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Abstract: Our previous studies in gibel carp (Carassius gibelio) have shown that cadmium (Cd)
exposure elicits deleterious effects depending on the genetic background, and thus we hypothesized
that mitigation via nutritional intervention may vary between strains. Therefore, two gibel carp strains
(the A and F strains) were fed diets supplemented with 0% or 1% taurine for 8 weeks prior to 96 h Cd
exposure, and the responses of antioxidant pathways, endoplasmic reticulum (ER) stress, autophagy,
and apoptosis were investigated. The results showed that taurine supplementation had no effect on
the growth performance of gibel carp. After Cd exposure, histological damage to mitochondria and
ER, induction of oxidative stress and antioxidant responses, occurrence of ER stress, and apoptotic
signals were observed in the livers. Upon the diet effects, taurine supplementation alleviated the
ER-stress-induced autophagy and apoptosis after Cd exposure and stimulated antioxidant pathways.
Regarding the difference between strains, taurine played a protective role in alleviating Cd toxicity
through the antioxidant response, ER stress, and autophagy in the F strain, whereas such effects were
achieved by the attenuation of apoptosis in the A strain. Taken together, our results demonstrate the
potential use of taurine in the mitigation of heavy metal toxicity in aquatic organisms.

Keywords: taurine; Cd exposure; strain; autophagy; apoptosis

1. Introduction

Owing to widespread environmental pollution, the diverse hazardous impacts of
exposure to toxic heavy metals on living organisms are becoming a global issue of great
concern [1]. Cadmium (Cd) is one of the most abundant environmental pollutants in the
biosphere, and it can be both toxic and carcinogenic [2,3]. Compared to other animals,
aquatic species are vulnerable to Cd toxicity via the dietborne as well as the waterborne
routes [4,5]. Therefore, aquatic toxicological evaluation of the effects of Cd has been widely
investigated in teleosts under chronic or acute exposure in species such as gilthead sea
bream, tilapia, yellow perch, and gibel carp (Carassius gibelio) [6–9].

Cadmium is reported to elicit deleterious effects via neurotoxicity, immunotoxicity,
induction of oxidative stress, damage to organ structure, and cellular dysfunction [2,10].
Much effort has been made to investigate the mechanism of Cd toxicity and to develop
a safe therapeutic approach to mitigating the toxic effects [1]. Some chemopreventive
agents such as garlic extract containing specific organosulfur compounds have been used
to protect against the toxic effects of Cd in both animal models and cell lines [11,12]. Cd
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exposure disrupts the cellular oxidative homeostasis [13] that is regulated by various
enzymatic or non-enzymatic antioxidants. Importantly, oxidative stress and glutathione
(GSH) depletion are crucial components of Cd toxicity in aquatic organisms [14]. Therefore,
nutrients with antioxidant properties have been applied to ameliorate the hepatotoxicity by
modulating antioxidant pathways, such nutrients include vitamin C, vitamin E, carotenoids,
and selenium [1,15].

Taurine (TAU, 2-amino ethanesulfonic acid), as a semi-essential amino acid, is a deriva-
tive of a sulfur-containing amino acid that has multiple functions in fish physiology [16].
Taurine is usually supplemented as an additive in the diet of aquatic animals for the pro-
motion of growth as well as boosting the reproduction system, immune functions, and
antioxidant effects [17]. The mechanism of the antioxidant activity of taurine was reported
to be associated with enhanced mitochondrial function that protects the mitochondria
from excessive superoxide [18]. In addition, taurine has been considered as a promising
candidate for the improvement of liver function, and it has been reported as possessing
tissue protective effects in treating oxidant-induced injury [19,20]. In mammalian models,
taurine has been reported to alleviate the toxic effects of copper, lead, aluminum, and
cadmium [21–23]. Similarly, administration of taurine affected hepatic metabolism and
reduced Cd contamination in red sea bream and catfish [16,24]. Nevertheless, the mecha-
nisms underlying the ameliorative effects of taurine against Cd poisoning in teleost fish are
still not fully elaborated.

Previous studies have shown that exposure to Cd caused different toxic effects in
gibel carp (Carassius gibelio) A strain (CAS III) and F strain (CAS V), regardless of whether
via the dietborne or waterborne routes [9,25]. Specifically, these two strains of gibel carp
showed genetically based metabolic strategies in response to Cd toxicity, verifying the fact
that differences in genetic background may be an important cause of metabolic differences
between fish strains. To ascertain the potential of taurine in the prevention of Cd poisoning
and to explore whether these effects would vary between the two strains, experiments
were performed with taurine supplementation via the diet route in the present study. We
assessed the liver functions of the two strains, because the liver is the center of intermediary
metabolism and plays vital roles in detoxifying processes [26,27].

