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Abstract

based methods do.

methods.

Background: Missing values commonly occur in the microarray data, which usually contain more than 5% missing
values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of
downstream microarray data analyses. Many types of methods have been developed to estimate missing values.
Among them, the regression-based methods are very popular and have been shown to perform better than the
other types of methods in many testing microarray datasets.

Results: To further improve the performances of the regression-based methods, we propose shrinkage regression-
based methods. Our methods take the advantage of the correlation structure in the microarray data and select
similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least
squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and
then use the new coefficients to estimate missing values. Simulation results show that the proposed methods
provide more accurate missing value estimation in six testing microarray datasets than the existing regression-

Conclusions: Imputation of missing values is a very important aspect of microarray data analyses because most of
the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for
estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods
can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based

Background
Nowadays microarray technique has become an important
and useful tool in functional genomics research. This high
throughput technique allows the characterization of the
gene expression of the whole genome by measuring the
relative transcript levels of thousands of genes in various
experimental conditions or time points [1]. Microarray
data analyses have been widely used to investigate various
biological processes such as the cell cycle process [2-8]
and the stress response [9,10].

Although the microarray technology has been devel-
oped for more than a decade, typical microarray data still

* Correspondence: wessonwu@mail.ncku.edu.tw

’Department of Electrical Engineering, National Cheng Kung University, No.1
University Road, 701 Tainan, Taiwan

Full list of author information is available at the end of the article

contain more than 5% missing values with up to 90% of
genes affected [11]. Missing values could be generated by
various reasons, including technological failures, adminis-
trative error, insufficient resolution, image corruption,
dust or scratches on the slide [12]. As many downstream
analysis methods (such as gene clustering, disease classi-
fication and gene network reconstruction) require com-
plete datasets, missing value estimation becomes an
important pre-processing step in the microarray data
analysis [11-13].

The missing values in the microarray dataset are tradi-
tionally estimated by repeating the microarray experiments
or simply replacing the missing values with zero or the row
average (the average expression over the experimental
conditions). Because these approaches are either time-
consuming or leading to serious estimation errors, more
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advanced missing value imputation methods are needed to
solve the missing value problems. In 2001, Troyanskaya
et al. published the first two missing value imputation algo-
rithms based on the k-nearest neighbors (kNNimpute) and
the singular value decomposition (SVDimpute) [12]. Since
then, a lot of missing value imputation methods have been
proposed such as Bayesian principal component analysis
(BPCA) [14], Gaussian mixture clustering imputation
(GMCimpute) [11], conditional ordered list imputation
[15], random-forest-based imputation [16] and so on.

Among the existing missing value imputation methods,
the regression-based methods are very popular and con-
tain many algorithms, including least squares imputation
(LSimpute) [17], local least squares imputation (LLSim-
pute) [18], sequential local least squares imputation
(SLLSimpute) [19], and iterated local least squares impu-
tation (ILLSimpute) [13]. LSimpute estimates the missing
values in the target gene by using a weighted average of
the k estimates from the k most similar genes. Each esti-
mate is attained by constructing a single regression
model of the target gene by a similar gene. LLSimpute
represents the target gene as a linear combination of k
similar genes by a multiple regression model and uses
the regression coefficients to estimate the missing values.
SLLSimpute modifies the LLSimpute by estimating the
missing values sequentially from the gene containing the
fewest missing values and partially utilizing these esti-
mated values. ILLSimpute modifies the LLSimpute by
not choosing the similar genes with a fixed number k but
defining the similar genes as the genes whose distances
from the target gene are less than a distance threshold
and then runs LLSimpute iteratively.

In this study, we focus on the regression-based meth-
ods because these methods have been shown to have bet-
ter performances than the other existing methods in
many testing microarray datasets [20,21]. To further
improve the performance of the regression-based meth-
ods, we propose shrinkage regression-based methods
which use a shrinkage estimator to replace the least
square estimator for the estimation of the regression
coefficients in the regression model. The shrinkage esti-
mator such as the James-Stein estimator has been shown
to dominate the least square estimator in many statistical
models [22,23]. By adopting our new regression coeffi-
cients in the regression-based methods, we showed that
an improvement on missing value estimation in six test-
ing microarray datasets could be achieved.

