
38  ｜NEURAL REGENERATION RESEARCH｜Vol 18｜No. 1｜January 2023

NEURAL REGENERATION RESEARCH
www.nrronline.org Review

Adipose tissue, systematic inflammation, and 
neurodegenerative diseases

Abstract  
Obesity is associated with several diseases, including mental health. Adipose tissue is distributed 
around the internal organs, acting in the regulation of metabolism by storing and releasing fatty acids 
and adipokine in the tissues. Excessive nutritional intake results in hypertrophy and proliferation of 
adipocytes, leading to local hypoxia in adipose tissue and changes in these adipokine releases. This 
leads to the recruitment of immune cells to adipose tissue and the release of pro-inflammatory 
cytokines. The presence of high levels of free fatty acids and inflammatory molecules interfere with 
intracellular insulin signaling, which can generate a neuroinflammatory process. In this review, we 
provide an up-to-date discussion of how excessive obesity can lead to possible cognitive dysfunction. 
We also address the idea that obesity-associated systemic inflammation leads to neuroinflammation 
in the brain, particularly the hypothalamus and hippocampus, and that this is partially responsible for 
these negative cognitive outcomes. In addition, we discuss some clinical models and animal studies 
for obesity and clarify the mechanism of action of anti-obesity drugs in the central nervous system.
Key Words: adiposity; anti-obesity drugs; hypothalamic inflammation; metabolic disease; 
neurodegenerative disease; neuroinflammation
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Introduction 
Obesity is one of the biggest public health problems in the world. The 
prevalence of overweight and obesity has increased dramatically in almost 
all developing and developed countries, reaching pandemic levels and 
affecting 60% to 70% of the adult population of industrialized countries, more 
frequently among women and in urban areas (Berger, 2014; Avgerinos et 
al., 2019). The global prevalence of overweight and obesity has increased by 
27% in adulthood and 47% in childhood over the past few decades (Ng et al., 
2014).

Obesity develops when energy consumption exceeds energy expenditure 
for metabolic and physical activity. Consequently, there is an excessive or 
abnormal accumulation of fat, which exceeds genetically and epigenetically 
determined adipose tissue stores. Consequently, this fat is deposited 
and accumulated as ectopic adipose tissue, leading to an increase in the 
development of many disease entities. Overweight and obesity are generally 
defined as a body mass index (BMI) from 25–29.9 kg/m2 and more than 30 
kg/m2, respectively (Avgerinos et al., 2019). 

Obesity is a risk factor for triggering some chronic diseases, such as 
hypertension, dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, 
cardiovascular disease, non-alcoholic fatty liver disease, cancer, and 
Alzheimer’s disease (AD) (da Luz et al., 2018). Furthermore, the relationship 
between obesity and cognitive factors, as well as the risk of dementias, such 
as AD, has drawn attention. Clinical and experimental evidence indicates 
that obesity and/ or high-fat eating are associated with deficits in learning, 
memory, and executive functioning (Sabia et al., 2009; Miller and Spencer, 
2014) and, potentially, brain atrophy (Enzinger et al., 2005; Ward et al., 2005). 
Besides, evidence indicates that obesity during middle age increases the risk 
of dementias like AD (Anstey et al., 2011; Miller and Spencer, 2014).

It is known that adipose tissue acts as an endocrine organ secreting 
adipokines and cytokines such as leptin, adiponectin, adipose, resistin, tumor 
necrosis factor-alpha (TNF-α), interleukin (IL-1β and -6), insulin-like growth 
factor 1, monocyte chemoattractant protein-1, and visfatin. An alteration in 
the normal expression of these adipokines, promoted by high levels of fatty 
acids, can alter the local immune response and induce obesity associated 
with the pathogen (de Araujo Boleti et al., 2020).

In this narrative review, we provide a broad discussion about the association 
of excess body weight and neuroinflammation, which may be directly linked 
to cognitive dysfunction. In addition, we will address: 1) the relationship 
between obesity, inflammation, and loss of cognitive function; 2) the paradox 
of obesity and neurodegenerative diseases; 3) obesity and hypothalamic 
inflammation and 4) mechanisms of action of potential drugs in the treatment 
of obesity and neural diseases.

Search Strategy and Selection Criteria 
We performed a literature search of manuscripts of works published in the 
last 20 years in the PubMed database at the National Center Biotechnology 
Information (NCBI: https://www.ncbi.nlm.nih.gov) using the terms: 
neurodegenerative disease, metabolic disease, hypothalamic inflammation, 
neuroinflammation, adiposity, antiobesity drugs observed in the title, abstract 
and keywords of the articles. We retrieved further articles suggested by 
PubMed recommendations and through citation tracking. 

With the research related growth to the effects of obesity on neurodegenerative 
diseases, we prioritized the literature that made this relationship, mainly 
involving hypothalamic dysfunctions and neuroinflammation. The mechanism 
of action of obesity-related drugs and their role in neural diseases was an 
important point for our review.

Inflammation and Obesity
Adipose tissue classification 
In humans, several adipose tissue types are distributed throughout the body. 
Among these are white adipose tissue (WAT), which includes subcutaneous 
adipose tissue (SAT) and visceral adipose tissue (VAT), and brown adipose 
tissue (BAT). Both types play an important role in regulating metabolism 
(Figure 1) (Luo and Liu, 2016). 

White adipocytes from WAT, which stores energy, and it is filled with a large 
triglycerides drop, which makes the most of its cell volume (Figure 1A) (Cinti, 
2018). WAT is divided into two regional and functional deposits – visceral 
white adipose tissue (vWAT) and subcutaneous white adipose tissue (sWAT) 
(Zorena et al., 2020). The vWAT expansion is related to insulin resistance, 
inflammation, dyslipidemia, obesity, type 2 diabetes mellitus, and even 
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increased COVID-19 severity (Zhang et al., 2019; Qi et al., 2020; Favre et al., 
2021). sWAT is often associated with metabolic improvement and insulin 
sensitivity, as it contains brown-like cells known as beige or brown inducible 
adipocytes, which perform mitochondrial and thermogenic functions, and 
burn fat (Patel and Abate, 2013; Zorena et al., 2020).

Brown adipose tissue, on the other hand, is characterized by more lipid 
droplets and mitochondria, giving it a brown appearance (Figure 1B) 
(Zorena et al., 2020). Brown adipocytes are derived from Myf5+ cells and 
they exclusively express uncoupling protein 1 (UCP-1), which can regulate 
the energy conversion of energy to heat by adenosine triphosphate (ATP) 
uncoupling in mitochondrial respiration (Figure 1C) (Townsend and Tseng, 
2012). Adipocytes maintain body temperature by producing heat without 
shivering. They are abundant in human neonates, gradually decreasing in 
adults and decreasing further in obese people (Lidell, 2019). 