2. Materials and Methods
2.1. Experimental Procedures

The experimental scheme is illustrated in Figure 1. Gibel carp used in this trial were
obtained from the hatchery of the Institute of Hydrobiology, the Chinese Academy of Sci-
ences, Wuhan, Hubei, China. The healthy and uniformly sized gibel carp A (4.61 ± 0.03 g)
and F (4.58 ± 0.04 g) strains were fed diets supplemented with 0% (Control) or 1% TAU
for 8 weeks (Figure 1, Phase 1). Diets were formulated in the laboratory according to the
procedures described by Li et al. [28]. The diet formulation and approximate composition
are shown in Table 1. Therefore, four groups of fish were obtained: the A strain fed the
control diet (A0), the A strain fed a 1% TAU supplemented diet (A1), the F strain fed the
control diet (F0), and the F strain fed a 1% TAU supplemented diet (F1).

After the 8-week feeding trial, a challenge test was conducted with fish from each of
the four groups by exposing the fish to acute waterborne Cd (11.9 mg/L) (Figure 1, Phase
2). Cd exposure was performed in a static aquarium system with continuous aeration
for 96 h, with 10 fish per tank and triplicate replicates for each tank. The concentration
of Cd was set based on the value shown by a preliminary experiment that identified the
96 h median lethal concentration (LC50) [25]. CdCl2·2.5 H2O was added to the water
by diluting a stock solution according to methods described by Li et al. [25]. During the
acute exposure experiment, water in the system was refreshed daily. This experiment was
implemented following the guiding principles for the care and use of laboratory animals
and was approved by the Institute of Hydrobiology, Chinese Academy of Sciences.
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Table 1. Ingredients and proximate composition of the experimental diets (g/kg).

Ingredients Control TAU

White fishmeal 1 100 100
Wheat gluten 100 100

Soybean meal 2 170 170
Rapeseed meal 2 170 170

Fish oil 33 33
Soybean oil 33 33
Wheat flour 250 250

Taurine 0 10
Vitamin premix 3 3.9 3.9
Choline chloride 1.1 1.1
Mineral premix 4 50 50

CMC 30 30
Cellulose 59 59

Chemical composition (g/kg)

Crude protein 340.5 344.0
Crude lipid 82.5 80.2

Ash 74.8 74.6
Moisture 79.3 88.1

1 Fish meal was purchased from American Seafood Company, Seattle, Washington, USA. 2 Soybean and rapeseed
meal were purchased from Coland Feed Co. Ltd., Wuhan, Hubei, China. 3 Vitamin premix (mg/kg diet): vitamin
A, 1.65; vitamin D, 0.025; vitamin E, 50; vitamin K, 10; ascorbic acid, 100; thiamin, 20; riboflavin, 20; pyridoxine, 20;
cyanocobalamine, 0.02; folic acid, 5; calcium pantothenate, 50; inositol, 100; niacin, 100; biotin, 0.1; cellulose, 645.2.
4 Mineral premix (mg/kg diet): NaCl, 500; MgSO4·7H2O, 8155.6; NaH2PO4·2H2O, 12,500.0; KH2PO4, 16,000.0;
CaHPO4·H2O, 7650.6; FeSO4·7H2O, 2286.2; C6H10CaO6·5H2O, 1750.0; ZnSO4·7H2O, 178.0; MnSO4·H2O, 61.4;
CuSO4·5H2O, 15.5; CoSO4·7H2O, 0.5; KI, 1.5; corn starch, 753.7.

2.2. Sample Collection

At the end of the 96 h Cd waterborne experiment, fish were anesthetized with
MS-222 solution (Aminobenzoate methanesulfonate, 0.06 g/L, Sigma, St. Louis, MO,
USA). The livers of two fish from each tank were dissected immediately on ice, with
one part frozen in liquid nitrogen and then stored at −80 ◦C, and one part fixed in 2.5%
glutaraldehyde solution and 4% paraformaldehyde.

2.3. Transmission Electron Microscopy (TEM) Observation

The liver samples of the two strains were dissected into 1 mm3 cubes and then fixed
immediately in 2.5% glutaraldehyde solution. The samples were then rinsed with 0.1 M
phosphate buffer solution (pH = 7.4) three times (15 min each time). Postfixation was
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conducted with 1% osmium tetroxide for 2 h, and then the fixed samples were washed three
times with 0.1 M phosphate buffer solution (pH = 7.4). The dehydration was performed
in a graded ethanol series followed by acetone. After that, samples were infiltrated with
acetone:SPI-Pon 812 resin (1:1) followed by acetone:SPI-Pon 812 resin (1:2) and SPI-Pon
812 resin. Subsequently, the samples were embedded in SPI-Pon 812 resin for 48 h at
60 ◦C. Ultra-thin sections (80–100 nm) were stained with uranyl acetate and lead citrate.
Finally, observations were conducted using a transmission electron microscope (Tecnai G2
20 TWIN, FEI, Hillsboro, OR, USA).

2.4. TUNEL Analysis

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses
were performed according to the procedure described by Li et al. [25]. The liver samples
were fixed in 4% paraformaldehyde and then embedded in paraffin. After that, the samples
were cut into 5 µm sections and deparaffinized in dimethylbenzene. The samples were
dehydrated in a graded ethanol series, repaired with proteinase K, and permeabilized with
Triton X-100/PBS solutions. DNA fragmentation was determined using TdT and dUTP
reagents (1:9) for 2 h incubation followed by staining with 4′,6-diamidino-2-phenylindole
(DAPI, 0.3 mmol/L) for 10 min. The samples were examined under a Nikon Eclipse Ti-SR
inverted microscope.

