scatter plot of the ASCA-genes submodel
Treatment+Time�Treatment. Vertical and horizontal lines indicate cut-off leverage and SPE values, respectively, for gene selection. Genes in
read area have high loadings and follow the expression patterns of the submodel. Genes in blue area have expression changes different from the
major patterns. (b) Trajectory plot of the first component of submodel Treatment+Time�Treatment. This component reveals the major transcrip-
tional changes associated with the time-dependent effects of the different stress treatments.
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CONCLUSIONS

The analysis of multifactorial and serial transcriptomic
data sets is a complex task that requires the use of
specialized bioinformatics resources that are capable of
evaluating data from different perspectives, namely the
dynamics of the transcriptional changes and the inter-
action with experimental factors, the identification and
understanding of both global processes and specific
features, and the adoption of gene-wise versus gene-set
strategies. The SEA website is a compilation of tools
with which to investigate all these aspects and constitutes
the first dedicated web-based suite for the analysis of serial
gene expression data that is especially designed for
short series. Although the site relies on elaborated algo-
rithms, we have made a great effort to simplify input and
output forms while maintaining the data-mining
capabilities of the methodologies. Results are provided
as lists of significant features and plots which allow the
dynamics of the transcriptional changes and the relation-
ships between trends, genes and functional classes to be
explored.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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