In contrast, beige adipocytes (also called Brite adipocytes) are an inducible 
thermogenic adipocyte form that sporadically resides in WAT deposits 
(Cheng et al., 2021). Similar to brown adipocytes, beige adipocytes also have 
abundant mitochondria that express UCP1 and multilocular lipid droplets 
(Qi et al., 2020). Beige adipocytes interact all the time with immune cells, 
and the acquisition of thermogenic characteristics requires the induction 
of anti-inflammatory cytokines such as interleukin-4 (IL-4) by leukocytes 
in subcutaneous adipose tissue (SAT) (Rao et al., 2014; Guo et al., 2021). 
However, as we know, tissue-resident immune cells are able to migrate to 
other organs, including the brain. Immune cell displacement and local cell 
signaling at blood-brain and blood-cerebrospinal fluid interfaces allow inter-
organ crosstalk, independent of circulating factors or direct access to brain 
parenchyma. Although peripheral macrophages have access to the brain of 
the chronically obese, little is known about neuroimmune interactions at 
blood-brain and blood-cerebrospinal fluid interfaces (Guo et al., 2021).

Adiposity and systemic inflammation
High-fat diet consumption is considered one of the main factors for 
obesity induction and its association with metabolic diseases in humans, 
resulting in changes such as hyperglycemia, hyperlipidemia, and systemic 
arterial hypertension (de Araujo Boleti et al., 2020). Adiposity leads to the 
simultaneous development of functional changes that collectively give rise 
to the so-called metabolic syndrome (Elks and Francis, 2010). The increase 
in fat may result from an increase in the differentiation of preadipocytes 
into mature adipocytes (hyperplasia), or an increase in the mean cell size 
of existing adipocytes (hypertrophy). The increase in adipocytes in obesity 
triggers adipocyte differentiation in a process called adipogenesis, in which 
pro-inflammatory mediators or adipokines are generated (leptin, adiponectin, 
resistin, TNF-α, IL-1β, -6 and -8, insulin-like growth factor 1, monocyte 
chemoattractant protein-1, and visfatin) (de Araujo Boleti et al., 2020). In 
particular, the hypertrophic adipocyte phenotype has been associated with 
obesity-dependent disorders (Park et al., 2020).

Systemic inflammation originating in adipose tissue markedly alters levels 
of adipokines, including leptin, resistin, and adiponectin (Figure 2A). The 
adipose tissue expansion, followed by adipocyte differentiation (adipogenesis) 
and infiltration in adipose tissue of immune cells, including macrophages, 
neutrophils, and T lymphocytes, has been identified as the main source of 
cytokines and adipokines, which are the main contributors to this systemic 
inflammation in obese individuals (Pavlov, 2021). 

Proinflammatory cytokines circulating through the nevus vagus cross the 
blood-brain barrier to the brain and hypothalamus (Figure 2B), also resulting 

in NF-κB activation in microglial cells in the hypothalamus and consequently 
leading to hypothalamic inflammation and leptin resistance (Figure 2C) (de 
Araujo Boleti et al., 2020; Zorena et al., 2020). Thus, obesity-associated 
systemic inflammation has been identified as a risk factor for depression, 
white matter brain damage, and cognitive dysfunction in the elderly (Miller 
and Spencer, 2014; de Araujo Boleti et al., 2020).

Figure 1 ｜ Differentiation of the two main types of adipocytes and adipose tissue. 
(A) White adipose tissue; (B) Brown adipose tissue, characterized by having more 
lipids and mitochondria. (C) During respiration, protons are pumped through the MRC 
complexes, and a proton gradient is generated. The energy of the proton gradient drives 
the synthesis of ATP by the ATP-synthase complex. UCP1 catalyzes a regulated re-entry of 
protons into the matrix, uncoupling the MRC and, consequently, reducing ATP synthesis 
and generating heat. ATP: Adenosine triphosphate; MRC: mitochondrial respiratory 
chain; UCP1: uncoupling protein 1. 

Figure 2 ｜ Stages of the neural degeneration process from adipogenesis. 
(A) Adipogenesis: adipocyte differentiation, markedly generating pro-inflammatory 
mediators (leptin, adiponectin, resistin, tumor necrosis factor-α, interleukin-1β, 
interleukin-6, interleukin-8, insulin-like growth factor 1, monocyte chemoattractant 
protein-1, and visfatin). Cytokines circulate through the vagus nerve, passing the blood-
brain barrier, resulting in the activation of microglial cells in the hypothalamus. (B) 
Microglia naturally secrete inflammatory cytokines and chemokines (used in tissue 
repair) and prolonged activation of microglia results in brain inflammation. (C) Chronic 
neuroinflammation caused by obesity is characterized by selective inflammatory 
destruction in myelin, with damage to the axon.

High circulating levels of lipopolysaccharide were also detected in obese 
patients (Stoll et al., 2004). Changes in the gut microbiota (increased 
lipopolysaccharide-containing microbiota) as a result of high-fat content 
and increased body weight, and the consequent increase in intestinal 
permeability is associated with this “metabolic endotoxemia”, which is 
another major contributor to inflammation in obesity (Andre et al., 2019). 
Lipopolysaccharide, acting through a mechanism mediated by Toll-like 
receptor 4, triggers the release of TNF and other pro-inflammatory cytokines, 
mediating pro-inflammatory signals in the liver, skeletal muscle, and adipose 
tissue (Stoll et al., 2004; Andre et al., 2019). Acting through Toll-like receptor 
4-mediated mechanisms in adipocytes, macrophages, and hepatocytes, free 
fatty acids trigger intracellular signaling, resulting in the activation of nuclear 
factor κB (NF-κB) and increased release of TNF and other proinflammatory 
cytokines (Pavlov, 2021). In addition, obesity-related inflammation and 
insulin resistance are linked to the accumulation of fat in the liver and the 
development of hepatic steatosis (Kojta et al., 2020).

Link between Obesity, Gut Microbiome, and 
Neural Disorders
Gut microbiota plays a key role in regulating brain functions, maintaining 
control in homeostasis in innate and adaptive immunity (Kowalski and 
Mulak, 2019), and microbiota-gut-brain axis (Goyal et al., 2021). Normal gut 
functions are maintained by microorganisms and bacteria, including pro-
inflammatory microbiomes. Evidence shows that several bacterial species, 
such as Escherichia coli, Staphylococcus aureus, and Bacillus subtil, are 
involved in the synthesis of acetylcholine, one of the main neurotransmitters 
in the brain (Cattaneo et al., 2017). Intestinal dysbiosis caused by immune 
system dysfunction may influence the interaction between the gut and the 
brain during stroke onset (Cho et al., 2021).

