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A B S T R A C T   

The type I interferon (IFN) signaling pathway involves binding of the transcription factor ISGF3 to IFN- 
stimulated response elements, ISREs. Gene expression under IFN stimulation is known to vary across cell 
types, but variation in ISGF3 binding to ISRE across cell types has not been characterized. We examined ISRE 
binding patterns under IFN stimulation across six cell types using existing ChIPseq datasets. We find that ISRE 
binding is largely cell specific for ISREs distal to transcription start sites (TSS) and largely conserved across cell 
types for ISREs proximal to TSS. We show that bound ISRE distal to TSS associate with differential expression of 
ISGs, although at weaker levels than bound ISRE proximal to TSS. Using existing ATACseq and ChIPseq datasets, 
we show that the chromatin state of ISRE at homeostasis is cell type specific and is predictive of cell specific, ISRE 
binding under IFN stimulation. Our results support a model in which the chromatin state of ISRE in enhancer 
elements is modulated in a cell type specific manner at homeostasis, leading to cell type specific differences in 
ISRE binding patterns under IFN stimulation.   

1. Introduction 

Stimulating cells with type I interferons (IFN), in particular IFNa and 
IFNb, activates signaling pathways that lead to the upregulation of a 
collection of genes known as interferon stimulated genes, ISGs. ISGs play 
a diverse and essential role in the innate immune response, with some 
acting directly as antiviral effectors while others regulate the innate and 
adaptive responses [1]. Cell types vary in their ISGs, presumably 
reflecting the need for different functional responses to infection [2–5]. 
For example, IFN stimulation of cardiac myocytes weakly induces some 
ISGs that are potently induced in cardiac fibroblasts, possibly reflecting 
functional restrictions on cardiac monocytes which are not replenished 
[5]. 

Despite the differences in ISGs across cell types, our understanding of 
the cellular factors and pathways that determine a cell type’s ISGs, 
referred to as the cell type’s IFN signature [6], is incomplete. The ca-
nonical IFN signaling pathway involves activation of STAT1 and STAT2 
and the formation of the IGSF3 trimer, composed of STAT1, STAT2, and 
IRF9. ISGF3 binds to genomic sequence motifs called IFN-stimulated 
response elements, ISREs, and regulates the transcription of ISGs [7]. 
Over the past two decades an array of non-canonical interferon path-
ways and regulators have been discovered and associated with variation 
in IFN signatures [8,2,9–17]. However, while it is clear that IFN 

signaling through non-canonical pathways leads to variation in the IFN 
signature, the degree of variability in the IFN signature associated with 
canonical IFN signaling, mediated by binding of ISGF3 to ISREs, is not 
clear. 

Previous authors have investigated ISRE binding on a genomic scale. 
Seminal work by Hartman et al. and Robertson et al. identified STAT1 
and STAT2 binding across the genome in HeLa cells [18,19]. Testoni 
et al. characterized STAT2 binding at homeostasis and under IFNa 
stimulation over a subset of 113 ISG promoters in hepatocytes [20]. 
Several groups have compared the effects of ISGF3 binding and STAT2: 
IRF9 dimer binding to ISREs [21–24]. However, none of these works 
characterized ISRE binding patterns across the genome or across cell 
types. 

An array of studies over the past decade has shown that binding of 
transcription factors such as ISGF3 is shaped by epigenetic factors that 
vary between cell type [25–30,6,31], but the extent to which this is the 
case for ISGF3 binding to ISRE is unclear. The importance of epigenetic 
state in shaping the IFN response has been demonstrated in several 
contexts, [32,20,33–37]. However, the association between epigenetic 
state and ISGF3 binding to ISRE on a genomic level has not been 
characterized. 

In this work, we take a step upstream of the IFN signature and 
considered the ISRE signature. By ISRE signature, we mean the 
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collection of ISREs bound by ISGF3 and its components under IFN 
stimulation. We consider the ISRE signature of six cell types: mouse 
BMDM, fibroblast, and B cells, and human HeLa, K562, and THP1 cells. 
We investigate the distribution of bound ISREs within and across each of 
the cell types. We examine the association between ISRE signatures and 
IFN signatures by correlating ISRE binding with differential gene 
expression. And, through a machine learning approach, we quantify the 
capacity of the homeostatic, chromatin state of an ISRE to predict ISGF3 
component binding under IFN stimulation. 

