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Abstract

It is now widely recognized that robustness is an inherent property of biological systems [1,2,3]. The contribution of close
sequence homologs to genetic robustness against null mutations has been previously demonstrated in simple organisms
[4,5]. In this paper we investigate in detail the contribution of gene duplicates to back-up against deleterious human
mutations. Our analysis demonstrates that the functional compensation by close homologs may play an important role in
human genetic disease. Genes with a 90% sequence identity homolog are about 3 times less likely to harbor known disease
mutations compared to genes with remote homologs. Moreover, close duplicates affect the phenotypic consequences of
deleterious mutations by making a decrease in life expectancy significantly less likely. We also demonstrate that similarity of
expression profiles across tissues significantly increases the likelihood of functional compensation by homologs.
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Introduction

The ability of an organism to survive in various environmental

conditions indicates robustness to external perturbations. On the

other hand, relative insensitivity to harmful genetic mutations

represents genetic robustness. Several large scale gene deletion

studies demonstrated that organisms exhibit a significant degree of

genetic robustness against null mutations [6]. Although these

studies have an important caveat that genes without a detectable

phenotype may be essential under different growth conditions

[7,8], it is clear that genetic robustness is widespread in biological

systems [3].

Two distinct mechanisms of genetic robustness have been

extensively discussed. Alternative signaling or parallel metabolic

pathways illustrate network contributions to genetic robustness [9].

In contrast, a partial functional overlap between sequence paralogs

represents the contribution of gene duplicates. The study by Gu et

al. [4] demonstrated a significant contribution to functional

compensation by duplicate yeast genes. A similar pattern of the

functional compensation was also observed in C. elegans [5]. The

mechanism of genetic robustness by duplicates was recently

investigated by Kafri et al. [10], who showed that null deletions in

yeast are often compensated by over-expression of sequence

homologs.

The role and magnitude of the paralog contribution to

robustness against deleterious human mutations are not currently

well understood. While the study by Lopez-Bigas et al. [11]

suggested a contribution by highly conserved paralogs, Yue et al.

[12] showed recently that disease and all genes have an equal

fraction of paralogs. In the present work, we demonstrate the

importance of considering the sequence similarity between

paralogs for understanding the likelihood and magnitude of

functional compensation. We also explore the effects of mRNA co-

expression between duplicates on the observed functional back-up.

Understanding the mechanisms of genetic robustness will be

important for identification and prioritization of medically

important human mutations.

Results/Discussion

Disease and all gene sets
We investigated the functional compensation by duplicates

using three curated collections of human disease genes. Although

we currently do not know the total number of disease genes, more

than a thousand genes with known mutations affecting human

health have been identified [13]. First, we used the collection of

1003 Swiss-Prot [14] human genes with non-synonymous disease

mutations annotated in the OMIM database [13]. Second, we

investigated the collection of 1609 human genes from the OMIM

Morbid Map annotated to be involved in disease, but not as

susceptibility or non-disease. Our third disease gene set, obtained

from the study by Jimenez-Sanchez et al. [15], included a curated

collection of 881 human genes and the associated disease

phenotypes such as the age of onset and reduction in life

expectancy. The considered disease gene sets significantly overlap,

i.e. 636 genes are present in all three sets (see Figure S1,

Supporting Information).

Without a collection of human genes which are certainly non-

disease, we used several large collections of all human genes (all

gene sets). We primarily used the comprehensive collection of

20,262 human genes from the Ensembl build 35 [16]. As a

representative set of well-characterized human genes, we also

considered the collection of 12211 human genes from the Swiss-

Prot database [14].
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The effects of duplicate sequence homology
To understand the role of gene duplicates in robustness against