Methods

In this study, we propose using the well-known shrinkage
estimation approach to improve three existing regression-
based methods (LLSimpute [18], SLLSimpute [19], and
ILLSimpute [13]) for missing value estimation. We call
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our proposed methods the shrinkage regression-based
methods (see Figure 1). In the following subsections, we
first introduce the shrinkage estimation approach and
then describe the proposed shrinkage LLSimpute, shrink-
age SLLSimpute, and shrinkage ILLSimpute.

Shrinkage estimation approach

One of the shrinkage estimators, the James-Stein estima-
tor, for the normal distribution is introduced here.
Suppose that Y73, Y5, ..., Yx are independent normal random
variables and these k random variables all have a common
known variance, but their means are unknown and differ-
ent. Let Y; ~ N(0;, 6°) and Y = (Y3, ..., Y2). Then we have
Y ~ N0, 6°1), where 0 = (0y, ..., ) and Lis a k x k identity
matrix. Let d(Y) = (d1(Y), ..., di(Y)) be an estimator of 6.
Under the squared error loss function

k
LE—-d) =) G—d’=11f —dmI? 1)

i=1
we are interested in finding estimators of @ such that the
mean squared error Ey [L (0, d(Y))] is minimized. An intui-
tive estimator of @ is Y (i.e. 4, =Y;, i=1, ..., k). How-
ever, Stein [22] showed that when k > 3, there exists other
estimators with smaller mean squared error than the intui-
tive estimator Y. For k > 3, under the squared error loss,

the intuitive estimator Y is dominated by the estimator

6’s = (1— kS_22>Y, ()

Y

Original regression-based methods
(LLSimpute, SLLSimpute and ILLSimpute)

\l

1. Construct a regression model

2. Use the least squares principle to estimate the
coefficients of the regression model

3. Utilize a shrinkage estimation approach to adjust
the coefficients of the regression model

4. Adopt the new coefficients to estimate the missing values

\l

Shrinkage regression-based methods
(Shrinkage LLSimpute, shrinkage SLLSimpute,
and shrinkage ILLSimpute)

Figure 1 The shrinkage regression-based methods.
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where §2 = Zle Y? [23]. The estimator in (2) is called
the James-Stein estimator in the literature [23]. With
the form in (2), the James-Stein estimator of 6, is

. k—2
6 = (1 - )1@. 3)

Y

It is worth noting that the estimator of 6; in (3) depends
on not only the random variable Y, but also the other vari-
ables Y1, ..., Yi1, Y; , 1, ..., Yy because of the term S3. On the
contrary, the intuitive estimator éi = Y; does not use the
other variables Y7, ..., Y; .1, Y, 1, ..., Yx but only uses Y; to
estimate 6,. It has been shown that estimators using other
variables’ information provide more accurate estimation for
0 than the intuitive estimator does [22]. In fact, except for
the estimator in (3), the estimators of the form

~ C
6" = (1 - S—z) Y, @)
Y

all have uniformly smaller mean squared error than
the intuitive estimator Y;, for k > 3 and 0 <c <2 (k - 2).
Among all the estimators of the form in (4), the estima-
tor in (3) has the minimized mean squared error. The
shrinkage estimation approach has also been shown to
have good performance in interval estimation [24,25].
Based on the James-Stein estimator in (3), we developed
shrinkage regression-based imputation methods.

Notations

In a typical microarray data matrix, the rows are the genes
under investigation and the columns are the experimental
conditions or time points. The microarray data matrix is
obtained by performing a series of experiments on the
same set of genes. We use G ¢ R™ *" to represent a
microarray data matrix with m genes and # experiments,
and assume m 3> n which is true for microarray data. In
the matrix G, a row giT € R! *" represents the expressions
of the ith gene in # experiments:

e R (5)

where g denotes the transpose of a column vector g;.
If there is a missing value in the /th position of the ith
gene, we denote it as o, i.e. G;,; = g = o

Shrinkage local least squares imputation (Shrinkage
LLSimpute)

In the LLSimpute method [18], a target gene with miss-
ing values is represented as a linear combination of k
similar genes. Rather than using all genes in the dataset,
only k genes with high similarity to the target gene are
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used. The procedure of selecting k similar genes is as
follows. Suppose that the target gene is the first gene
and has a missing value « in the first position, i.e. a=
g11 in the matrix G e R™ * ™ The Pearson correlation
coefficient is used to find the k similar genes. These k
similar genes are called the k-nearest neighbor genes,
which have the k largest absolute values of the Pearson
correlation coefficients. The Pearson correlation coeffi-
cient 7;; between the target gene and the jth gene is
defined as