Our analysis provides several novel insights into the IFN response 
that support existing models of IFN signaling [8]. Canonically, ISG 
regulation has been associated with ISRE binding in promoters. Our 
results support a role for bound ISRE distal to transcription start sites 
(TSS), presumably associated with enhancers. We find that most ISGs 
have bound ISREs in enhancers, that variation in the ISRE signature 
across cell types is predominantly associated with variation in en-
hancers, and that bound ISREs in enhancers associate with differential 
expression under IFN stimulation, although more weakly than bound 
ISRE in promoters. We show that ISRE binding under IFN stimulation is 
predicted at significant accuracy by the homeostatic chromatin state at 
ISRE, suggesting that factors controlling the homeostatic state of a cell 
play a substantial role in shaping the ISRE signature and, in turn, the IFN 
signature. 

2. Materials and methods 

Accessions and specific details for all datasets, 
[38–42,35,43,44,3,45–47,24,33], are provided in Supplementary Ta-
bles S1-S3. 

2.1. Processing ATACseq and ChIPseq Datasets 

For the GEO datasets, we downloaded fastq files from the SRA 
dataset, used bowtie 1.2 [48] to align reads to the mouse mm10 genome 
and human hg38 genome, and then used MACS2, [49], to call peaks and 
form signals (SPMR). The number of replicates varied from 1 − 4 across 
the datasets and when multiple replicates were available we aligned 
each separately using bowtie, combined the bam files, and then used 
MACS2 to call peaks. We used the default settings in bowtie 1.2 and 
filtered the output bam file for mapped and, when appropriate, paired 
reads, and removed duplicate reads. We used the default settings in 
MACS for ChIPseq data, but for ATACseq added the options –nomodel 
–shift − 37 –extsize 73. We called peaks at an FDR of 0.01. We used 
the MACS2 –SPMR option to create signal output. For ENCODE datasets, 
we downloaded ENCODE constructed peak calls and signal files, 
choosing the files constructed over all replicates. 

2.2. Processing Transcription Datasets 

For each gene in the mm10 and hg38 genomes, we identified the 
transcript with highest expression level under IFN stimulation in the 
mouse BMDM dataset and in a human monocyte derived macrophage 
dataset (Andrade et al., unpublished, GSE125352). This gave us one 
transcript for every gene on which we performed differential expression 
analysis. 

For microarray datasets, which were all collected using Affymetrix 
chips, we downloaded raw CEL files, processed the CEL files using the R 
oligo package [50] using the rma algorithm and quantile normalization, 
and then used the R limma package [51] to produce fold-change and 
FDR values for the differential expression of each transcript. For the 
RNAseq datasets, we downloaded raw fastq files, aligned them to the 
mm10 or hg38 transcriptome using Salmon 0.99 [52] with default 
setting except the addition of the flag –validateMappings. We 
normalized the Salmon, expression values using the R edgeR package’s 
[53] calcNormFactor function with the method parameter set to TMM, 
processed the output using the voom function in the limma package, and 

used the R limma package to calculate differential expression fold- 
change and FDR just as for microarray data. 

We defined a gene to be an ISG if the gene’s expression level changed 
by more than 50% under IFN stimulation and if the FDR adjusted p-value 
for differential expression computed by the R limma package was less 
than 0.05 for the RNAseq datasets and 0.01 for the microarray datasets. 
The lower p-value cutoff for microarray datasets removed noise asso-
ciated with low level transcripts, a known limitation of microarrays 
[54]. 

2.3. Classification 

We built classifiers using L1 logistic regression implemented using 
the R glmnet package [55]. Given a collection of ISRE loci to classify, we 
trained the classifier using 50% of the loci. To choose the L1 penalty 
parameter, we applied 10-fold cross validation to the training data and 
using maximization of AUROC (AUC) to select the parameter. We then 
tested our classifier on the held out data. We used the R ROCR package 
[56] to compute AUC values. 

We restricted classification to samples sizes sufficiently large so that 
an AUC greater than 0.55 was statistically significant. To determine 
sample sizes that were sufficiently large, we permuted the ISRE class 
value while keeping the homeostatic signal fixed and then considered 
classifications for which the permuted AUC was under 0.55 with 95% 
confidence. 

2.4. GO Enrichment Analysis 

We used the R package gprofiler2 [57] to perform GO enrichment 
analysis. Given a collection of genes, we called the gprofiler2 gost 
function, filtered for GO classes with less than 500 genes, and sorted the 
remaining classes in descending order of p-values. 