deleterious human mutations we searched for homologs of the

disease and all human genes using protein BLASTP [17] (see

Methods). Briefly, for each query sequence its closest human

paralog was identified as the non-self hit which can be aligned over

more than 80% of the length of both sequences. The sequence hits

with an E-value larger than 0.001 were not considered (results are

qualitatively insensitive to the gene set used or the cutoffs and

parameters applied in the similarity searches, see Table S1–S3,

Supporting Information). For the human genes with identified

paralogs (475 in the disease gene set and 8257 in the all-gene set),

the distributions of amino acid sequence identities of the closest

homologs are significantly different for disease and all-gene sets

(see Figure S2, Supporting Information). The average identity of

the closest homolog is 52.9% for disease genes and 58.3% for all

genes (non-parametric Wilcoxon’s test P = 1.6*1027). The ob-

served difference cannot be explained simply by the existence of

several large protein families with a small number of known

disease genes; after removing sequences with more than one

paralog in the human genome, the average identity of the closest

homolog is 50.0% for disease genes and 54.3% for all genes

(P = 2*1022). Neither can the difference arise due to difficulties in

disambiguating allelic variants from close sequence differences in

copy number variable genes [18,19]. After excluding genes with

highly similar paralogs of sequence identity greater than 90%, the

average identity of the closest paralog is 51.4% for disease genes

and 54.4% for all genes (P = 7*1024).

In Figure 1 we show the conditional probability that a human

gene will harbor a disease mutation given the amino acid sequence

identity of its closest homolog. To calculate the conditional

probability (see Methods) we assume that, although the total

number of human disease genes is not known, the currently

available collection of disease genes is unbiased towards sequence

identities of the closest homologs. Figure 1 demonstrates that genes

with at least 90% sequence identity to their closest homologs are

three times less likely to harbor disease mutations compared to

genes with remote paralogs. No correlation was observed between

the number of disease mutations in a gene (Spearman’s rank

correlation rS = 20.025, P = 0.6) or gene density of disease

mutations (rS = 20.036, P = 0.4) and the sequence identity of the

closest homolog. This suggests that the number of disease

mutations identified in genes may be determined primarily by

experimental, mutational, or gene history biases [20], and not

affected by the possibility of functional compensation. Similarly,

no correlation between deleterious variability and evolutionary

distance to murine orthologs was observed in the study by Sunyaev

et al. [21].

If close sequence homologs provide functional back-up against

medically damaging mutations, it is likely that they also contribute

to relaxation of constraints against deleterious human polymor-

phisms. As was demonstrated by Lynch et al. [22], most duplicated

genes experience a brief period of relaxed selection after

duplication. The functional constraints on human genes can be

estimated through the normalized ratio of non-synonymous to

synonymous single nucleotide polymorphisms (SNPs) per site (Ka/

Ks) [17,23]. A small value of the Ka/Ks ratio suggests a higher

constraint on a gene, i.e. a smaller fraction of observed non-

synonymous polymorphisms. Figure 2 shows the relationship

between the average Ka/Ks ratio and sequence identity to the

closest homolog (shown separately for all and validated SNPs from

the dbSNP database [24]). The Ka/Ks ratio of the validated SNPs

is about two times higher for genes with a 90% sequence identity

homolog compared to genes with remote homologs.

While there are many examples of homologous iso-enzymes

providing functional compensation [7,25], this mechanism is less

established for other functional classes. To understand the

significance of the duplicate compensation among various

functional categories we (applied the approach described in the

previous section and) compared sequence identities of closest

paralogs for disease genes and all human genes in the 53 ‘‘GO

slim’’ functional classes. Using a false discovery rate of 5%, we

found that, in additional to metabolism, the functional category

‘‘response to stimulus’’ showed evidence of statistically significant

compensation by duplicates (see Table 1 and Table S4,

Supporting Information); the ‘‘response to stimulus’’ category

contains cytokines, receptors, protein kinases and other proteins

involved in signal transduction. Consequently, functional com-

pensation by duplicates is not limited to metabolism and is also

significant among other important functional classes.

The observed paucity of close homologs for known disease

genes could be a consequence of their faster evolution in

comparison with all human genes. To investigate this possibility

we analyzed Ka and Ka/Ks values calculated using PAML [26]

for all 13055 one-to-one human-mouse orthologous pairs from the

Ensembl database [27]. Both Ka and Ka/Ks measures for known

disease genes are significantly lower than those of all-gene set

(mean/median Ka: disease 0.0729/0.0833, all 0.0851/0.0971,

P = 4*1022; mean/median Ka/Ks: disease 0.119/0.105, all

0.137/0.113, P = 1*1022.). These findings are in agreement with

the study by Kondrashov et al. [28] who considered 1273 disease

genes and 16580 other human genes. Although the earlier study

by Smith and Eyre-Walker [29] reported the opposite pattern (a

higher Ka/Ks ratio for disease genes), their results were based on

significantly smaller gene sets (387 disease and 2024 non-disease

genes). Consequently, it is unlikely that the elevated sequence

similarity between paralogs of non-disease genes is related to their

slower rate of evolution.