1 (8 =8 (&g
rl]_n—?-Z( o )( o ) ®)

t=2

where gj and o; denote the average and the sample
standard deviation of the vector (g, ..., gj»). When com-
puting the correlation coefficients, gj; is not used because
it corresponds to the position of the missing value in the
target gene. Based on these selected k-nearest neighbor
genes, a matrix A ¢ R* x ("—1) and two vectors p ¢ R x !
and w ¢ R(—1) x 1 can be formed as follows

g{ a w; wy Wp—1
8, awl b1 A1p Ay A
2 AN N I
ge. be A1 Ar2  Arn—1

where ais the missing value in the target gene g; and
8s,/ - - - 1 8, are the k-nearest nieghbor genes of the target
gene g;. Each row of matrix A consists of the last n - 1
elements of one k-nearest neighbor gene 85, 1 < i < k.
The elements of the vector b comprise of the first ele-
ments of all these k-nearest neighbor genes and the ele-
ments of the vector w are the last # - 1 elements of the
target gene g;. With the matrix A, and the vectors b
and w, the least squares problem is formulated in
LLSimpute as

mxin IIATx — w]|,. (7)

Solving the above problem, the least square regression
coefficients § ¢ Rk*1 are acquired as

X2 (21,5, ..., )" = (AAT)'Aw. ®)

In the LLSimpute, the missing value is then
estimated by

o = bT)} = -%lbl + &zbz + ...+ J/Z‘kbk. (9)

In this study, we want to improve the performance of
LLSimpute by adjusting the regression coefficients in (8).
Our shrinkage LLSimpute associates the LLSimpute
method with the shrinkage estimator to impute the miss-
ing values. Our method replaces the regression coefficient
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estimators x in (8) by the shrinkage estimator, and then
use the new estimator to estimate the missing value o in
(9). However, we found that applying the existing shrink-
age estimator in (3) did not always improve the perfor-
mance of LLSimpute. Therefore, we tested different forms
of the shrinkage coefficient estimators and conceived a
feasible coefficient estimator to improve the LLSimpute
method. We proposed using the shrinkage regression coef-
ficients

2
v (1o G2, 1)

to replace the conventional coefficients in (8), where
o” is the variance of the coefficients (&,,%2, ..., &), S
is the norm of the coefficients (i.e. §? = Zle i?), k is the
row number of the matrix A and 7 is the column num-
ber of the matrix A, which equals # - 1 in this case.
Finally, the missing value is estimated as

a=b"%S = 56118171 +5¢]2sz +... +5c{fbk

where 85 = (35, ..., #5)T.

(11)

Shrinkage sequential local least squares imputation
(Shrinkage SLLSimpute)

In the LLSimpute, it does not use the information of genes
with missing values since the existence of missing values
hinders the use of the other observed values of that gene.
In the SLLSimpute method, it estimates the missing values
sequentially from the gene containing the fewest missing
values and partially utilizes these estimated values. The
details of SLLSimpute [19] is described as follow. First, the
microarray matrix G € R" * " is divided into two subma-
trices: a complete matrix G; € R™*" consisting of genes
without missing values and an incomplete matrix
G, € RUm=m) xn consisting of genes with missing values.
In the incomplete matrix G,, the genes are sorted by their
missing rates. The first gene has the smallest missing rate
and the last gene has the largest missing rate. The missing
rate is calculated by

Ci

Tiz_r
n

(12)

where ¢; is the number of missing values in i-th gene.
The imputation is executed sequentially from the first
gene of G,. That is, the first gene of G, which has the
smallest missing rate is selected as the target gene firstly.
Then LLSimpute is applied to estimate the missing values
in the target gene by finding the k-nearest neighbour
genes from the complete matrix G; and then using the
formula in (9) to estimate the missing values. After filling
all the missing values in the target gene, it is moved to
G;. Then the second gene of G is selected as the target
gene and repeat the same process again. By moving the
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genes whose missing values have been imputed to the
complete matrix, the previous target genes with imputed
values can be utilized for the missing value estimation of
the following target gene. However, too many missing
values in a gene will result in big estimation error and
reusing a gene with too many imputed values will reduce
the imputation performance. Therefore, only the genes
with missing rates less than a threshold r, are reused,
where r is set as the average missing rate of all genes
containing missing values, i.e.,

m—m,
o= el G (13)

(m—my)xn

By a similar argument as for the shrinkage LLSimpute,
we apply the shrinkage estimator to SLLSimpute. The
shrinkage SLLSimpute adjusts the coefficients of the
regression model by the formula in (10) and use the for-
mula in (11) to estimate the missing values.