3. Results 

From the GEO and ENCODE databases [58,59], we downloaded 
STAT1, STAT2, and IRF9 ChIPseq datasets collected under IFN stimu-
lation for mouse bone marrow derived macrophages (BMDM), embry-
onic fibroblasts (fibroblasts), and splenic B (B) cells, and human HeLa-S3 
(HeLa), K562, and THP1 cells. For B and K562 cells, only STAT1 and 
STAT2 ChIPseq datasets were available. All datasets were collected be-
tween 1.5 − 6 hours post IFN stimulation, during the time period shown 
to have the most ISGs upregulated [35]. Datasets did vary in the type I 
IFN, IFNa or IFNb, and the IFN concentration, see Methods and Sup-
plementary Table S1 for further details. 

For each ChIPseq dataset, we called peaks using MACS2, [49], 
restricting our attention to peaks within 100 kb of gene transcription 
start sites (TSS) on the mouse and human genomes. BMDM had many 
more peaks than the other cell types, roughly 40, 000 versus 1500 to 
6000, and mouse cell types had more peaks than human cell types, even 
when BMDM where excluded, see Table 1 for specific values. The large 
number of BMDM peaks may reflect the unique role of BMDM in innate 
response. The difference in peak counts between mouse and human cell 

Table 1 
Most But Not All STAT1, STAT2, and IRF9 ChIPseq Peaks Were Near an ISRE 
motif. For each cell type, shown are (STAT1, STAT2, IRF9) the number of peaks 
called for the STAT1, STAT2 and IRF9 datasets, respectively, and (STAT1 (%), 
STAT2 (%), IRF9 (%)) the fraction of peaks that we associated with an ISRE.  

cell type STAT1 STAT2 IRF9 STAT1(%) STAT2(%) IRF9(%) 

BMDM 7577 17467 14738 0.50 0.48 0.56 
fibroblast 59 1582 2251 0.17 0.67 0.70 
B 646 5647  0.19 0.33  
HeLa 261 794 622 0.35 0.59 0.68 
K562 676 1408  0.53 0.40  
THP1 825 2888 164 0.08 0.11 0.18  
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types may be due to low sensitivity of ChIP antibody binding in human 
cells, particularly IRF9, as discussed in [24]. 

In order to associate ChIP peaks with ISRE, we defined an ISRE as any 
10 base pair sequence that matched the canonical ISRE motif 
TTTCNNTTTC or differed from it by a single nucleotide (where NN 
allowed for any nucleotide) and then located all such sequences within 
100 kb of a gene TSS. We associated an ISRE with a ChIP peak if the ISRE 
was within 10 base pairs of the peak summit. 

Under our definition for ISREs, there are 2.5 and 3.1 million ISRE 
within 100 kb of TSS on the mouse and human genome, respectively, but 
only several thousand were associated with peaks. Conversely, a sub-
stantial percentage of peaks were associated with ISRE across all cell 
types, as shown in Table 1. Except for THP1 cells, greater than 30% and 
56% of STAT2 and IRF9 peaks, respectively, associated with an ISRE. In 
contrast, STAT1 peaks associated with ISRE in a cell specific manner. 
Between 34% − 50% of STAT1 peaks associated with ISRE for BMDM, 
HeLa, and K562, but less than 20% for fibroblast and B cells. Since se-
quences that vary by more than one nucleotide from TTTCNNTTTC may 
serve functionally as ISREs, a higher fraction of peaks may have asso-
ciated with ISRE than our estimates. 

For a given cell type, we refer to an ISRE associated with a peak as a 
bound ISRE and we distinguish bound ISRE by the combination of 
associated STAT1, STAT2, and IRF9 peaks: a STAT1 bound ISRE is 
bound only by STAT1, a STAT1.STAT2 bound ISRE is bound by STAT1 
and STAT2 but not IRF9, etc. Across 3 of the 4 cell types for which we 
had STAT1, STAT2, and IRF9 ChIP data - namely BMDM, fibroblasts, 
and HeLa cells, with THP1 left out - 99% of bound ISRE were bound by 
the combinations, STAT2, IRF9, STAT2.IRF9, and STAT1.STAT2.IRF9. 
Associations involving STAT1 in the absence of STAT2 were rare. In 
contrast, in THP1, ISRE bound by STAT1 or STAT2 accounted for 11% 
and 77%, respectively, of bound ISRE, possibly reflecting sensitivity 
issues in ChIP antibody binding. In K562 and splenic B cells, the two cell 
types for which we did not have IRF9 ChIP data, 99% of bound ISRE 
were bound by STAT2 or STAT1.STAT2, in line with the large percent-
age of ISRE bound by STAT2 in BMDM, fibroblast, and HeLa cells. See 
Supplementary Table S4 for further details. 