Bad eating habits and the increase in the use of antibiotics can generate 
a disturbance in the functionality of the neural system, promoting the 
development of degenerative pathologies. It is already known that the 
appearance of intestinal dysbiosis is associated with the interruption of 
the release of dopamine, the reward hormone (Vamanu and Rai, 2021). 
Recent studies have shown a connection between obesity, type 2 diabetes, 
and neurodegenerative diseases. The modulation of the microbiota 
associated with weight loss is among the new therapeutic strategies against 
neurodegenerative diseases (Ashrafian et al., 2013).

This bidirectional communication network includes the central nervous 
system (CNS), brain and spinal cord, autonomic nervous system, enteric 
nervous system, and the hypothalamic-pituitary-adrenal axis. The autonomic 
system, with the sympathetic and parasympathetic limbs, conducts both 
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afferent signals, arising from the lumen and transmitted via enteric, spinal, 
and vagal pathways to the CNS and efferent signals from the CNS to the 
intestinal wall (Carabotti et al., 2015).

Although the gastrointestinal tract (GI) or enteric nervous system functions 
independently of the CNS, digestive activities involve parasympathetic 
and sympathetic control, which connect the CNS and GI. In addition, the 
neural fibers connecting the brain and gut allow for the relaying of sensory 
information to the CNS and the CNS regulation of GI function (Chi et al., 
2018). After a stroke, the gut-brain axis involved in maintaining homeostasis is 
activated to regulate dysbiosis. The inflammatory activity generated in the gut 
may also be reflected in the brain microbiome, suggesting a new approach to 
the pathology and treatment of stroke (Vamanu and Rai, 2021).

Altering the gut microbiome population can exacerbate symptoms of gut 
diseases and CNS diseases such as AD and Parkinson’s disease (Chiang and 
Lin, 2019; Cho et al., 2021). Furthermore, populations of dysbiotic microbiota 
may exacerbate blood-brain barrier (BBB) permeability, possibly mediating the 
pathogenesis of AD and other degenerative CNS disorders. Bacterial secretion 
of amyloids and lipopolysaccharides can upregulate pro-inflammatory 
cytokines through the gut-brain or BBB axis.

Hypothalamic Inflammation and 
Neurodegenerative Diseases
The hypothalamus is an important brain region in metabolic homeostasis 
regulation (Morita-Takemura and Wanaka, 2019). The neuronal circuitry in 
the arcuate nucleus within the midbasal hypothalamus plays an important 
regulatory role in food intake (Kälin et al., 2015; Mendes et al., 2018; Shin et 
al., 2019; Lee and Yau, 2020). These molecules and hormones stimulate the 
expression of the anorectic neuropeptide pro-opiomelanocortin and inhibit 
the expression of agouti-related orexigenic neuropeptides and neuropeptide 
Y (Trotta et al., 2020).

Proinflammatory mediators from the expansion of adipose tissue reach the 
hypothalamus from the nevus vagus, promoting increased production of 
neural cytokines by activating endothelial and glial cells, particularly microglia 
(Lee and Yan, 2020). Microglia play an important role in host defense and 
tissue repair by secreting inflammatory cytokines and chemokines (Kälin et 
al., 2015; Maldonado-Ruiz et al., 2017; Saltiel and Olefsky, 2017; Lee and Yau, 
2020). 

Pro-opiomelanocortin and neuropeptide Y/AGRP neurons are activated by 
cytokines, which in turn activate inflammatory signaling pathways, namely 
Toll-like receptor 4, myeloid differentiation factor 88, JNK, and nuclear 
transcription factor NF-κB, which promote the interruption of the leptin and 
insulin signaling pathways, thus making it difficult to detect metabolic signals 
and the normal regulation of energy homeostasis by these neurons (Zhang 
et al., 2008; Cai and Liu, 2012; Benzler et al., 2015). Prolonged microglial 
activation can also cause hypothalamic neuronal apoptosis, especially of pro-
opiomelanocortin neurons (Moraes et al., 2009).

Therefore, hypothalamic inflammation can be considered a key mechanism 
of neurodegeneration (Cai and Liu, 2012), although the exact mechanism is 
not yet known. The phenotypic diversity of microglia is associated with the 
inactivation of the inflammatory response and tissue repair. Therefore, with 
altered leptin and adiponectin signaling in the brain, there is more likelihood 
of cognitive dysfunction and an increased risk of neurodegenerative diseases.

Obese individuals are at increased risk of developing age-related cognitive 
decline, vascular dementia, mild cognitive impairment, and AD (Panza 
et al., 2010). The brains of individuals with vascular dementia, cognitive 
impairment, and Alzheimer’s, showing elevated levels of several microglia-
derived cytokines and other immunological mediators, reflect a chronic 
inflammatory environment in the brain (Hansen et al., 2018; Hickman et al., 
2018). Insoluble amyloid β fibrils (fAβ), which constitute the extracellular 
plaques and neurofibrillary tangles (NFT) containing hyperphosphorylated 
tau protein (P-tau), where activated microglia and reactive astrocytes were 
found nearby, maybe the main indicators of Alzheimer’s progression (Tuppo 
et al., 2005; Mendes et al., 2018). In addition to these diseases, chronic 
neuroinflammation caused by obesity is mainly characterized by selective and 
coordinated inflammatory destruction of myelin, with damage to the axon in 
multiple sclerosis (Voet et al., 2019).

The increase in serum lipids and adipocytokines influences the inflammation 
of the cerebrospinal fluid (Stampanoni Bassi et al., 2020). In multiple sclerosis, 
proteases are released from microglia, proinflammatory cytokines, reactive 
oxygen species, and RNS, and they recruit reactive T lymphocytes, causing 
toxicity to neurons and oligodendrocyte precursors (Maldonado-Ruiz et al., 
2017; Saltiel and Olefsky, 2017). Axonal and myelin damage is caused by 
autonomous cell inhibition of the NF-κB, JNK, and ERK1/2 pathways 42. These 
results suggest that in multiple sclerosis, microglia cause tissue damage in 
neurons from obesity-related inflammation (Williams, 2012; Hickman et al., 
2018).

Obesity-related hypothalamic inflammation can generate changes in microglial 
function and mRNA profile, being associated with Huntington’s disease (Yang 
et al., 2017). The expression of mHTT in microglia confers an autonomous cell 
increase in pro-inflammatory genes. This correlates with increased expression 
of IL-6 and TNF (Cai and Liu, 2012; Grizenkova et al., 2014; Hickman et al., 
2018; Luo et al., 2019; Madore et al., 2020).

These changes are unique to microglia and are not seen in other myeloid 
cells. Functionally, several of the genes that are increased in mHTT microglia 
are involved in the detection of their environment, such as Tlr2, Cd14, Fcgr1, 
Clec4d, Adora3, Tlr9, and Tnfrsf1b, suggesting an increase in extracellular 
stimuli. This has been associated with increased microglial neurotoxicity 
(Rocha et al., 2016; Yang et al., 2017; Palpagama et al., 2019). 