Shrinkage iterated local least squares imputation
(Shrinkage ILLSimpute)

LLSimpute and SLLSimpute methods select k-nearest
neighbor genes for a target gene, where k is a fixed num-
ber. However, in the ILLSimpute method [13], it does
not fix the number of similar genes selected. Alterna-
tively, it defines the similar genes as the genes whose dis-
tances to the target genes are less than a distance
threshold §. The rationale of using a distance threshold
rather than using a fixed number of similar genes is that
some of the k-nearest neighbor genes are already far
away from the target gene and are not very similar to the
target gene.

The procedure of ILLSimpute is as follows. In the first
iteration, missing values of each target gene are filled
with the row average. Then a distance threshold § is used
to select the similar genes of each target gene. Finally,
LLSimpute method is used to estimate the missing values
of each target gene. In the later iteration, ILLSimpute
method uses the imputed results from the previous itera-
tion to reselect the similar genes of each target gene
(using the same distance threshold) and applies LLSim-
pute method to re-estimate the missing values.

By a similar argument as for the shrinkage LLSimpute,
we apply the shrinkage estimator to ILLSimpute. The
shrinkage ILLSimpute adjusts the coefficients of the
regression model by the formula in (10) and use the for-
mula in (11) to estimate the missing values.

Results and Discussion

We conducted several experiments to compare the per-
formances of our shrinkage regression-based methods
and the original regression-based methods under differ-
ent scenarios. In the first subsection, we introduce the
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Table 1 Benchmark datasets.

Name Dimension of Dimension of Time  Ref.
original reduced complete series
datasets datasets data

Ogawa 6263 X 8 3069 x 8 N [26]

BohenSH 2364 x 24 623 X 24 N [27]
Lymphoma 4096 x 96 854 x 96 N [28]
Brauer05 6133 x 20 706 x 20 Y [29]
Shapira04A 4771 x 23 2970 x 23 Y [30]
Shapira048 4771 X 14 3340 x 14 Y [30]

benchmark datasets. In the second subsection, we
describe how we measure the performance of various
imputation methods. In the following three subsections,
we report the comparison results for different number
of similar genes used, different missing rates, and differ-
ent noise levels. Finally, we further compare the perfor-
mances of our shrinkage regressioni-based methods and
three existing non-regression-based methods.

Datasets

Considering the effects of dataset selection and types of
microarray experiments on the performance of an impu-
tation method, six representative datasets (three non-
time series and three time series) were used in our
simulations. They were Ogawa’s data from the study of
phosphophate accumulation and poly-phosphophate
metabolism (denoted as Ogawa, non-time series) [26],
Bohen’s follicular lymphomas data (denoted as
BohenSH, non-time series) [27], the data from a lym-
phoma study (denoted as Lymphoma, non-time series)
[28], the data from Brauer’s experiments which studied
the physiological response to glucose limitation in batch
and steady-state cultures of yeasts (denoted as Brauer05,
time series) [29], and Shapira’s oxidative stress data
(denoted as Shapira04A and Shapira04B, time series)
[30]. We divided Shapira’s data into two datasets
because the authors used one kind of oxidative chemical
in the experiment in Shapira04A, but they used another
kind of oxidative chemical in the experiment in Sha-
pira04B. The six microarray datasets were used as
benchmark datasets in numerical experiments to com-
pare the performances of our shrinkage regression-based
methods and the original regression-based methods.
Each dataset was processed by deleting the genes with
missing values to generate a complete data matrix, and
the details of these datasets were listed in Table 1.