Overall, these associations between peaks and ISRE are consistent 
with existing results [23,24]: most binding of ISGF3 components was 
associated with ISREs, STAT1 binding to ISRE independent of STAT2 
was rare, and most ISRE binding involved STAT2:IRF9 dimers or ISGF3. 

3.1. ISRE Binding Patterns Within Cell Types 

To characterize ISRE binding patterns within cell types, we consid-
ered the positional distribution of bound ISRE within genes. We asso-
ciated each bound ISRE to the gene with the closest TSS. Since promoter 
and enhancer regulatory elements differ in chromatin state and func-
tional properties [28], we split the region within 100 kb base pairs of a 
gene’s TSS into an enhancer region that included positions 3 − 100kb 
from the TSS and a promoter region that included positions within 500 
base pairs of the TSS. We do not claim that ISRE in the enhancer and 
promoter regions act functionally as enhancers or promoters, respec-
tively; instead, we use the terminology putatively and to emphasize the 
different characteristics of ISRE in the two regions, as we describe 
below. We purposely left a gap, positions 500 − 3000 from the TSS, be-
tween the promoter and enhancer regions for greater separation of 
chromatin state and functionality. 

Of genes with at least one bound ISRE, which we call bound genes, 
82% in mouse cell types and 95% in human cell types had between 1 − 6 
bound ISRE. A small number of bound genes had a large number of 
bound ISRE, reflecting repeating, adjacent ISRE. Fig. 1 shows the 
number of bound ISRE in BMDM at different distances relative to the 
TSS. Other cell types showed a similar pattern. Bound ISRE were at their 
highest concentration near the TSS, in the promoter region, and fell in 
concentrations with distance from the TSS. However, most bound ISRE, 
82% and 70% in mouse and human cell types respectively, fell in the 

enhancer region. 
To further characterize the positional distribution of bound ISRE 

within genes, we considered three configurations of bound genes: a 
bound ISRE in the promoter region, in the enhancer region, and in both 
the promoter and enhancer region. Across all cell types, between 
12 − 25% of bound genes had a bound ISRE in the promoter while 
greater than 60% of bound genes had a bound ISRE in the enhancer 
region. Bound genes with bound ISRE in both the enhancer and pro-
moter were rare, less than 5% across all cell types. 

Since we may have missed a substantial number of bound ISRE due to 
our restrictive definition of an ISRE motif, the percentages of these three 
configurations may be biased. To address this potential bias, we 
considered two additional positional configurations: a bound ISRE just 
in the promoter and a bound ISRE just in the enhancer. For these two 
configurations, we used the absence of a STAT1, STAT2, or IRF9 peak to 
infer the absence of a bound ISRE (rather than the absence of a peak 
associated with an ISRE). Across cell types, greater than 43% of bound 
genes had a bound ISRE just in the enhancer, see the upper panel of 
Fig. 2. When we restricted genes to ISGs, bound ISREs in enhancer re-
gions were enriched, but a substantial percentage of bound ISREs were 
still found in enhancer regions, see lower panel of Fig. 2. 

3.2. ISRE Binding Patterns Across Cell Types 

We next considered the cell specificity of ISRE binding patterns. For 
mouse cell types, roughly 90% of bound ISRE in fibroblasts and B cells 
were bound in BMDM, while about 20% of BMDM bound ISRE were 
bound in the other two cell types. Fibroblast and splenic B cells shared 
about 25% of their bound ISRE, giving an overall picture of broad ISRE 
binding in BMDM with fibroblasts and splenic B binding reflecting 
different subsets of the ISRE bound in BMDM. Splitting bound ISRE by 
enhancer and promoter region, we found that 20% of bound ISRE in the 
enhancer region were shared across all three cell types while 60% of 
bound ISRE in the promoter region were shared. Overall, 578 and 312 
bound ISRE located in the enhancer and promoter regions, respectively, 
were shared across all three cell types. See Table 2 for more details. 

For human cell types, there was no cell type with a broader response 
than the other two. Instead, HeLa and K562 shared roughly 60% of their 
bound ISRE while THP1 shared 20% of bound ISRE with each of the 
other cell types. As in mouse cell types, bound ISRE in the enhancer 
region were shared across all cell types at a lower percentage than bound 
ISRE in the promoter region, 11% and 65% respectively. Overall, 51 and 
108 bound ISRE in the enhancer and promoter regions, respectively, 
were shared across all three cell types. The smaller number of shared 
bound ISRE relative to mouse likely reflects limitations in antibody 
sensitivity in the ChIPseq assays, as discussed above. 