Recently, He et al. demonstrated a lower duplicability of

‘‘important’’ yeast genes (essential genes and genes with knockout

phenotypes) [30]. To explore the possibility that lower duplic-

ability of disease genes affects our results we followed the approach

by He et al. [30]. Based on the Ensembl database [27] we identified

singleton human genes (genes without duplicates in the human

genome, see Methods) with mouse, chicken, and zebrafish

orthologs. We then looked at whether the orthologs of singleton

Author Summary

Genetic robustness is the ability of an organism to buffer
deleterious genetic mutations. It has been previously
demonstrated that the functional compensation by
duplicates plays an important role in protection against
gene deletions in model organisms. Close duplicates often
share similar functions, and loss of one paralog may be
buffered by others. In the present work we specifically
investigate the contribution of gene duplicates to backup
against deleterious human mutations. We find that genes
with close homologs are significantly less likely to harbor
known disease mutations compared to genes with remote
homologs. In addition, close duplicates affect the pheno-
typic consequences of deleterious mutations by making a
decrease in life expectancy less likely. Similarity of
expression profiles across tissues increases the likelihood
of functional compensation by homologs. Taken together,
our analysis demonstrates that functional compensation
by close duplicates plays an important role in human
genetic disease.

PLoS Genetics | www.plosgenetics.org 2 2008 | Volume 4 | Issue 3 | e1000014



human genes have duplicated in the mouse, chicken, and zebrafish

genomes (see Text S1, Supporting Information). The analysis

showed that singleton disease genes are as likely to have duplicate

orthologs as all human singleton genes (9.2% of 338 disease

singletons and 8.5% of 5657 all human singletons, x2-test P = 0.5.

See Figure S3, Supporting Information). Therefore, human

disease genes are as likely to retain duplicates in evolution as all

human genes.

Phenotypic consequences of mutations
The sequence identity between duplicates influences the

phenotypic consequences of gene deletions in yeast [4]. As the

sequence identity decreases, null mutations with weak growth

phenotypes become less likely and mutations with strong growth

phenotypes become more likely. Inspired by this analysis, we

decided to investigate if duplicates also affect phenotypic

consequences of human disease mutations. For that purpose we

used the collection of human disease genes with manually curated

phenotypes [15]. While we did not detect a significant correlation

between the presence of close duplicates and the age of onset, the

population frequency, or the mode of inheritance, we found a

significant correlation between the sequence identity to the closest

duplicate and the reduction in life expectancy (Spearman’s rank

correlation rS = 20.21, P = 2*1026, x2-test, P = 2*1024 see

Figure 3 and Methods). Consequently, the functional compensa-

tion by close duplicates may protect against ‘‘mild’’, ‘‘moderate’’,

and ‘‘severe’’ decline in life expectancy.

Several known examples illustrate this interesting result.

Mutations in red-sensitive opsin gene cause partial colorblindness

(OMIM#303900). Nevertheless, the life expectancy is not

seriously affected due to the presence of the green-sensitive opsin

gene (close homolog of the red-sensitive gene). Another example

involves several homologous iso-enzymes of the human glycogen

phosphorylase; the three iso-enzymes are primarily active in

muscle, liver, and brain. Although defects in the muscle and liver

forms cause glycogen storage disease V (MIM#232600) and VI

(MIM#232700) respectively, neither of the defects reduces life

expectancy.

The effect of expression profile similarities
Because gene duplicates often have different patterns of

expression [25,31,32], it is likely that the functional compensation

depends not only on the sequence similarity, but also on the

similarity of their expression profiles across human tissues. We

decided to test this hypothesis using the comprehensive expression

dataset by Su et al. [33], which includes expression of 44775

human transcripts in 79 tissues.