Table 2 The optimal k value for each benchmark dataset.
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The performance measure

A common criterion used to compare the performances
of different imputation methods is the normalized root
mean squared error (NRMSE) [11-13,17-19]. From a
microarray dataset, we can obtain an original data matrix
M, with m genes and n experiments, and then we can
construct a complete matrix M; € R™ *"(m; < m) by
deleting the genes with missing values. After the com-
plete data matrix M; is established, we randomly select a
specific percentage of the elements of M; and regard
these elements as missing values. Then we estimate the
missing values using various imputation methods and
compare their performances using NRMSE which is
shown below:

\/mean [ (Yguess ~ Yans ) ? ]
std (Yans )

NRMSE = (14)

where yguess and yans are vectors whose elements are
the estimated values by an imputation method and the
known answers for all missing entries, respectively.

Performance comparison for different k values
A parameter &, the number of similar genes used, has to
be determined before using two regression-based meth-
ods (LLSimpute and SLLSimpute). Since the perfor-
mance of both algorithms is known to be affected by
the k value used and different microarray datasets may
have different optimal k values [18,19], we tested several
possible k values (50, 100, 150, 200, 250 and 300) on six
benchmark datasets. Table 2 listed the optimal k values
for LLSimpute and SLLSimpute on each of the six
benchmark datasets. Another regression-based method
(ILLSimpute) does not have the parameter k and there-
fore was not considered in this numerical experiment.
For each of the six benchmark dataset, we also com-
pared the performances of the proposed shrinkage
regression-based methods and the original regression-
based methods for several possible k values (50, 100, 150,
200, 250 and 300). In our numerical experiments, missing
rate for each benchmark dataset was set to be 5%.
Namely, for each dataset, we randomly removed 5%
entries of the complete matrix to generate a matrix with
missing values, and then estimated the missing values
using the shrinkage and the original regression-based
methods. The same procedure was run for five indepen-
dent rounds and the average NRMSE of these five

Algorithms\Datasets Ogawa BohenSH Lymphoma Brauer05 Shapira04A Shapira04B
LLS 100 250 300 300 250 200
SLLS 150 300 250 300 250 200
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Figure 2 Performance comparison between shrinkage LLS (shr_LLS) and LLS for different k values.

\

simulations was used to compare the performances of
different imputation methods.

As shown in Figure 2, the proposed shrinkage LLSim-
pute outperforms LLSimpute for all k values and all
benchmark datasets. Similarly, the proposed shrinkage
SLLSimpute outperforms SLLSimpute for all k values
and all benchmark datasets (see Figure 3). The simula-
tion results suggest that utilizing a shrinkage estimation

approach to adjust the coefficients of the regression
model can improve the performances of the original
regression-based methods.

Performance comparison for different missing rates

In real applications, different microarray data may have dif-
ferent missing rates to be imputed. It is informative to
know how an imputation method performs for different

Non-time series

Ogawa
-
-
w -
H - - T _a
= -
B S
A D
e
A shr_SLLS
T
BohenSH
-
‘\
.
w >
o] ~
= T
=0 ~ e -
S e
e L
—2
Lymphoma
=

NRISE

Method
- ®5LLS
—— st SLLS

The number of similar genes used (k)

Figure 3 Performance comparison between shrinkage SLLS (shr_SLLS) and SLLS for different K values.

N
Time series
A Brauer05
-~ - =i
i e , S
T RS
\‘\.
AN
3
g
Shapira04A
Method
v
————
o — S
Shapira04B
-
\\\\\
-——— =
B -
The number of similar genas used (k)




Wang et al. BMC Systems Biology 2013, 7(Suppl 6):511 Page 7 of 12
http://www.biomedcentral.com/1752-0509/7/56/511
N
Non-time series Time series
Ogawa Brauer05 A
g PR | e
= T e T errga
e 2. -~ 2 e
BohenSH Shapira04A
e ——— -y
2 A i X =
= ,./“’"7 \\\ - e
L - P
= Methad s
o Ahshe LLS
Lymphoma - Shapira04B
] pe TR —.
2‘_ - i . -
e S s enee
Missing Rate (%) Missing Rate (36)
Figure 4 Performance comparison between shrinkage LLS (shr_LLS) and LLS for different missing rates.

missing rates. Therefore, we compared the performances of
the shrinkage regression-based methods and the original
regression-based methods on the microarray data with dif-
ferent missing rates (1%, 5%, 10%, 15% and 20%). Namely,
for each of the six benchmark dataset, we randomly
removed x% (x = 1, 5, 10, 15 or 20) entries of the complete
matrix to generate a matrix with missing values, and then
estimated the missing values using the shrinkage and the
original regression-based methods. The same procedure

was run for five independent rounds and the average
NRMSE of these five simulations was used to compare the
performances of different imputation methods. Note that
the optimal k value used for each benchmark dataset was
listed in Table 2.