We performed a GO ontology enrichment analysis ([60,61]) on genes 
with bound ISRE that were shared across cell types, splitting the analysis 

Fig. 1. Bound ISREs Were Most Dense Proximal to TSS, but Were Most 
Numerous Distal to TSS. Shown are the counts of bound ISRE in BMDM ac-
cording to the distance of the ISRE to the gene transcription start site (TSS). 
Other cell types had had similar distributions with 70% − 80% of bound ISRE 
distal to TSSs. 
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into genes with shared bound ISRE in promoter and enhancer regions, 
respectively; see Methods for details. For promoter regions, 169 genes 
had bound ISRE shared across all three mouse cell types. The three GO 
classes with the highest p-value were response to virus, defense response to 
virus, and response to interferon-beta and 33 of the 169 genes, 20%, were 
in the defense response to virus class. In contrast, 297 genes shared bound 
ISRE in the enhancer region and the three GO classes with the highest p- 
value were regulation of immune effector process, regulation of hemopoiesis, 
and regulation of chromatin binding. 15 of the 297 genes were in the de-
fense response to virus class, 5%, significantly less than what we found for 
promoter genes (p-value 5E-13). 

GO enrichment analysis for the human cell types gave similar results. 
Sixty genes shared bound ISRE in the promoter region with the top GO 
ontology classes of defense response to virus, response to virus, and response 
to type I interferon. 27 of 60 genes, 45%, were classified in the defense 
response to virus GO class. For the enhancer region, 29 genes shared 
bound ISRE in the enhancer region across cell types. The top three 
enriched GO classes were cellular response to type I interferon, type I 
interferon signaling pathway, and response to type I interferon. 5 of the 29 
genes, 17%, were in the defense response to virus, significantly less than 
for the promoter region (p-value 0.001). 

Overall, these results suggest a model in which binding of ISRE in 
promoter regions is largely conserved across cell types and associates 
with effectors of viral defense, while binding of ISRE in enhancer regions 
controls cell-specific components of the IFN response. 

3.3. ISRE Binding and Differential Expression 

To investigate the correlation between bound ISRE and ISGs, we 

downloaded transcription datasets collected under homeostasis and 
under IFN simulation and performed differential expression analysis to 
identify the ISGs (i.e. genes differentially expressed under IFN stimula-
tion) for each cell type, see Methods for details. BMDM had roughly 
1700 ISGs, consistent with the larger number of bound ISRE and the 
central role of BMDM in the innate response. The other cell types had 
roughly 400 ISGs, except for B cells, which had roughly 700, possibly 
reflecting a broader interferon response in immune cells. In mouse cell 
types, between 40% − 62% of ISGs were bound, i.e. had a bound ISRE 
within 100 kb of the TSS. In human cell types, the fraction was much 
lower, 9% − 15%, see Supplementary Table S5 for further details. In 
THP1, the already noted sensitivity issue may explain the small per-
centage, and lack of sensitivity may extend to the other cell types as well. 
That some ISGs were unbound may reflect bound ISRE missed by our 
analysis, particularly in the case of the human cell types, or interferon 
signaling pathways independent of ISGF3 components. 

To test for a significant correlation between ISRE binding and ISGs, 
we compared the fraction of genes that were ISGs under different po-
sitional configurations of bound ISRE. To deconvolve the contribution of 
bound ISRE in promoters and enhancer regions, we compared genes 
with no ChIP peaks to genes with a bound ISRE just in the enhancer, just 
in the promoter, and in the enhancer and promoter, respectively; see 
Fig. 3. Of genes with no peak, between 1% − 3% were ISGs, depending 
on the cell type. For all cell types except THP1, the percentage of genes 
that were ISGs rose as we moved from no peaks to a bound ISRE just in 
the enhancer to a bound ISRE just in the promoter to a bound ISRE in the 
enhancer and promoter. When a bound ISRE was just in the enhancer, 
2% − 12% of genes were ISGs, modestly above but statistically signifi-
cantly greater than the 1% − 3% seen in genes with no peak. When a 
bound ISRE was just in the promoter, 25% − 69% of genes were ISGs, 
significantly above the percentages for bound ISRE just in the enhancer. 
Relatively few genes had bound ISRE in the promoter and enhancer, 
limiting our statistical power. With that in mind, when a bound ISRE was 
in both promoter and enhancer, 33% − 100% of genes were ISGs, 
significantly greater than the percentage for just promoters in BMDM 
and fibroblast, but not the other cell types, possibly due to the small 
samples sizes. 