Exacerbated microglial activation can lead to motor neuron death. Microglia 
change their phenotype in amyotrophic lateral sclerosis disease progression 
(Hickman et al., 2018). Some proinflammatory microglia are seen in the 
spinal cord before the development of the clinical disease; they increase 
with disease progression and persist in end-stage disease (Ransohoff and 
El Khoury, 2016). Microglia isolated from mSOD1 mice in early disease 
were neuroprotective, in contrast to microglia isolated in late-stage disease 
(Ransohoff and El Khoury, 2016). The neurotoxicity of microglia mSOD1 is 
NF-κB dependent and partially mediated by IL-1β. These findings directly 
implicate microglia with mSOD1 in the progression of amyotrophic lateral 
sclerosis (Hooten et al., 2015; Chen et al., 2016; Wolf et al., 2017; Thonhoff et 
al., 2018; Subhramanyam et al., 2019).

Overweight people are more likely to develop these comorbidities, leaving 
metabolic health impaired in patients with COVID-19 (Mokry et al., 2016; 
McAlpine et al., 2021). Patients with neurodegenerative diseases, including 
dementia, Parkinson’s disease, and multiple sclerosis, constitute a significant 
proportion of patients hospitalized with COVID-19 (McAlpine et al., 2021). 
Such patients are likely to present altered mental status or worsening of their 
preexisting neurological symptoms. Patients with cognitive disorders and 
poor outcomes often have high-risk comorbidities such as obesity (Dietz and 
Santos-Burgoa, 2020; Hussain et al., 2020; McAlpine et al., 2021).

Obesity Association with Cognitive Function and 
Brain 
Cognitive function is one of the most important contributors to health, quality 
of life, and increased survival in old age. Although the main threat to cognitive 
function later in life is dementia, elderly people, in general, show a cognitive 
decline (Dahl and Hassing, 2013). On average, cognitive abilities remain stable 
throughout adulthood and begin to decline around 65 years of age (Murman, 
2015). 

However, there are large inter-individual differences in cognitive aging. Some 
people show a sharp decline; others remain reasonably constant, and some 
people even improve (Salthouse, 2017; Mella et al., 2018). Although it is 
common for cognitive skills to decrease with increasing age, several factors 
can affect cognitive aging, from biological factors, such as genetics, to social 
factors, like education and watching television (Dahl and Hassing, 2013).

While there is ample evidence that a relationship exists between obesity 
and brain health (structure and function), it is important to recognize that 
causality is an issue to be considered (Miller and Spencer, 2014). Obesity is 
associated with many pathophysiological changes that have the potential 
to affect the brain negatively, leading to inflammation, which in turn can be 
both a cause and a consequence of obesity. It is also possible that reduced 
cognitive function, in particular executive dysfunction, may predispose 
individuals to obesity. Executive dysfunction is associated with obesity-related 
behaviors due to binge eating, depression, and reduced physical activity (Dohle 
et al., 2018). 

There may be impacts on physical and psychological health among obese 
individuals. Due to difficulties in treating obesity, many other diseases can 
be triggered in the obese person such as depression, cognitive function loss, 
aging, Alzheimer and others (Naderali et al., 2009; Sellbom and Gunstad, 
2012).

When the obese individual presents dyslipidemia, which involves high 
levels of lipids in the blood, this can increase the chances of accumulation 
and formation of fatty deposits in the veins and arteries, thus increasing 
blood pressure, reducing the quality of the blood, and directly affecting 
organs like the liver and kidneys. Adipose tissue, especially that deposited 
in the abdomen, possesses a systemic effect due to the expression or 
inhibition of chemical markers such as prostaglandins 8-isoprostanes, the 
enzyme 8-oxoguanine DNA-N-glycosylase-1, superoxide dismutase, and 
total antioxidant capacity (Jiang et al., 2016; García-Sánchez et al., 2020). 
Intra-abdominal fat accumulation and a carbohydrate-rich diet are capable 
of contributing to a rise in noradrenaline in the peripheral tissue and of 
stimulating noradrenaline peripheral receptors, which activate the SNS and 
can cause hypertension (Kotsis et al., 2010).

Obesity affects the cerebral plasticity and brain structure, and the brain of 
an obese individual usually presents low cortical thickness on the upper left 
and right orbitofrontal, while the ventral volume of the diencephalon is also 
reduced. It is suggested that alterations in the cerebellum, hippocampus, and 
medial orbitofrontal can be related to motor and cognitive deficits (Wang et 
al., 2016).

The effects of insulin on the hippocampus affect areas of the brain that play 
a key role in learning and memory (Scherer et al., 2021). The expression 
of glucose transporters such as GLUT2 in the hypothalamus and GLUT4 
in specific areas of the brain such as the cerebellum, neocortex, and 
hippocampus suggest a role of GLUT-induced glucose uptake in neuronal 
activity (Bartsch and Wulff, 2015).
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The high-fat diet (HFD) produces detrimental effects on brain functions, 
including decreased neurogenesis, altered BBB integrity, and changes in spinal 
density and synapse formation (Spinelli et al., 2019). HFD also impairs insulin 
signaling in the hippocampus and reduces the expression of synaptic proteins, 
PSD-95 (Quach et al., 2014). Obesity and type 2 diabetes mellitus have also 
been shown to induce insulin resistance in the hippocampus through different 
metabolic alterations, including alteration of the hypothalamic-pituitary-
adrenal axis leading to elevated levels of glucocorticoids. Thus, glucocorticoid 
stimulation inhibits the translocation of GLUT4 to the plasma membrane in 
the rat hippocampus (Biessels et al., 2014).

Diabetes patients in the aging population are at high risk of AD, and there 
is a reduction in sirtuin 1 activity simultaneously with the accumulation of 
hyperphosphorylated tau in the AD-affected brain. Du and coworkers (2015) 
demonstrated through a mouse model of brain insulin resistance with an 
intracerebroventricular injection of streptozotocin, a reduction in cognitive 
function, and a decrease in the activity of the neuroprotective protein 
sirtuin 1 (Du et al., 2014). The neuroprotective effect of Sirt1 requires the 
presence of TORC1, a brain-specific modulator of CREB activity. Then, sirtuin 
1, cooperates with the CREB (cyclic AMP responsive element binding protein) 
transcription factor promoting CREB-dependent expression of the gene 
related to synaptic neuroplasticity, brain-derived neurotrophic factor (Di Rosa 
et al., 2021).