2.5. Chemical and Biochemical Analyses

Cd concentrations in water samples were measured in accordance with the National
Standards of the Republic of China (GB/T 7475-1987, Water quality determination of copper,
zinc, lead and cadmium—atomic absorption spectrometry). In summary, sample digestion
was conducted by adding hydrogen peroxide and concentrated nitric acid to the samples.
After adding palladium nitrate, the samples were tested via inductively coupled plasma
optical emission spectroscopy (ICP-OES, PerkinElmer Optima 8000, Waltham, MA, USA).

The activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD),
reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT), and the
contents of malondialdehyde (MDA) were measured using commercial kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China). The activity of caspase 3
(Casp3) in livers was tested using a commercial kit (Caspase 3 Activity Assay Kit, Be-yotime
Biotechnology, Shanghai, China).

2.6. qRT-PCR Analysis

Total RNA from liver samples was extracted using TRIzol reagent (Ambion, Life Tech-
nologies, Austin, TX, USA) according to the manufacturer’s instructions. The RNA integrity
and purity were assessed by agarose gel electrophoresis and NanoDrop spectrophotometer
determination, respectively. The cDNA was synthesized by reverse transcription using an
M-MLV First-Strand Transcriptase kit (Invitrogen, Carlsbad, CA, USA). All quantitative
real-time PCR (qRT-PCR) assays were performed on a LightCycler 480 System (Roche, Jena,
Thüringen, Germany). The primers used for quantitative RT-PCR are shown in Table 2. The
housekeeping gene tubulin was chosen to normalize the relative quantification of target
genes according to the methods described by Pfaffl [29].
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Table 2. Sequences of the primers used for qRT-PCR analysis in gibel carp.

Gene Acronym Prime Sequence Amplicon Size (bp) Accession No.

Tubulin
tubulin TCCTTCAACACCTTCTTCAGTGAGAC 134 JX4135181

AGCTGCTCAGGGTGGAACAGC

Nuclear factor [erythroid-derived 2]-like 2
nrf2 CCCTTCACCAAAGACAAGCA 128 MG759384

TTGAAGTCATCCACAGGCAG

Kelch-like ECH-associated protein-1
keap1 CTCACCCCCAACTTCCTGCAG 150 MG759382

GATGAGCTGCGGCACCTTGGG

CNC homolog 1
bach1 TGGAGCGCAGGAGCTTTCGAG 98 XM_026282740

AGTGGGGTTTGGTCGGCTGTG

Peroxiredoxin 2
prx2 AGGTCATCGCTGCTTCCACCG 90 XM_026211451

TGTTCATGGAGCCCAGGCCAC

Heat shock protein 70
hsp70 CTCAACAAGAGCATCAACCCAG 155 JN006055.1

ATGACTCCACCAGCCGTTTC

Metallothionein
mt AACTTGTTCGTCTGTGCTGG 93 XM_026230631.1

GAGAACAACAGGGAGGTCGT

Activating transcription factor 6
atf6 TGCAGGTGTATTACGCCCCTCAC 176 XM_026290872.1

GTAATTCATAGCTGGCAGGACCAC

Eukaryotic translation initiation factor 2A
eif2a AGCTGCCAAAGAACGGCCCCATT 226 XM_026230526.1

CAAACTTCCATCTGCCCTCTCAG

Inositol-requiring protein-1α
ire1 GCGACCTTTCCTGCCTTACT 253 XM_026218282.1

AGTCTCCTGTTTGGACAGCG

X-box-binding protein 1
xbp1 CATCTACACCAAACCCACCGA 264 MN852578

CATCCAGAGTCACTGTACGCA

Eukaryotic translation initiation factor 2-alpha kinase 3
perk TGCCATCAAGAGGATCCGTCTGC 122 XM_026224076.1

CCTGCCAAGCATTGAAGTAACGG
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Table 2. Cont.

Gene Acronym Prime Sequence Amplicon Size (bp) Accession No.

Activating transcription factor 4
atf4 CAGCCGAGAGATCCGCTATC 215 XM_026260813.1

GATGAGCCCCTTACTGGACG

DNA damage-inducible transcript 3 protein
chop ACCACTCCTCGCTGACAGA 88 XM_026265784.1

TTAGAGGCCTCGGGTCGAT

Endoplasmic reticulum oxidoreductase 1 alpha
ero1α ATGCCCAACACAAGCAACAC 129 XM_026242578.1

TGACAACAGCGACCGAAAGT

Microtubule-associated proteins 1A/1B light chain 3B
lc3b CTACGAGCGCGAGAGAGATG 81 XM_026238789.1

TGAGGACACGCAGTTCCAAA

Beclin-1
beclin1 TGGAGAACTTGAGTCGCAGG 129 XM_026249455.1

GCTGAGTGTCCAGATGGTCG

Autophagy protein 5
atg5 GCTCTTCCGACCAGTGTCTC 188 XM_026284696.1

AGTTGTCTGGGTGGCTCAAG

Autophagy protein 12
atg12 GCTGTTGAAAGCAGTAGGTGATG 170 XM_026284438.1

GGTCTGGTGATGGAGCAAATGAC

Apoptosis regulator Bcl-2
bcl2 AAAGGATGTACCAGCGCGAA 83 XM_026237836.1

GGCTAAGAATCTGCGTTGCG

BCL2 associated X, apoptosis regulator
bax ACCCCAGCCATAAACGTCTTGCG 214 XM_026262399.1