We next considered the association of STAT2, STAT2.IRF9, and 
STAT1.STAT2.IRF9 binding to ISRE with differential expression. In 
order to deconvolve binding of these difference peak combinations, we 
considered genes with a single bound ISRE, allowing us to associate a 
specific peak combination with differential expression. We necessarily 
restricted to cell types for which we had an IRF9 ChIP dataset, and we 
left out THP1 due to the sensitivity issues, leaving BMDM, HeLa and 
fibroblasts. 

When the bound ISRE was in the promoter region, the percentage of 

Fig. 2. In Most Genes, Bound ISRE Were Restricted to Enhancer Regions. (Upper panel) For each cell type, bars show (left to right) the fraction of bound genes 
with a bound ISRE in the promoter region, with bound ISRE just in the promoter region, with a bound ISRE in the enhancer region, and with a bound ISRE just in the 
enhancer region. (Lower panel) Same as the upper panel except that we restrict the genes to ISGs. 

Table 2 
ISRE Binding in Enhancer Regions Was More Cell Type Specific Than ISRE 
Binding in Promoter Regions. Shown are the fraction of bound ISRE shared in 
promoter regions (top tables) and enhancer regions (bottom tables) in mouse 
cell types (left tables) and human cell types (right table). The diagonal of each 
table gives the fraction of bound ISRE in the cell type that are also bound in both 
of the other two cell types. The off diagonals give the fraction of bound ISRE in 
the row cell type that are also bound in the column cell type. (FB = fibroblast).  

promoter BMDM FB B promoter HeLa K562 THP1 

BMDM 0.41 0.5 0.6 HeLa 0.54 0.9 0.55 
FB 0.97 0.79 0.8 K562 0.84 0.5 0.53 
B 0.88 0.61 0.6 THP1 0.92 0.97 0.92 
enhancer    enhancer    
BMDM 0.06 0.22 0.17 HeLa 0.09 0.43 0.11 
FB 0.89 0.23 0.24 K562 0.46 0.1 0.13 
B 0.88 0.32 0.31 THP1 0.17 0.18 0.14  
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genes that were ISGs rose sequentially as we considered STAT2, STAT2. 
IRF9, and STAT1.STAT2.IRF9 bound ISRE, respectively. Under STAT2 
binding, 5% − 12% of genes were ISGs, under STAT2:IRF9 binding, 
18% − 46%, and under STAT1:STAT2:IRF9 binding, 58% − 60%. When 
the bound ISRE was in the enhancer region, percentages also rose 
sequentially as we considered STAT2, STAT2.IRF9, and STAT1.STAT2. 
IRF9 ISRE classes, respectively, but overall the percentages were lower 
than when the binding was in the promoter region. See Supplementary 
Figure 1 for further details. 

Overall, our analysis shows a strong association between ISRE 
binding in the promoter region and differential expression under IFN 
stimulation. We also noted a significant, though weaker, association 
between ISRE binding in the enhancer regions and differential expres-
sion. However, the association between peaks and differential expres-
sion is weak or absent when we restrict to ISRE bound by STAT2, and 
weaker in ISRE bound by STAT2.IRF9 than ISRE bound by STAT1. 
STAT2.IRF9. STAT2 peaks may represents misclassifications of STAT2. 
IRF9 or STAT1.STAT2.IRF9 peaks. The inability of STAT2 to stably bind 
DNA in the absence of IRF9 supports this viewpoint [62]. In contrast, 
multiple reports support the existence of STAT2.IRF9 dimers that are 
functionally important and independent of STAT1 expression 
[21,23,24]. 

3.4. Predicting ISRE Binding from Homeostatic Chromatin State 

Given that ISRE binding patterns differed across cell types, we next 
asked whether a cell’s homeostatic chromatin state could be used to 
predict binding to ISRE under IFN stimulation. Since our analysis above 
suggested weak or non-functional binding when ISRE were associated 
with STAT2 peaks alone, for both mouse and human cell types we 
restricted our attention to ISRE associated with a STAT2 peak and either 
an IRF9 or STAT1 peak in at least one cell type. Over these ISRE, we 
asked if a cell type’s homeostatic chromatin state could be used to 
distinguish between bound and unbound ISRE under IFN stimulation. 
Importantly, all ISRE we considered were bound by multiple compo-
nents of ISGF3 in some cell type, so differences in ISRE binding reflected 
cell specific effects. We did not include THP1 cells in this analysis, given 
the poor sensitivity of ChIPseq data in THP1 cells mentioned above. 