Initially, we used the absolute values of gene expression in

different tissues to calculate the relative expression difference

between every gene and its closest sequence homolog. The relative

expression difference was defined as (Exp(Gene)2Exp(Paralog)/

(1/2*((Exp(Gene)+Exp(Paralog)). Using this measure we did not

find any significant differences between disease and all genes

(P = 0.1). It is likely that each gene is expressed primarily in a small

number of tissues and the simple averaging of expression values

across all tissues will not be informative. Therefore, in order to

better reflect the observed expression patterns, we considered a

gene to be expressed in a tissue if at least one of the gene

Figure 1. The relationship between the sequence identity of the closest homolog and the conditional probability of a disease gene,
P(disease|sequence_identity_of_closest_homolog). Genes with close paralogs are less likely to harbor disease mutations. For display purposes,
we assumed that 20% of all human genes harbor disease mutations (see Methods). The sets of all human genes used for the calculations are A)
Ensembl and B) Swiss-Prot.
doi:10.1371/journal.pgen.1000014.g001

Figure 2. The relationship between the sequence identity of
the closest homolog and the ratio of non-synonymous to
synonymous human SNPs per site (Ka/Ks). The Ka/Ks ratio was
averaged for genes within each sequence identity bin. The ratio is
shown for all (black) and only for validated (red) SNPs from the dbSNP
database [24]. Above 60% sequence identity, the Ka/Ks ratio increases
monotonically as the homolog sequence identity increases.
doi:10.1371/journal.pgen.1000014.g002
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transcripts was found to be significantly expressed (‘‘present call’’)

in the tissue by Su et al. [33]. We defined Similarity of Tissue

Expression (STE) for a gene pair as the ratio of the number of

tissues where the two genes are both expressed to the number of

tissues where at least one of the genes is expressed; STE is

essentially the Jaccard’s coefficient of similarity for binary

expression patterns. The STE value of one would indicate

complete overlap between expression profiles, while values close

to zero would indicate poor overlap. Since expression profile

similarity and sequence similarity of duplicates tend to be

correlated [25,31,32], we demonstrated (see Figure 4 and Table

S5, Supporting Information) that the STE values are consistently

lower for disease gene pairs in different sequence bins; the

differences are significant for sequence identity bins from 30% to

80%. We also performed the likelihood ratio test to show that the

similarity in tissue expression influences the probability of being a

disease gene independently of the sequence identity to the closest

homolog (likelihood ratio test x2 = 4.0, P,0.05, see Methods).

Conclusions
Our analysis clearly demonstrates that gene duplicates affect the

phenotypic consequences of deleterious human mutations. Several

studies suggested possible mechanisms of functional back-up by

duplicates [4,9,10,34]. It is likely that similar mechanisms also play

a role in human genetic diseases. In some cases duplicates might

Table 1. The GO slim categories which show statistically significant functional compensation by duplicates.

GO ID Description Mean sequence identity of the closest paralog p-value*

Disease genes All genes

Molecular function

0016491 Oxidoreductase activity 47.7% 55.4% 2*1023

0005488 Binding 53.1% 56.2% 3*1023

0009055 Electron carrier activity 35.0% 56.4% 3*1023

0005198 Structural molecule activity 59.9% 69.5% 8*1023

0003824 Catalytic activity 53.6% 56.8% 1*1022

Biological process

0050896 Response to stimulus 48.5% 57.3% 7*1026

0008152 Metabolic process 52.5% 57.4% 1*1024

0009987 Cellular process 53.0% 57.1% 1*1024

0006118 Electron transport 45.3% 55.2% 4*1023

0009058 Biosynthetic process 54.2% 62.2% 7*1023

*One-sided nonparametric Wilcoxon’s test. A p-value, = 1*1022 corresponds to a total false discovery rate of 5%.
doi:10.1371/journal.pgen.1000014.t001

Figure 3. Influence of the close duplicates on disease
phenotypes. The phenotypic disease data (reduction in life expec-
tancy) were obtained from the study by Jimenez-Sanchez et al. [15]. For
display purposes, we show the proportion of genes with close
duplicates (sequence identity to the closest paralog . = 60%) in each
phenotype bin. The proportion of genes with close duplicates
decreases with the reduction in life expectancy.
doi:10.1371/journal.pgen.1000014.g003

Figure 4. The Similarity of Tissue Expression (STE) increases
the likelihood of functional compensation. The STE value
(Jaccard’s coefficient of similarity for gene expression patterns) reflects
the similarity of expression between duplicates across tissues. The
average STE was calculated for gene pairs within each sequence
identity bin. The average STE is consistently lower for disease genes
(black) compared to all genes (red) (see also Table 5S, Supporting
Information).
doi:10.1371/journal.pgen.1000014.g004
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actively compensate for the mutated homolog, for example by

partially carrying the metabolic flux of the mutated gene [25]. In

other cases, genes with close duplicates may have smaller

functional loads compared to singletons, i.e. genes with duplicates

may be essential in a smaller number of environmental conditions

[7]. As a result, a disease phenotype is less likely to be observed.