GCCTTGATGACAAGCCGACAC

Caspase 3
casp3 ATCATGACCAGGGTCAACCA 119 XM_026266756.1

TACATCTCTTTGGTGAGCAT

Caspase 9
casp9 ATCACAAACTACCTCAACGG 80 XM_026241892.1

CCTCCACAGGCCTGGATGAA
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2.7. Statistical Analysis

Results are presented as means ± standard errors. Normality and homoscedasticity of
the data were assessed by Shapiro–Wilk and Levene tests. Two-way analysis of variance
(ANOVA) was conducted with SPSS 26.0 (Chicago, IL, USA), and p < 0.05 was considered
as a significant difference. Independent t-tests were conducted to examine the differences
between pre- and post-challenge test groups. Gene expression heatmap of genes related
to antioxidation, ER stress, autophagy, and apoptosis were created using heatmapper
(http://www.heatmapper.ca/ accessed on 4 July 2022).

3. Results
3.1. Growth Performance

No significant differences in final body weight (FBW) or specific growth rate (SGR)
were observed in the two strains of gibel carp fed diets with taurine supplementation
(Figure 2). However, dietary taurine supplementation significantly decreased the feed
efficiency (FE) and increased the feed conversion ratio (FCR) in both strains. The F strain
presented significantly higher FBW, SGR, and FE and lower FCR than the A strain (p < 0.05).
During the experiment, the survival rate of fish was 100%.
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strains, as shown by the degenerated cristae and swelling of mitochondria. Meanwhile, 
irregular parallel stacked endoplasmic reticulum and plaque accumulation within hepato-
cytes were detected by transmission electron microscopy. 

Figure 2. Specific growth rate and feed efficiency of two gibel carp strains fed the control diet and
diet supplemented with taurine. Control: control diet, white bars; TAU: diet supplemented with
taurine, black bars. FBW: final body weight; SGR: specific growth rate (%/d) = 100 × [ln (final
weight) − ln (initial weight)]/day; FE: feeding efficiency (%) = (100 × body weight gain)/dry feed
intake; FCR: feed conversion ratio = (100 × dry feed intake)/body weight gain. Bars with different
uppercase letters (A, B) represent significant differences between the A and F strains (p < 0.05). Bars
with different upper-case letters (X, Y) represent significant differences between the control diet group
and the taurine diet group (p < 0.05).

3.2. Histological Observation

Ultrastructural images of the liver in the two gibel carp strains exposed to Cd are
shown in Figure 3. Cd exposure induced ultrastructural alterations in the two gibel carp
strains, as shown by the degenerated cristae and swelling of mitochondria. Meanwhile,
irregular parallel stacked endoplasmic reticulum and plaque accumulation within hepato-
cytes were detected by transmission electron microscopy.

http://www.heatmapper.ca/
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Figure 3. Representative histological transmission electron microscopy (TEM) images of gibel carp
(A and F strains) after 96 h cadmium exposure. Control: control diet; TAU: diet supplemented
with taurine.

A terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL) was
conducted to assess the apoptosis index in the livers of gibel carp (Figure 4). The results
showed that apoptosis signals increased significantly after Cd exposure (p < 0.05), while
dietary taurine supplementation decreased the apoptosis index compared with the control
group. Moreover, the apoptosis index in the A strain fed the control diet was the highest
(p < 0.05).
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Figure 4. Representative DAPI and TUNEL double staining and image quantification results from
the livers of gibel carp (A and F strains) after 96 h cadmium exposure. Positive apoptotic cells appear
in green, and normal nuclei appear in blue. Control: control diet, white bars; TAU: diet supplemented
with taurine, black bars. Bars with different lowercase letters (a, b) indicate the interaction effect and
represent significant differences among groups (p < 0.05). Bars with * indicate significant changes
between diets in the same strain (p < 0.05). The magnification factor is 200×, and the scale bar is
100 µm.
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3.3. Activities of the Antioxidant and Caspase Enzymes

Before Cd exposure, the enzyme activities of T-AOC, SOD, GSH-Px, Casp3, and con-
tents of GSH showed no significant variation among treatments (Figure 5). Dietary taurine
supplementation significantly enhanced the activities of CAT in the A strain compared
to other groups (p < 0.05), while MDA contents were significantly lower in the F strain
than in the A strain (p < 0.05). After Cd exposure, no significant differences were found
among groups in the activities of T-AOC, SOD, or Casp3 or in GSH content. The A strain
had significantly higher GSH-Px activities and MDA contents than the F strain (p < 0.05).
For the diet effects, dietary taurine supplementation elevated the CAT activities, whereas
taurine decreased the MDA content after Cd exposure in both strains.
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Figure 5. Antioxidant indices and Casp3 activity in the livers of gibel carp (A and F strains) before
cadmium exposure (white bars) and after cadmium exposure (black bars). A0: A strain fed the control
diet; A1: A strain fed a diet supplemented with taurine; F0: A strain fed the control diet; F1: A
strain fed a diet supplemented with taurine. Bars with different uppercase letters (A, B) represent
significant differences between the A and F strains (p < 0.05). Bars with different uppercase letters
(X, Y) represent significant differences between the control diet group and the taurine diet group
(p < 0.05). Bars with different lowercase letters (a, b) indicate the interaction effect and represent
significant differences among all groups (p < 0.05). Bars with * indicate significant changes between
before and after cadmium exposure (p < 0.05).