To define a homeostatic state for an ISRE, we formed a 1010 base 
pair locus composed of the 10 base pair ISRE motif and the 500 base 
pairs upstream and downstream of the motif. To describe the homeo-
static, chromatin state associated with the ISRE loci, we collected 
ATACseq and H3K4ME1, H3K4ME3, and H3K27AC ChIPseq datasets for 
each of our cell types. All datasets were downloaded from GEO or 
ENCODE and were collected at homeostasis. For each dataset, we used 
MACS2 to build a signal (SPMR) over each of the 1010 base pair ISRE 

loci and we used these signals to define a homeostatic, chromatin state 
for each ISRE locus. 

To quantify the predictive capacity of the homeostatic state, we built 
binary classifiers to distinguish bound ISRE from unbound ISRE based on 
the chromatin state of the ISRE loci in the given cell type. To build 
classifiers using the homeostatic signals, we defined a set of 12 features 
(values) for each signal: the mean of the signal across the 1010 base pair 
of the ISRE locus and the fraction of the signal contained in eleven, 90 
base pair windows covering the locus (the windows did not include the 
10 base pairs on the far ends). We built binary classifiers to predict 
whether an ISRE was bound or unbound based on these features.. In all 
cases, we trained each classifier using half the relevant ISRE loci and 
used the other half to test prediction accuracy using the AUC measure. 
As we did above, we split our analysis based on whether the ISRE was in 
an enhancer or promoter region. We restricted our analysis to cell types 
with sufficient sample size to make AUCs greater than 0.55 statistically 
significant, see Methods for further details. 

Fig. 4 shows the SPMR signal of the different chromatin assays 
averaged across ISRE loci split by cell type, promoter or enhancer re-
gion, and whether the ISRE was bound or unbound. To normalize the 
signals, we scaled the signals so that a background collection of loci 
which served as a null had a mean signal of 0. For ISRE in enhancer 
regions, bound ISRE showed higher level of homeostatic, accessibility 
and greater modification levels for both H3K4ME1 and H3K27AC than 
the unbound ISRE. H3K4ME3 modifications were similar for bound and 
unbound ISRE in BMDM, fibroblast, and K562 cell types, but were 
higher in B and HeLa cells. Both bound and unbound ISRE showed 
higher levels of accessibility and H3K4ME1 and H3K27AC modifications 
than the background signal. In contrast to ISRE in enhancer regions, 
bound ISRE in promoter regions were not consistently different in their 
mean chromatin signals than unbound ISRE and both bound and un-
bound ISRE were not above background signal levels, with the single 
exception of H3K27AC in B cells. 

Fig. 5 gives AUC values for classifiers for bound vs unbound ISRE in 
enhancer regions using features from each chromatin assay separately 
and all chromatin assays jointly. (An AUC of 0.5 and 1.0 correspond to 
random assignment and perfect assignment, respectively). In line with 
the mean signals, prediction using H3K4ME3 was poor with AUC values 
of roughly 0.55 in BMDM, fibroblast, and K562 cell types, as would be 
expected for ISRE in enhancers, while prediction in B and HeLa cells was 
relatively good. Prediction using features from the other chromatin as-
says was more consistent. In all cell types except for fibroblasts, AUCs 
were roughly between 0.70 − 0.80 using H3K4ME1 or H3K27AC and 
between 0.75 − 0.90 using features across all chromatin assays. 

Since a substantial fraction of ISRE were bound in multiple cell types 
- as shown in Table 2 - the predictive capacity of homeostatic chromatin 

Fig. 3. Genes with Bound ISRE in Enhancer or 
Promoter Regions Were Significantly More 
Likely to be ISGs. For each cell type, bars show (left 
to right) the fraction of genes that are ISGs over (no 
peak) genes with no STAT1, STAT2, and IRF9 
ChIPseq peaks, (just enhancer) genes with a bound 
ISRE just in the enhancer region, (just promoter), 
genes with a bound ISRE just in the promoter re-
gion, and (enh and prom) genes with a bound ISRE 
in both the enhancer and promoter regions. Aster-
isks identify a statistically significant increase, at 
greater than 95% confidence, relative to the previ-
ous (bar to the left) frequency and configuration. 
(FB = fibroblast).   
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state could derive from a shared set of ISRE rather than ISRE that are 
bound in only certain cell types. To address this issue, we repeated our 
analysis but restricting bound ISRE to ISRE that were uniquely bound in 
the given cell type. Across all cell types, AUC values rose or stayed 
roughly constant when we considered cell specific, bound ISRE, see 
Supplementary Figure 2 for details. Fibroblasts, in particular, had a large 
increase of roughly 0.10 in AUC, suggesting that fibroblast specific, 
bound ISRE were in activated enhancers at homeostasis, while bound 
ISRE shared with other cell types were in enhancers activated under 