Mice fed HFD show higher levels of reactive oxygen species, superoxide, 
and peroxynitrite in the brain, leading to a lower level of brain-derived 
neurotrophic factor and reduced cognitive performance (Di Rosa et al., 
2021). Interestingly, feeding HFD to obese rodents inhibited the transport 
across the BBB of neuroendocrine molecules such as ghrelin and leptin, 
which promotes synaptic plasticity and cognitive functions. This functional 
impairment was accompanied by blunt activation of STAT-3, one of the main 
signal transduction pathways controlled by the fully functional leptin receptor 
isoform, ObRb (Mainardi et al., 2017). Finally, HFD has been shown to induce 
neuroinflammation, through the activation of microglia and astrocytes and 
increase of pro-inflammatory cytokines/mediators such as cyclooxygenase 
2, TNF-α, IL-1-β, and IL-6 in the hippocampus of mice (Duffy et al., 2019). In 
summary, metabolic diseases that affect insulin signaling can impair synaptic 
function through a multitude of molecular mechanisms targeting neurons, 
astrocytes, endothelial or inflammatory cells.

Animal Models as an Alternative for In Vivo 
Studies for Obesity 
Among the diverse studies of obesity with comorbidities, cognitive function 
is the most studied due to impact disease/treatment observation for tests 
quite and applicability for analyses of other comorbidities. Animal models 
are very useful in this situation because obesity can be induced, and multiple 
parameters can be observed, such as weight, lipid profile, and glycemic levels 
(Speakman, 2007). Rodents are the most widely used models, especially the 
mouse species Mus musculus (Kleinert et al., 2018). de Farias et al. (2020) 
have demonstrated that obesity treatment with donepezil prevents weight 
gain, decreases food intake, and reduces mesenteric fat in Swiss mice. The 
same study shows that 5 mg/kg/d donepezil did not cause behavioral changes 
in the obese group in comparison with the control group (de Farias et al., 
2020).

To measure these behavioral changes, the SHIRPA test (SmithKline Beecham, 
Harwell, Imperial College, Royal London Hospital, phenotype assessment) was 
used, and five parameters were analyzed: motor behavior, neuropsychiatric 
status, sensorial function, autonomic function, the activity of muscular tonus 
and muscular strength (de Farias et al., 2020).

Another lineage that is widely used because of its susceptibility to diet-
induced obesity and polygenic models is the mouse lineage C57BL/6J. 
Lineages SWR/J and A/J are less susceptible to obesity and related 
complications, while FVB and 129/Sv are more susceptible to genetic 
manipulations of the knockout type (Kleinert et al., 2018).

Other models such as Caenorhabditis elegans (nematode), Drosophila 
melanogaster (fruit fly), and Danio rerio (tropical teleost fish) are also used as 
an alternative model for anti-obesity studies. These biological models have 
their entire genomic library of RNAi available, a relatively short life cycle, low 
cost, conserved biochemistry, and obesity-like examples, but with different 
physiology and anatomy from mammals (Kleinert et al., 2018).

There are several other possible animal models, such as non-human primates, 
large animals (dogs and pigs), mice, and non-mammals. Each of them 
presents its advantages and disadvantages, but non-mammals cannot replace 
obesity studies with mammals, especially humans, which are essential for 
food intake research, the relationship between cerebral control and metabolic 
flows, body fat distribution, glycose systemic metabolism, and other vital 
aspects in understanding obesity (Kleinert et al., 2018).

Molecular markers have been quantified in adipose tissue of animal models. 
Pro-inflammatory cytokines like IL-6, TNF-α, and IL-1β, triggered by the 
inflammasome and that are unduly produced by macrophage infiltration in 
adipose tissue, still have their role in obesity despite the adipocyte, leading to 
the beginning of inflammation (Rodríguez-Hernández et al., 2013). 

Other factors that can modulate the impact of neuroinflammation on 
cognitive function and emotional changes related to obesity and that have 

been observed in C57BL/6J with diet-induced obesity are the hypothalamic-
pituitary-adrenal axis, leptin, insulin, and intestinal microbiota. These factors 
are possibly linked to the development of comorbidities and the emergence 
of new neuropsychiatric symptoms from an inflammatory process in 
obesogenic animals (Castanon et al., 2015).

Obese patients’ systemic inflammation characteristics are also linked to 
cognitive dysfunctions related to aging, with many studies of animal models 
such as db/db, C57BL6/J, and Germ-free mice. Evidence that peripheral 
inflammation triggers a central inflammation in the brain of male db/db mice 
(C57BLKS/J-leprdb/leprdb) and db/+ (C57BLKS/Jleprdb/+), which generates a 
synaptic plasticity alteration; this, in turn, contributes to neurodegeneration 
and the beginning of brain atrophy (Dinel et al., 2014; Solas et al., 2017).

Studies demonstrate that part of the brain in animal models induced to 
obesity is affected in different stages of obesity. The pre-frontal cortex and 
perirhinal cortex are compromised at the beginning of obesity, while the 
hippocampus is shown to be affected in more advanced stages. Together 
with the loss of synapses in affected areas, changes in the microglia cells 
morphology and hormonal changes are the possible mechanisms of impact of 
obesity in the brain (Bocarsly et al., 2015).

Clinical Studies with Obese Patients
Clinical trials are part of obesity treatment clinical research and are at the 
heart of all medical advances. The clinical trial explores new ways to prevent, 
detect or treat disease. Scientists are researching to learn more about 
overweight and obesity, including studies on the role of dietary patterns in 
obesity development and treatment; new behavioral, medication, device, 
and surgical approaches; and other research areas that can tell us more 
about why people develop obesity or respond to treatment. They provide 
new information about how the patients’ condition is influenced and about 
possible mechanisms of action to combat obesity and its effects on the 
human body (Kakkar and Dahiya, 2015; Thompson et al., 2017; Peterli et al., 
2018; Staiano et al., 2018; Xu et al., 2018).

Due to the high number of comorbidities related to obesity, clinical trials with 
obese patients provide an opportunity to test possible treatments regarding 
not only obesity but also other common conditions associated with obesity. 
These include cancer, diabetes, hepatic steatosis, cardiovascular diseases, 
binge eating disorder, and many others (Hofsø et al., 2010; Alisi et al., 2014; 
Libman et al., 2015; McElroy et al., 2015; Neuhouser et al., 2015).

Obesity by itself is capable of generating changes in the patient’s cognitive 
function, as do many other comorbidities related to obesity. It is therefore 
unsurprising that there are varied studies on the impact of obesity on 
cognitive function (Alosco et al., 2014; Prickett et al., 2015; Brown et al., 
2016).

Clinical trials can vary a lot, mostly due to the number of patients, length of 
the study, age, comorbidities, and other factors that depend on the target 
and scope of the research. A good example is a clinical trial, the Baltimore 
Longitudinal Study of Aging, which was carried out with 1700 patients. This 
study began in 1958, with visits every 2 or 3 years, dealing with individuals 
ranging from 19 to 93 years old, from different demographic groups in the 
United States of America, specifically in Baltimore and Washington. This 
clinical trial seeks to understand the relationship between measurements of 
waist circumference and other parameters and a decline in cognitive function 
decline (Gunstad et al., 2010).