Cd exposure significantly inhibited the activities of CAT in both strains of gibel carp
and reduced the content of MDA in the F strain. For both gibel carp strains, Cd exposure
suppressed the activity of T-AOC, whereas the activity of Casp3 and the contents of GSH
were elevated. However, the F strain fed the diet with taurine supplementation did not
show significant differences in the activities of T-AOC or Casp3 or in GSH content. Among
all groups, only the F strain given dietary taurine supplementation showed significant
reduction in the activity of GSH-Px (p < 0.05).
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3.4. Antioxidant Pathways and Metallothionein Levels

The expression levels of antioxidant genes and metallothionein are shown in Figure 6.
Prior to Cd exposure, the gene expression levels of prx2, hsp70, and mt showed no signifi-
cant differences among groups (p > 0.05). Dietary taurine supplementation significantly
upregulated the expression of bach1 and nrf2 in both strains compared to the control group
(p < 0.05). The F strain showed significantly higher mRNA levels of keap1 than the A strain
(p < 0.05).
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Figure 6. Expression levels of genes related to antioxidation and metallothionein (mt) in the livers
of gibel carp (A and F strains) before cadmium exposure (white bars) and after cadmium exposure
(black bars). A0: A strain fed the control diet; A1: A strain fed a diet supplemented with taurine; F0:
A strain fed the control diet; F1: A strain fed a diet supplemented with taurine. Bars with different
uppercase letters (A, B) represent significant differences between the A and F strains (p < 0.05). Bars
with different uppercase letters (X, Y) represent significant differences between the control diet group
and the taurine diet groups (p < 0.05). Bars with different lowercase letters (a, b) indicate a significant
interaction effect and represent the differences among all the groups (p < 0.05). Bars with * indicate
significant changes between before and after cadmium exposure (p < 0.05).

After Cd exposure, no significant variation was observed in the mRNA levels of bach1,
keap1, nrf2, or hsp70 among all groups (p > 0.05). The A strain showed significantly higher
mt mRNA levels than the F strain (p < 0.05). Interactions were identified in the expression
of prx2, with the highest levels found in the F strain given dietary taurine supplementation
(p < 0.05). Cd exposure enhanced the expression levels of nrf2 and mt in both strains,
while the A strain showed significant elevation of the mRNA level of bach1 (p < 0.05). The
expression of prx2 was significantly upregulated after Cd exposure (p < 0.05), while no
significant differences were observed in the F strains (p > 0.05). The expression of keap1
was significantly higher after Cd exposure (p < 0.05), except for the F strain fed with the
control diet.

3.5. ER Stress

As shown in Figure 7, no significant differences were observed in the expression of xbp1
or eif2a among all groups before Cd exposure (p > 0.05). Dietary taurine supplementation
significantly upregulated the mRNA levels of ire1, perk, and chop in the livers of both strains
compared to the control group. The F strain had markedly higher levels of atf6 than the A
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strain (p < 0.05). Diets interacted with strains to affect the expression of atf4 in the livers of
gibel carp, with the F strain showed the highest levels among all groups (p < 0.05).
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Figure 7. Expression levels of genes related to ER stress in the livers of gibel carp (A and F strains)
before cadmium exposure (white bars) and after cadmium exposure (black bars). A0: A strain fed the
control diet; A1: A strain fed a diet supplemented with taurine; F0: A strain fed the control diet; F1:
A strain fed a diet supplemented with taurine. Bars with different uppercase letters (A, B) represent
significant differences between the A and F strains (p < 0.05). Bars with different uppercase letters
(X, Y) represent significant differences between the control diet and taurine diet groups (p < 0.05).
Bars with different lowercase letters (a, b) indicate the interaction effect and represent the differences
among all groups (p < 0.05). Bars with * indicate significant changes between before and after
cadmium exposure (p < 0.05).

After Cd exposure, no significant variation was observed in the expression of ire1, perk,
or chop among all groups (p > 0.05). The F strain showed significantly higher expression
levels of atf6, eif2a, and atf4 than the A strain (p < 0.05). Interactions were observed in
the mRNA level of xbp1, with the highest level found in the A strain fed the control diet
(p < 0.05). Cd exposure significantly induced higher mRNA levels of ire1, perk, atf6, xbp1,
eif2a, and atf4 in the livers of both strains, whereas the A strain fed the control diet had the
higher chop mRNA levels (p < 0.05).