Figure 4 shows that the proposed shrinkage LLSimpute
outperforms LLSimpute for all missing rates and all
benchmark datasets. Figure 5 shows that the proposed
shrinkage SLLSimpute outperforms SLLSimpute for all
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Figure 5 Performance comparison between shrinkage SLLS (shr_SLLS) and SLLS for different missing rates.
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Figure 6 Performance comparison between shrinkage ILLS (shr_ILLS) and ILLS for different missing rates.

missing rates and all benchmark datasets. Figure 6 shows
that the proposed shrinkage ILLSimpute outperforms
ILLSimpute for all missing rates and all benchmark data-
sets. The simulation results suggest that utilizing a
shrinkage estimation approach to adjust the coefficients
of the regression model can improve the performances of
the original regression-based methods.

Performance comparison for different noise levels

In real applications, different microarray data may contain
different levels of noises. It is informative to know how an
imputation method performs for different levels of noises
inherent in the microarray data. Therefore, we compared
the performances of the shrinkage regression-based meth-
ods and the original regression-based methods on the
microarray data with different noise levels. For each of the
six benchmark dataset, we added Gaussian noises with dif-
ferent levels into the data. The magnitudes of the noises
were set in terms of the standard deviations ranging from 0
to 0.25 with a step size 0.05. In our numerical experiments,
missing rate for each benchmark dataset was set to be 5%
and the optimal k value used for each benchmark dataset
was listed in Table 2. Namely, for each dataset (after adding
Gaussian noises into the data), we randomly removed 5%
entries of the complete matrix to generate a matrix with
missing values, and then estimated the missing values using
the shrinkage and the original regression-based methods.
The same procedure was run for five independent rounds
and the average NRMSE of these five simulations was used
to compare the performance of different imputation
methods.

Figure 7 shows that the proposed shrinkage LLSimpute
outperforms LLSimpute for all noise levels and all bench-
mark datasets. Figure 8 shows that the proposed shrinkage
SLLSimpute outperforms SLLSimpute for all noise levels
and all benchmark datasets. Figure 9 shows that the pro-
posed shrinkage ILLSimpute outperforms ILLSimpute for
all noise levels and all benchmark datasets. The simulation
results suggest that utilizing a shrinkage estimation
approach to adjust the coefficients of the regression model
can improve the performances of the original regression-
based methods.

Performance comparison with three existing non-
regression-based methods

We have shown that our shrinkage regression-based
methods perform better than the existing regression-based
methods. Still, it would be interesting to know whether
our shrinkage regression-based methods provide more
accurate missing value imputation than the existing non-
regression-based methods do. Therefore, we compared the
performances of our shrinkage regression-based methods
and three existing non-regression-based methods
(kNNimpute [12], SVDimpute [12], and BPCA [14]) on
the six benchmark microarray datasets. As shown in
Figures 10, 11, 12, the proposed shrinkage regression-
based methods outperform these three existing non-
regression-based methods for almost all missing rates and
all benchmark datasets. Taken together, our shrinkage
regression-based methods are competitive alternatives to
the existing methods for microarray missing value
imputation.
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Conclusions

Imputation of missing values is a very important aspect
of microarray data analyses because most of downstream
analyses require a complete dataset. Therefore, exploring
accurate and efficient methods for estimating missing
values has become an essential issue. In this study,
regression-based methods associated with a shrinkage
estimation approach are proposed to estimate missing

values in the microarray data. Our methods take the
advantage of the correlation structure existing in the
microarray data and select similar genes for the target
gene by Pearson correlation coefficients. Besides, our
methods incorporate the least squares principle, utilize a
shrinkage estimation approach to adjust the coefficients
of the regression model, and apply the new coefficients of
the regression model to estimate missing values.
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Simulation results show that the proposed shrinkage
regression-based methods provide more accurate missing
value estimation for various types of datasets than the
original regression-based methods do. Since our pro-
posed methods can be applied to modify any kind of
regression-based methods and can provide accurate miss-
ing value estimation, they are competitive alternatives to
the existing regression-based methods.
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