The Baltimore Longitudinal Study of Aging shows that the rise in BMI, 
or the increasing waist circumference or waist-to-hip ratio (WHR) by 
the accumulation of fat in the abdominal region, is associated with loss 
of cognitive function, evidenced in tests such as the Mini-Mental State 
Examination and Blessed IMC that evaluate the cognitive function and 
information, memory and cognition, respectively (Gunstad et al., 2010; 
Sellbom and Gunstad, 2012).

The attention and executive function analyzed by this test showed that 
participants with an increase in BMI and waist circumference, because of 
the deposition of adipose tissue especially in the abdominal area, present 
a changed performance in Trail Making Test A, a test that measures the 
capacity of visual attention and task changes. High WHR is related to slower 
performance with the increase of age (Gunstad et al., 2010). 

The cognitive function was evaluated in diverse tests, such as Prospective 
Memory, which demonstrated that the waist circumference and BMI of the 
obese were linked to poorer results than normal. High waist circumference 
and high WHR were related to worse performances in the Benton Visual 
Retention Test, and results became worse as time passed and obesity 
increased (Gunstad et al., 2010). 

The individuals were analyzed using tests in language fluency, with two tests 
applied to demonstrate the relationship in parameters observed in the obese 
body and its performance in each test. The experiment showed that obese 
individuals with high WHR presented lower results in Category Fluency, while 
a high waist circumference was linked to inferior performances in Letter 
Fluency; a high BMI was related to more unsatisfactory results in both tests 
(Gunstad et al., 2010).

Alosco and coworkers (2014) performed the follow-up for 30 days before 
bariatric surgery of 50 patients between 20 and 70 years old. After the 
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surgery, the patients were observed for an additional 12, 52, 104, 156 weeks. 
After this period, data collection began, such as body mass index (BMI), 
and the cognitive function performance, memory, and language skills were 
evaluated (Alosco et al., 2014). Inclusion and exclusion factors were used in 
clinical trials, aiming for consistent and reliable results (Alosco et al., 2014).

Inclusion factors are used when looking for some specific characteristics of 
the patients, so that if a study is examining the effect of a diet or medicine 
on obese or post-surgery patients, it should use only obese or post-surgery 
patients, respectively. Exclusion factors are used to prevent other factors from 
disturbing the observed results. A classic example of inclusion and exclusion 
factors are patients that have already had a heart attack, present mental 
illness, or are drug addicts who can interfere with the results of tests to 
evaluate cognitive function (Gunstad et al., 2010; Alosco et al., 2014). 

Animal models can be used on a large scale, thus presenting more data, a 
possible mechanism of action, and molecular pathways, and paving the way 
for clinical trials. However, these data are still unclear, and more information 
on the impact of inflammation on the nervous system is needed, probably by 
means of clinical trials and studies on humans (Gunstad et al., 2010; Agusti et 
al., 2018).

Anti-Obesity Drugs and Mechanism of Action in 
the Central Nervous System 
Three main pathways in the human body are directly related to obesity, the 
net connections between the nervous system, digestion, and metabolism, and 
its cause may vary according to the dysfunction in complex communication 
and biochemical signaling path that regulates since food intake until its 
nutrients and metabolism absorption (Pilitsi et al., 2019).

When lifestyle changes do not have an expected effect or when there 
are diseases that predispose the patient, the drug’s use is necessary to 
complement the obesity treatment. Chemical and organic compounds 
that can act as modulators of one of these three pathways can contribute 
to weight loss, acting as anti-obesity drugs (Table 1) (Narayanaswami and 
Dwoskin, 2017).

Anti-obesity drugs include compounds that act as much as the gastrointestinal 
tract (GIT), modulating by inhibiting nutrient absorption and those that act 

on the central nervous system. Compounds that are capable of acting as 
inhibitors of the catalytic action that degrade macromolecules from food or 
that may interfere with the GIT tract cells functionality responsible for the 
absorption of the nutrient can be included in this class (Chen, 2016). In this 
group are the gastric lipase inhibitors (Bryson et al., 2009; Pilitsi et al., 2019) 
and the glucose absorption inhibitors (Rebello and Greenway, 2020).

Gastric lipases play a fundamental role during the degradation food process, 
enabling the large lipid chains biocatalysis in monomers allowing the 
lipids absorption by the GI tract (Bialecka-Florjanczyk et al., 2018). Dietary 
triacylglycerol is cleaved through the action of the enzymes, called lipases, 
which catalyze its substrate to monoacylglycerol and free fatty acids, which 
can be absorbed by the intestinal epithelium and re-esterified in dietary 
triacylglycerol, to later be transported through chylomicrons throughout the 
lymphatic system (Hussain et al., 2020).

The enzyme diacylglycerol acyltransferase 1 (DGAT1) is a target for anti-
obesity drugs, as it plays a fundamental role in fat absorption, studies have 
shown that this enzyme is expressed in large quantities in the adipose tissue 
and small intestine and that its deletion or inhibition in rodents resulted in 
body weight and adiposity reduction, allowing an increase in the glucagon 
like peptide and pancreatic peptide YY secretion (Cao et al., 2008; Zhao et al., 
2008; Rebello and Greenway, 2020).

Orlistat has its action in the digestive system, specifically GIT, preventing the 
lipids absorption as an enzymatic action of gastric lipases inhibitor, data from 
randomized experiments with patients in a state of obesity (100 kg) where 
applications of doses of 60 and 120 mg were performed, resulting in weight 
loss of patients in up to 30% fewer calories than they had at the beginning 
of the experiments (Heck et al., 2000). In addition to this medication, other 
lipase inhibitors can prevent the large lipid chains degradation, such as 
Cetilistat, which has the same effect as Orlistat, however, it causes up to 30% 
fewer side effects at concentrations of 60, 120, and 240 mg/kg (Kopelman et 
al., 2007).

Another drug that can affect the GIT and that was initially developed for the 
treatment of diabetes type II, liraglutide is a synthetic analog of glucagon-
like peptide-1 (GLP-1) (Vanderheiden et al., 2016). Its mechanism of action 
is based on the attachment of a fatty acid to the GLP-1 molecule, allowing 
reversible binding to albumin in the subcutaneous tissue (Malm-Erjefält et 

Table 1 ｜ Drugs most used in the treatment of obesity, with emphasis on the target and mechanism of action of these compounds

Name Alternative name Target Mechanism of action Reference

RM-493, formerly RM-493, formerly Metabolism MC4R-target agonist Chen et al., 2015
BIM-22493, BIM-22493,
IRC-022493 IRC-022493
Velneperit S-2367 Nervous system Neuropeptide Y5 receptor antagonist Powell et al., 2011
Zonisamide-
bupropion

Empatic Nervous system Antiepileptic drug with actions on sodium channel modulation, carbonic 
anhydrate inhibition, dopamine, and serotonin transmission