3.6. Autophagy and Apoptosis

Hepatic mRNA levels related to autophagy and apoptosis were investigated in both
strains (Figure 8). Prior to Cd exposure, no significant differences were found in the
expression of atg12, atg5, beclin1, or bcl2 (p > 0.05). The mRNA levels of lc3b in the A strain
were significantly lower than in the F strain among all groups (p < 0.05). Dietary taurine
supplementation elevated the expression of ero1α and bax (p < 0.05). The diets and strains
interacted to affect the expression of casp9 and casp3, with the highest levels found in the A
strain fed the taurine diet (p < 0.05).



Antioxidants 2022, 11, 1381 12 of 18

Antioxidants 2022, 11, 1381 12 of 18 
 

interacted to affect the expression of casp9 and casp3, with the highest levels found in the 
A strain fed the taurine diet (p < 0.05). 

 
Figure 8. Expression levels of genes related to autophagy and apoptosis in the livers of gibel carp 
(A and F strains) before cadmium exposure (white bars) and after cadmium exposure (black bars). 
A0: A strain fed the control diet; A1: A strain fed a diet supplemented with taurine; F0: A strain fed 
the control diet; F1: A strain fed a diet supplemented with taurine. Bars with different uppercase 
letters (A, B) represent significant differences between A and F strains (p < 0.05). Bars with different 
upper-case letters (X, Y) represent significant differences between the control diet group and the 
taurine diet group (p < 0.05). Bars with different lowercase letters (a, b) indicate the interaction effect 
and represent the differences among all groups (p < 0.05). Bars with * mean significant changes be-
tween before and after cadmium exposure (p < 0.05). 

After Cd exposure, the expression of atg12, atg5, beclin1, bcl2, and casp9 showed no 
significant differences among all groups (p > 0.05). The A strain showed significantly 
higher levels of lc3b, ero1α, and bax and significantly lower levels of casp9 than the F strain 
(p < 0.05). Cd exposure significantly upregulated the mRNA levels of atg12, atg5, and ero1α 
in the livers of both strains. However, the upregulated levels of lc3b were only found in 
the F strain fed the taurine diet. The increased expression of beclin1 was found in the A 
strain fed the control diet and the F strain fed the taurine diet (p < 0.05). The A strain 
subjected to the taurine diet had significantly higher hepatic mRNA levels of casp3 and 
casp9. Cd exposure induced significant upregulation of the expression of bax among all 
groups (p < 0.05) except for the A strain fed the diet with taurine supplementation (p > 
0.05). 

  

Figure 8. Expression levels of genes related to autophagy and apoptosis in the livers of gibel carp
(A and F strains) before cadmium exposure (white bars) and after cadmium exposure (black bars).
A0: A strain fed the control diet; A1: A strain fed a diet supplemented with taurine; F0: A strain fed
the control diet; F1: A strain fed a diet supplemented with taurine. Bars with different uppercase
letters (A, B) represent significant differences between A and F strains (p < 0.05). Bars with different
upper-case letters (X, Y) represent significant differences between the control diet group and the
taurine diet group (p < 0.05). Bars with different lowercase letters (a, b) indicate the interaction effect
and represent the differences among all groups (p < 0.05). Bars with * mean significant changes
between before and after cadmium exposure (p < 0.05).

After Cd exposure, the expression of atg12, atg5, beclin1, bcl2, and casp9 showed no
significant differences among all groups (p > 0.05). The A strain showed significantly
higher levels of lc3b, ero1α, and bax and significantly lower levels of casp9 than the F strain
(p < 0.05). Cd exposure significantly upregulated the mRNA levels of atg12, atg5, and ero1α
in the livers of both strains. However, the upregulated levels of lc3b were only found in
the F strain fed the taurine diet. The increased expression of beclin1 was found in the A
strain fed the control diet and the F strain fed the taurine diet (p < 0.05). The A strain
subjected to the taurine diet had significantly higher hepatic mRNA levels of casp3 and casp9.
Cd exposure induced significant upregulation of the expression of bax among all groups
(p < 0.05) except for the A strain fed the diet with taurine supplementation (p > 0.05).

3.7. Heatmap Cluster Analysis

The mean values of molecular (gene expression) signatures of all treatments are
presented in the clustering heatmap (Figure 9). Obvious differences were observed in
the two strains before or after Cd exposure. Molecular expression of genes involved in
antioxidant response, ER stress, and autophagy in the F strain after Cd exposure was not in
a cluster with other treatments, especially in the F strain fed the taurine diet.
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4. Discussion

Taurine has been reported to have beneficial effects on the growth performance of
aquatic animals fed low fish meal diets in species such as black carp and white shrimp [30,31].
In the Phase 1 period of the present study, no significant effects on FBW or SGR were
observed in either strain of gibel carp subjected to 8 weeks of taurine supplementation.
Consistent with our results, the positive effects of dietary taurine supplementation (0, 0.5,
1.0, 1.5, and 2.0%) on growth improvement in yellowtail disappeared after six weeks of
feeding, although higher final body weight was observed in fish fed a taurine diet for three
weeks [32]. Dietary taurine supplementation significantly decreased FE and increased FCR
in both strains. When the dietary taurine level exceeds the basic nutritional requirement,
this can lead to feed intake reduction, as has been reported in Nile tilapia [33]. Therefore,
the effects of dietary taurine supplement on growth of aquatic animals may be dose or
time dependent.