We take the view that both of these cases represent functional

compensation, although it may be called active compensation in

the first case and passive compensation in the second.

In our view, the probabilistic approach used in our paper to

investigate the likelihood of disease mutations given the sequence

identity of the closest homolog can be applied for identification

and prioritization of medically relevant mutations. Such prioriti-

zation approaches are necessary as large collections of human

genetic variation, such as mutations associated with various

cancers [35,36] and common human polymorphisms [37], are

being generated at an accelerated rate. A probabilistic scheme,

similar to the one used in our paper, can be directly applied as a

prior in search for causative mutations; the information about

homolog expression profiles can be also considered. The

development of such probabilistic prioritization schemes is beyond

the scope of this paper. Nevertheless, the fact that genes with 70–

100% sequence identity homologs are about 2–3 times less likely to

harbor disease mutations, and a significant fraction of such genes

in the human genome, suggest that duplicate homology informa-

tion may be important for the prioritization of medically relevant

mutations.

The collections of disease genes used in our work are

incomplete and significantly biased towards Mendelian diseases

[15]. When large and reliable datasets of genes responsible for

complex diseases become available it will be interesting to

investigate whether fundamental differences exist between

functional compensation for Mendelian and multi-factorial

diseases. In future studies, it will be also important to investigate

robustness to deleterious human mutations achieved through

various network effects [3,9]. Such studies will bring the

important biological concept of robustness into the realm of

human genetics.

Methods

Three sets of human disease genes were used in our study. We

obtained a list of 1003 human genes (1006 Swiss-Prot entries) with

disease non-synonymous mutations from the Swiss-Prot database

[14] (July 2005; http://expasy.org/cgi-bin/lists?humsavar.txt).

The list of 881 human disease genes (923 OMIM entries) with

annotated phenotypes was taken from the study by Jimenez-

Sanchez et al. [15]. We also considered another disease set

consisting of genes annotated as ‘‘disease’’, but neither as

‘‘susceptibility’’ nor as ‘‘non-disease’’ in the OMIM Morbid

Map [13]. This set included 1609 genes (2239 MIM entries). Two

sets of all human genes were used based on the Ensembl [16] and

Swiss-Prot databases. The longest protein isoform of every human

gene was obtained from the Ensembl human genome build 35. We

only retained genes annotated as ‘‘pep:known’’ or ‘‘pep:CCDS’’

(representing genes mapped to human-specific entries of Swiss-

Prot, RefSeq, SPTrEMBL or CCDS). In total 20,262 genes were

included. The other all- human gene set consisted of 12,211

protein sequences from the Swiss-Prot database. All-against-all

BLASTP searches were performed using standard parameters

[17]. Sequence homologs were identified as non-self hits with E-

value , = 0.001 that could be aligned over more than 80% of both

the query length and the length of identified sequence.

Throughout the manuscript the term ‘‘singleton human genes’’

is used to describe the genes without any sequence homologs

which can be identified the BLASTP searches.

We obtained H. sapiens to D. rerio, H. sapiens to G. gallus, and H.

sapiens to M. musculus orthology information as well as paralogous

relationships within D. rerio, G. gallus, and M. musculus from the

Ensembl database [27]. Ka and Ka/Ks values of all 1:1 human-

mouse orthologous pairs were calculated using the PAML package

and obtained directly from the Ensembl database [27].

The sets of synonymous and non-synonymous human SNPs

were obtained from the dbSNP database [24]. These included

87920 SNPs corresponding to 14825 human genes. For each bin

of homolog sequence identity, the Ka/Ks ratio was calculated.

The proportion of non-synonymous sites (0.717) was calculated

from simulation; for each nucleotide in the protein coding region a

random transition or transversion mutation was performed at the

ratio of 0.6/0.4, according to the published estimates in mammals

[38,39,40,41].

We used manually curated phenotypes from the study by

Jimenez-Sanchez et al. [15] to calculated Spearman’s rank

correlation between reduction in life expectancy (ordinal data:

none, mild, moderate, and severe) and sequence identity to the

closest homolog.