Gadde et al., 2007

Semaglutide NN9536; oral GLP-1 
agonists:semaglutide, 
TTP054/TTP-054 and ZYOGI

Digestive system Weight loss by reducing hunger occurs with GLP-1 receptor agonists drugs, which 
stimulate insulin secretion and reduce glucagon secretion

Ahrén et al., 2017; 
Blundell et al., 2017

Davalintide (AC2307), 
KBP-088, KP-042 (dual 
amylin and calcitonin 
receptor agonists)

Davalintide (AC2307), KBP-
088, KP-042(dual amylin and 
calcitonin receptor agonists)

Digestive system Pancreatic B-cell hormone which acts as a centrally acting satiety signal, reducing 
food intake, slowing gastric emptying, and reducing postprandial glucagon 
secretion; human amylin receptor subtypes are complexes of calcitonin receptor

Mack et al., 2010

ZP4165 ZP4165 Metabolism Increased GIP signaling in adipose tissue induced insulin resistance, lipid storage, 
and hepatic steatosis; combination GLP-1 agonist and GIP and enhance GLP-1 
induced weight loss

Nørregaard et al., 2018

Oxyntomodulin MED10382, G530S (glucagon 
analogue+ semaglutide), GC-
co-agonist 1177

Metabolism Though glucagon monotherapy causes the hyperglycemic effect, combination 
GLP-1 agonist and glucagon was noted to induce anorexia in studies

Wynne et al., 2006

PYY PYY Nervous and 
digestive system

Anorexigenic peptide which decreases gastric motility, increases satiety, and 
inhibits NPY receptors

Kumar et al., 2020

Orlistat Digestive system 
and metabolism

Orlistat is a selective inhibitor of gastric and pancreatic lipases. It works by 
covalently binding to the serine residue of the active site of lipases, causing partial 
inhibition of the hydrolysis of triglycerides.

Heck et al., 2000

Lorcasein Belviq Nervous system Lorcaserin acts on 5-HT2C receptors in the hypothalamus, stimulating 5-HT2C 
receptors triggering the release of the stimulating hormone alpha-melanocortin, 
causing appetite suppression.

Martin et al., 2011

Liraglutide Metabolism Liraglutide is a peptide-1 receptor agonist. The increase in cyclic AMP stimulates 
insulin release and inhibits glucagon release, resulting in blood sugar control.

Vanderheiden et al., 2016

Phentermine Adipex-P Nervous system Phentermine is a sympathomimetic amine of the amphetamine class, which are 
anorexinogenic drugs. The primary action in the treatment of obesity has not 
been described, but it is known that amphetamines have the stimulation of the 
nervous system and elevation of blood pressure as pharmacological actions.

Kiortsis, 2013

Tesofensine Nervous system Tesofensine is a Serotonin-norepinephrine-dopamine-reuptake-inhibitor (SNDRI). 
The pharmacological basis for the weight loss action has not been resolved, but it 
is known that theofensine acts in the suppression of appetite.

Coulter et al., 2018

Methylphenidate Ritalina Nervous system Methylphenidate acts on the inhibition of dopamine reuptake and transport, 
responsible for motivation, reward, attention, and impulsivity.

Sahin et al., 2014

5-HT2C: Serotonin receptor; AMP: adenosine monophosphate; GIP: gastric inhibitory polypeptide; GLP-1: glucagon-like peptide-1; IRC: immortal rat chondrocyte; KBP: key bioscience 
peptide; MC4R: melanocortin-4 receptor; NPY: neuropeotide Y; PYY: pancreatic peptide YY; SNDRI: serotonin norepinephrine dopamine reuptake inhibitor; ZP4165: GIP analogue. 
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al., 2010). This binding to albumin results in slower degradation of GLP-1, 
being released over time. This effect results in increased insulin secretion and 
reduced glucagon secretion and, in weight control, may result in increased 
satiety and reduced food consumption (Russell-Jones, 2009; Isaacs et al., 
2016).

In addition to lipid absorption inhibitors, recent studies address a different 
type of mechanism of action, also related to the debate treatment, glucose 
absorption or reabsorption inhibition (Rebello and Greenway, 2020). These 
inhibitors target the body’s proteins called selective sodium-glucose co-
transporter 1 and 2, which play a fundamental role in the glucose levels 
bloodstream modulation, and glycosylated hemoglobin formation (Wilding 
et al., 2018). These transporters are responsible for glucose absorption in 
the TGI and in the kidneys glucose reabsorption (Abdul-Ghani et al., 2013). 
Among the glucose absorption inhibitors we can mention licogliflozin and 
sotagliflozin, studies using these drugs in the obesity treatment resulted in 
a reduction in body weight of 7.5% when compared to placebo, during a 
treatment performed with 150 mg/kg for 2 weeks (Garg and Strumph, 2018; 
He et al., 2019). 

The main action route in the treatment of anti-obesity is through mechanisms 
that act on the central nervous system. Based on their mechanisms, these 
drugs promote a reduction in food intake, in some cases stimulating brain 
regions related to the feeling of satiety, correlated with changes in eating 
and appetite behavior, like the hypothalamus, brainstem, peripheral nervous 
system, and cortical limbic (Adan et al., 2008; Heymsfield and Wadden, 2017).

Central nervous system receptors are the main targets of anti-obesity drugs 
in this class, like adrenalin, serotonin, dopamine, and GABA receptors (Adan 
et al., 2008). An example is Lorcaserin, an anorectic drug active at 5-HT2C 
receptors in the hypothalamus., can act as a serotonin antagonist, interacting 
with the neuroreceptor 5HT-2C, in regions such as the parietal and visual 
cortex in the limbic system and decreasing activity in these brain areas, which 
can cause a behavioral effect related to the decrease in the need for food 
intake (Martin et al., 2011; Pilitsi et al., 2019). 

A drug initially used in the treatment of epileptic seizures, topiramate, is 
now used as an adjunct therapy for weight management (off-label) (Sari et 
al., 2021). Its mechanism of action is not fully known, but it is known that 
the drug exerts actions on voltage-dependent sodium channels, GABA, and 
glutamate receptors (Shank et al., 2000). The ways of action of topiramate are 
not directly related to weight loss, however, the action of the drug can reduce 
food intake and, in rodents, it had effects on lipoprotein lipase (adipose tissue 
and muscle) (Richard et al., 2000; Husum et al., 2003).

Another anti-obesity medication that also acts on the hypothalamus is 
Phentermine, experiments performed demonstrated 6.1% weight loss after a 
randomized treatment with 15 mg for 28 weeks, which has a structure similar 
to amphetamines. Phentermine is a sympathomimetic amine that acts by 
releasing norepinephrine from presynaptic vesicles in the hypothalamus. This 
increase in the concentration of norepinephrine in the synaptic cleft results 
in the stimulation of the adrenergic receptors. Phentermine may inhibit 
neuropeptide Y, being the main hunger-inducing signaling pathway. This 
combined effect produces a continuous fight-or-flight response, as this state 
is related to the immediate need for energy (Kiortsis, 2013).