As a semi-essential amino acid, taurine has physiological functions in the antioxidant
and anti-apoptosis responses. Being a non-essential heavy metal, Cd exerts its effects
and causes damage to tissues primarily through peroxidation and apoptosis [34]. Reports
have shown that dietary taurine supplementation could mitigate Cd toxicity in catfish and
red sea bream [16,24]. In the present study, histological observations showed that 96 h
Cd exposure caused degenerated cristae, swelling of mitochondria, and irregular parallel
stacked endoplasmic reticulum, and plaques in the cytoplasm of hepatocytes of both strains,
suggesting that Cd damaged the mitochondria and endoplasmic reticulum in the liver
cells of gibel carp. Meanwhile, Cd triggered apoptosis signals, as shown by the TUNEL
results. Nevertheless, the apoptosis index was significantly lower in both strains fed diets
with taurine supplementation compared to the control groups. Therefore, dietary taurine
supplementation could apparently mitigate Cd-induced hepatic damage in gibel carp as
in catfish and red sea bream [16,24]. Metallothionein (mt) is considered as a biomarker in
the Cd detoxification process, as it can combine with Cd to form a Cd-MT complex [35].
In the present study, hepatic mRNA levels of mt increased significantly after Cd exposure,
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indicating that Cd triggered the protective proteins to counteract the damage to the liver. To
further elucidate the potential protective effects of taurine in gibel carp against Cd toxicity,
we investigated the antioxidant response, ER stress, autophagy, and apoptosis.

Induction of oxidative stress is one of the toxicological mechanisms involved in heavy
metal stress in fish, where the production of ROS (reactive oxygen species) causes oxidative
damage to cells. Previous studies have shown that the hepatic enzyme activity of SOD
increased significantly in rainbow trout after 7 days of waterborne Cd exposure [36].
Meanwhile, 21 days of waterborne Cd exposure enhanced the hepatic enzyme activity
of SOD in catfish [37]. In the present study, Cd exposure elevated the SOD activity in
gibel carp fed the control diet. However, no significant differences were found in hepatic
SOD activities in fish fed diets with taurine supplementation, implying the protective
role of taurine against Cd exposure in gibel carp. MDA is considered as a biomarker of
the lipid peroxidation level under oxidative stress [38]. Dietary taurine supplementation
significantly decreased MDA levels in the liver, which is consistent with the results for
hepatic SOD activity. Cd exposure suppressed the enzyme activity of CAT in the livers
of both strains, but the F strain showed higher levels than the A strain. Moreover, Cd
exposure inhibited the activities of T-AOC while elevating the activity of Casp3 and the
contents of GSH. However, no significant differences were observed in the activities of
T-AOC or Casp3 or in the content of GSH in the F strain fed the taurine diet. Additionally,
even though the activity of GSH-Px showed no variation among groups, the lowest level
was found in the F strain fed the diet with taurine supplementation. Overall, taurine may
exert its protective function against Cd poisoning more efficiently in the F strain than in the
A strain.

Nuclear factor erythroid 2-related factor 2 (nrf2) is a key transcriptional factor involved
in the regulation of the cellular antioxidant response [39]. Nrf2 regulates downstream
antioxidant-related genes such as keap1, prx2, bach1, and hsp70 to alleviate oxidative stress in
organisms [40]. In the present study, the nrf2 signaling pathway was activated, as indicated
by upregulation of nrf2 mRNA levels in both strains fed the taurine supplemented diet.
In zebrafish, the nrf2 pathway demonstrated protective effects by mitigating Cd-induced
cellular oxidative damage [41]. Before Cd exposure, the expression levels of nrf2 and bach1
were significantly higher in both strains fed diets with taurine supplementation than in the
control groups, indicating that dietary taurine could enhance the antioxidant potential of
gibel carp, while such beneficial effects were not observed after the Cd exposure. Moreover,
Cd exposure downregulated the expression levels of prx2, except in the F strain fed the
diet with taurine supplementation. Taken together, the results suggest that taurine had a
protective role against Cd-induced damage in both strains, especially in the F strain.

The endoplasmic reticulum is a dynamic organelle that is responsible for folding
and assembly of proteins [42]. ER stress and its downstream signaling pathways play
a crucial regulatory role in response to heavy-metal-induced toxic effects [43]. Previous
studies had indicated that Cd waterborne could induce ER stress in both strains of gibel
carp [25]. In the present study, the expression levels of the ER-stress-related genes ire1, perk,
atf6, xbp1, eif2α, and atf4 were increased after Cd exposure. In other words, all branches
of the regulatory pathways of PERK-eIF2a-ATF4, IRE1-XBP1, and ER stress transducers
ATF6 were induced after Cd exposure, suggesting the occurrence of ER stress in gibel
carp exposed to Cd. The phosphorylation dependence of PERK induces dissociation of
Nrf2/Keap1 complexes, thereby triggering the transcription of downstream genes involved
in antioxidant pathways [44]. The expression level of perk had a variation trend similar to
that of nrf2. Meanwhile, hepatic histological alterations such as swelling of mitochondria
and irregular parallel stacks of ER were triggered by Cd exposure, observations that
confirmed the ER stress in gibel carp.