The functional categories of human genes used in our study

were based on the annotation by GOA [42]; 53 of GO slims for

GOA (http://www.geneontology.org/GO_slims/goslim_goa.obo)

were considered and Benjamin-Hochberg’s algorithm was applied

for multiple hypothesis correction.

The gene expression profiles in 79 human tissues were obtained

from the study by Su et al. [33]. We eliminated probe sets with

cross hybridization effects (as identified by Su et al.). In total, we

considered expression profiles for 15097 human genes. The

expression value of gene G at tissue T was set to 1 if at least one of

gene G’s transcripts was detected as ‘‘Present call’’ in tissue T

based on the Affymetrix detection algorithm (provided by Su et al.

[33]). Similarity of Tissue Expression (STE) of a gene pair was

defined as the Jaccard’s coefficient of the binary expression profiles

of the two genes, that is, the ratio of the number of tissues where

the two genes are both expressed to the number of tissues where at

least one of the genes is expressed. We performed the likelihood

ratio test to investigate whether the similarity in tissue expression

influences the probability of being a disease gene independently of

the sequence identity to the closest homolog. The logistic

regression was used to model the probability of being a disease

gene using the expression and sequence similarities. In the null

hypothesis the disease gene probability is determined only by

sequence identity of the closest homolog; in the alternative

hypothesis the probability is determined by sequence identity and

tissue expression similarity of the closest homolog.

The probabilities shown in Figure 1 represent conditional

probabilities. Specifically, the conditional probability P(disease|

seq_id_homolog) that a gene is associated with a genetic disease

given that it has a closest homolog with a certain sequence identity,

was calculated according to the equation:

P diseasejseq id hom ologð Þ

~
P seq id hom ologjdiseaseð Þ

P seq id hom ologð Þ P diseaseð Þ

where P(seq_id_homolog | disease) is the probability that the

closest homolog of a disease gene has a certain sequence identity,

P(seq_id_homolog) is the probability that a randomly selected

human gene (disease or non-disease) has a closest homolog with a

certain sequence identity, and P(disease) is the probability that a
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random human gene is associated with a genetic disease.

Importantly, because P(disease) is currently unknown (as we know

only a fraction of all disease genes), we estimate P(disease |

seq_id_homolog) up to a constant by assuming certain P(disease)

value. For display purposes, we assumed P(disease) = 0.2 in

Figure 1.

Supporting Information

Figure S1 Venn diagram showing the overlap of the three

disease gene sets used in the analysis. Blue: SwissProt, green:

OMIM, red: Jimenez-Sanchez G et al..

Found at: doi:10.1371/journal.pgen.1000014.s001 (0.03 MB

DOC)

Figure S2 The distribution of the closest homolog sequence

identities for the disease and all gene sets.

Found at: doi:10.1371/journal.pgen.1000014.s002 (0.04 MB

DOC)

Figure S3 Human disease singleton genes as equally likely to

have duplicate orthologs in the mouse, chicken, and zebrafish

genomes as all human singleton genes.

Found at: doi:10.1371/journal.pgen.1000014.s003 (0.02 MB

DOC)

Table S1 Comparison of sequence identity of the closest

homolog for the disease and all-gene sets using different BLASTP

E-value cutoffs.

Found at: doi:10.1371/journal.pgen.1000014.s004 (0.03 MB

DOC)

Table S2 Comparison of sequence identity of the closest

homolog for the disease and all-gene sets using different cutoffs

for the minimal alignable region between two sequences.

Found at: doi:10.1371/journal.pgen.1000014.s005 (0.03 MB

DOC)

Table S3 Comparison of sequence identity of the closest

homolog using different combinations of the disease and all-gene

collections.

Found at: doi:10.1371/journal.pgen.1000014.s006 (0.03 MB

DOC)

Table S4 Comparison of sequence identity of the closest

homolog for the disease and all genes in different GO slim

categories.

Found at: doi:10.1371/journal.pgen.1000014.s007 (0.12 MB

DOC)

Table S5 Comparison of the Similarity of Tissue Expression

(STE) between the disease and all gene sets for sequences with

various sequence identities of the closest homolog.

Found at: doi:10.1371/journal.pgen.1000014.s008 (0.03 MB

DOC)

Text S1 Investigating the duplicability of human genes.

Found at: doi:10.1371/journal.pgen.1000014.s009 (0.03 MB

DOC)
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