Some of the anti-obesity drugs are used or were used initially to treat 
diseases that affect the nervous system. As nerve cells deteriorate, the 
neurotransmitters (dopamine and serotonin) amount is reduced, which 
is one of the characteristics of biochemical diseases such as Parkinson’s 
disease and Alzheimer’s disease (Meder et al., 2019). In the obesity case, low 
extracellular serotonin levels are related to the increased desire to eat sweets 
and carbohydrates. Tesofensine is an example of a drug that can be used in 
the nervous system and obesity diseases, being able to inhibit the dopamine, 
serotonin, and norepinephrine recapture in the synaptic cleft. After this 
inhibition, an increase in these neurotransmitters’ extracellular levels is 
observed, leading to a normality situation (Lam and Heisler, 2007).

The alteration of dopaminergic levels in the body is one of the main 
mechanisms described for drugs of this class. Methylphenidate, for example, 
prevents dopamine transport and reuptake, increasing synaptic levels of 
dopamine and norepinephrine in areas of the brain (prefrontal cortex, 
hippocampus, and precuneus) responsible for motivation, reward, attention, 
and impulsivity. Dopaminergic neurotransmission participates in food reward, 
so a low amount of dopamine increases food consumption. The side effects of 
methylphenidate were anorexia and weight loss while it was used in attention 
deficit hyperactivity disorder (Birn et al., 2019).

Finally, recent studies indicate the relationship between obesity and 
dysfunctions in the patient’s metabolism, among some of the most common 
dysfunctions involving the energy-storage molecules over-storage (Lynes et al., 
2019). These compounds are usually lipids that are stored in adipose tissue, 
but when in excess, accumulations can also be found in the bloodstream or 
other organs such as the liver (Milić et al., 2014).

Thereat, metabolism can promote a regulation between each person’s energy 
and the energy expenditure availability, through a biochemical, anabolic, and 
catabolic reactions series that result in the storage or energy release (Heindel 
et al., 2017). It consists of biochemical agents complex communication that 
acts as chemical reactions mediators throughout the human organism, 
these cascade reactions can result in different biological functions, including 

thermogenesis and chemical energy production such as adenosine 
triphosphate (Ježek et al., 2019).

These reactions can be regulated by the sympathetic nervous system itself, 
through stimuli related to the ambient temperature perception by activating 
the temperature regulation system (Morrison, 2018; Blaszkiewicz et al., 
2019) or directly in the target cells independently from the nervous system 
or together, as by the biochemical compounds release that act as signalers in 
adipocytes, which can be considered as endocrine and paracrine hormones, 
called lipokines (Lynes et al., 2019).

Lipoxins are biochemical mediators derived from lipids and fatty acids, they 
are produced by enzymes that regulate these cellular activity mediators, 
however, these compounds are so specific that the same derivative can 
result in an inverse signaling process (Lynes et al., 2019). As is the case with 
palmitic acid which moderately inhibits protein kinase B phosphorylation, 
while omega-7 palmitoleate an unsaturated variation can result in glucose 
uptake (Cao et al., 2008; Lynes et al., 2019). Another example may be the 
arachidonate-derived lipokines that activate thermogenesis, while arachidonic 
acid itself can reduce mitochondrial activity (Fleckenstein-Elsen et al., 2016; 
Lynes et al., 2019).

Among the lipokines, Oleoylethanolamine is present, it increases the 
expression of UCP1 in beige adipocytes; prostaglandins increases the 
UCP1 expression in brown adipocytes; 12,13-diHOME can regulate the fuel 
absorption and transport in the fatty acids form in brown tissue adipocytes 
and supports thermogenic function (Madsen et al., 2010).

The endocannabinoid system consists mainly of CBR1 and CBR2 receptors, 
and its main ligands are arachidonoyl ethanolamide and 2-araquidonoyl 
glycerol (Pertwee, 2010; Boleti et al., 2022). This system performs as one of 
its functionalities the control of the storage and consumption of chemical 
energy in organs related to the nervous system and areas responsible for the 
regulation of hunger and appetite, such as the hypothalamus and prefrontal 
cortex, consequently, this results in lipogenesis and storage of lipids and 
use of energy by brown tissue adipocytes and muscles, correlating the 
endocannabinoid system and the regulation of energy homeostasis (Rossi et 
al., 2018; Ruiz de Azua and Lutz, 2019).

Recent studies related to phytocannabinoids derived from the Cannabis sativa 
plant show that mainly cannabidiol affects reducing body weight, allowing 
an increase in lipolysis and thermogenesis, as well as acting as a lipogenesis-
reducing agent in adipose tissue (Bielawiec et al., 2020).

Cannabidiol can act in the liver, promoting a positive influence on the 
reduction of intracellular lipids in in vitro models of hepatosteatosis, with 
evidence of increased lipolysis and mitochondrial activity through fatty acid 
oxidation. Allowing an increase in the expression of the catalytic subunit of 
adenosine-monophosphate-activated protein kinase a2 and extracellular 
signal-regulated kinase 1/2 along with signal transducers and activators of 
transcription in hepatocytes (Silvestri et al., 2015; Bielawiec et al., 2020).

Conclusion
Increased visceral adiposity is a risk factor for the development of a wide 
range of neurological conditions, as well as obesity and metabolic disorders. 
Although the cellular mechanisms of obesity-induced neuronal and 
cognitive dysfunction need to be fully elucidated, it is clear that obesity, 
insulin resistance, and dyslipidemia converge in an inflammatory process, 
neurological dysfunction, and neurodegeneration. These associations 
could be related to dietary-induced alterations in the intestinal microbiota 
that, in turn, may contribute to neuro-inflammation and dysregulation 
of the neuroendocrine system, associated with obesity and mental 
impairments. Accumulating evidence suggests that atypical inflammatory 
insults disturb hypothalamic regulation, resulting in metabolic imbalance 
and aging progression, establishing a common causality for these two 
pathophysiological statuses. Studies have causally linked these changes to the 
activation of key proinflammatory pathways, especially NF-κB signaling within 
the hypothalamus, which leads to hypothalamic neuronal dysregulation, 
astrogliosis, microgliosis, and loss of adult hypothalamic neural stem/
progenitor cells. Experimental models have been used to investigate the 
effectiveness of compounds altering the gut microbiota, in both attenuating 
obesity and associated mental disorders. In addition, most of the drugs used 
in the treatment of obesity were initially developed to treat neurological 
diseases and, because of that, the central nervous system is the site of action 
for most of these drugs. Thus, it is important to emphasize that diet and a 
sedentary lifestyle can be determining factors in the process of adipogenesis 
and, consequently, may trigger neurological diseases.
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