Autophagy refers to a catabolic process in which cytoplasmic constituents and or-
ganelles in the lysosome are degraded to maintain homeostasis as an adaptative response
to stressful conditions [45]. Autophagic pathways can be triggered through induction of ER
sensors under long-lasting ER stress [46]. It has been reported that Cd exposure could cause
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such a stress response, eliciting ER-stress-mediated autophagic and apoptosis processes
in both strains of gibel carp [9,25]. Moreover, the formation of autophagosomes requires
two ubiquitin-like conjugation pathways: one involves the formation of the multimeric
complex of ATG5-ATG12-ATG16 conjugation; the other results in the conjugation of phos-
phatidylethanolamine (PE) to LC3b for the expansion of autophagic membranes [45,47]. In
the present study, Cd exposure upregulated the hepatic mRNA levels of atg5 and atg12 in
both strains regardless of the diet effect, suggesting that autophagic processes may be trig-
gered by the increasing level of the ATG5-ATG12 complex. The mRNA levels of lc3b were
only elevated in the F strain fed with the taurine diet, implying that more conjugation path-
ways were stimulated in the F strain. Thus, stronger autophagy may have been triggered in
the F strain fed the taurine diet. Furthermore, Beclin-1 is a critical regulator of autophagy,
because it participates in the formation of autophagosomes [48]. The transcriptional levels
of beclin1 were increased in the A strain fed the control diet and the F strain fed the taurine
diet. Taken together, the results suggest that Cd exposure induced the autophagic process,
and stronger autophagy responses were observed in the F strain fed the taurine diet.

Autophagy may play a protective role in cell survival, and extensive autophagy may
trigger apoptosis as an independent pathway of cell death [49]. Apoptosis is also known
as a cellular biomarker of metal-induced physiological alterations in aquatic animals [50].
Cd exposure was reported to induce apoptosis in topsmelt, purse red common carp, and
gibel carp [25,51,52]. Apoptosis can be triggered by three main pathways, one of which is
upstream caspase activation and includes the enzymes Caspase 9 and Caspase 3 [53]. In
the present study, the transcriptional levels of casp9 and casp3 were inhibited in the A strain
fed the diet supplemented with taurine. The mRNA levels of casp3 were not consistent
with the Casp3 activities, possibly due to a feedback response; a similar result has been
reported in Litopenaeus vannamei [54]. Meanwhile, the apoptotic index in the A strain after
Cd exposure was higher than in other groups as shown by the TUNEL results, suggesting
that Cd exposure caused higher levels of apoptosis, and dietary taurine supplementation
manifested its antioxidant effects through the regulation of the caspase gene in the A strain.
In the apoptotic process, bcl2 is a member of the anti-apoptosis protein family, while bax
and ero1α have opposite functions [47,55]. In the present study, no significant variation
in bcl2 expression was found after exposure to Cd, while the expression of ero1α was
significantly elevated, indicating that apoptosis was induced by Cd exposure. The mRNA
levels of bax increased after Cd exposure in all groups, but unaltered mRNA levels of bax
were found in the A strain fed taurine, implying that dietary taurine supplementation
alleviated the Cd toxicity by attenuating apoptosis in the A strain compared to the F strain.

Hierarchy cluster heatmap analysis showed that significant differences were observed
in the two strains before or after Cd exposure, which verified the effects induced by Cd
exposure as mentioned above. Expression levels of genes involved in antioxidant response,
ER stress, and autophagy in the F strain post Cd exposure was not in cluster with other
treatments, especially in the F strain fed the taurine diet, which was in line with previous
results. Differential responses between the A and F strains of gibel carp were investigated
in our previous studies owing to their genetic differences produced by selection [9,25]. The
A strain was produced from eggs of gibel carp D strain and the sperm of gibel carp A strain,
while the F strain was produced by the eggs of gibel carp E strain via stimulation with
blunt snout bream sperm [56,57]. Therefore, a partial genome from the blunt snout bream
may have been introduced into the genome of the F strain; this may have caused genetic
differences between the A and F strains that led to differential genomic expression between
the two strains upon Cd exposure. In the present study, even the growth performance was
not significantly improved by dietary taurine supplement, but the detoxication of taurine
might help to increase the survival rate of fish and raise fish quality, thereby improving the
economic benefits.
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5. Conclusions

Our study found that Cd exposure induced damage and oxidative stress in the livers of
both strains of gibel carp, thereby triggering the occurrence of ER stress and the downstream
responses of autophagy and apoptosis. Dietary taurine supplementation had no significant
effect on the growth performance of gibel carp but did alleviate the Cd toxicity in both
strains via specific genetic pathways. Dietary taurine played a protective role in mitigating
Cd toxicity in the F strain through the antioxidant response, ER stress response, and
autophagy, while in the A strain taurine alleviated cadmium toxicity by attenuation of
apoptosis. In conclusion, the present study has provided evidence for the use of taurine in
intervention or therapy for Cd poisoning in fish; thus, providing useful information for
selective breeding in aquaculture.
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