non-homeostatic conditions. 
As we did for ISRE in enhancer regions, we built classifiers for ISRE in 

promoter regions. AUCs for promoter regions were either roughly 
similar or lower than AUCs for enhancer regions, see Fig. 6. Using fea-
tures across all chromatin assays jointly, the AUC for HeLa cells fell to 
0.55, which is not significantly above random classification, but the AUC 
for BMDM, K562, and B cells stayed above 0.70, which is statistically 
significant, showing that even though mean signals were not above 
background in promoter regions, there were differences in the 

Fig. 4. In Enhancer But Not Promoter 
Regions, the Mean, Homeostatic Chro-
matin State Differed Between Bound and 
Unbound ISRE. Shown are the mean SPMR 
of bound (RED) and unbound (BLUE) ISRE in 
(A) enhancer and (B) the promoter regions. 
The signals are normalized relative to back-
ground loci. The status of an ISRE as bound 
and unbound was determined from assays 
collected under IFN stimulation while the 
chromatin signals were determined from as-
says collected at homeostasis.   

Fig. 5. Chromatin State at Homeostasis Predicts ISRE Binding Under IFN Stimulation At Significant Accuracy. (A) AUC values for classifiers using features 
from individual chromatin assays and using features jointly across all chromatin assays (chromatin). (B) ROC curves for the classifier using features jointly across all 
chromatin assays. AUC values greater than 0.55 are statistically significant. 

Fig. 6. Prediction Accuracy for ISRE in Promoter Regions Was Lower Than for ISRE in Enhancer Regions. AUC values for ISRE in promoter regions versus 
enhancer regions. All ATACseq and histone modification ChIPseq features were used for classification. 
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homeostatic chromatin state between bound and unbound ISRE. 
We next considered the capacity of STAT1, STAT2, and IRF9 binding 

at homeostasis to predict ISGF3 component binding under IFN stimu-
lation. In a manner analogous to our analysis of ATACseq and histone 
modification ChIPseq datasets above, we downloaded STAT1, STAT2, 
and IRF9 ChIP datasets collected at homeostasis for our cell types, used 
MACS2 to compute SPMR signals, and constructed classifiers based on 
SPMR signal features. For K562 cells, we did not have STAT1 and STAT2 
ChIPseq data at homeostasis. Instead, we had K562 STAT1 and STAT2 
ChIPseq datasets collected at 30 min post IFN stimulation, as opposed to 
the IFN stimulated datasets for K562 cells, which were collected at 6 h. 
See Supplementary Table S3 for dataset details. 

Fig. 7 shows the mean, homeostatic STAT1, STAT2, and IRF9 SPMR 
signals. In contrast to results for ATACseq and histone ChIPseq signals, 
mean signals of bound ISRE in enhancer and promoter regions were 
similar. The mean signals of unbound (under IFN stimulation) ISRE were 
essentially zero, even for K562 cells. The bound ISRE had positive mean 
signals in all cell types and both promoter and enhancer regions, except 
for the STAT1 signal. K562 signals were particularly elevated, reflecting 
the 30 min of IFN stimulation, but B cells also had elevated signals, 
suggesting that B cells were in a relatively IFN activated state even at 
homeostasis. 

Fig. 8 shows accuracy results for prediction of ISRE binding using the 
STAT1, STAT2, and IRF9 features jointly, using the chromatin features 
(i.e. ATACseq, H3K4ME1, H3K27AC, and H3K4ME3) jointly, as well as 
using both the STAT1, STAT1, IRF9 and chromatin features jointly. For 
ISRE in enhancer regions, prediction using STAT1, STAT2 and IRF9 
features in the case of K562 cells was almost perfect, > 0.95, as might be 
expected given the later sampling time. Somewhat surprisingly, 
although in line with the mean signal profiles, B cells prediction was also 
nearly perfect, > 0.95. However, putting aside the special case of K562 
cells, the chromatin state features were similar or better predictors of 
binding to ISRE under IFN stimulation than STAT1, STAT2, and IRF9 
features. In contrast, for promoter regions, STAT1, STAT2, and IRF9 
features were better predictors than the chromatin state. 

Interestingly, combining STAT1, STAT2, and IRF9 features with 
chromatin state features did not substantially improve AUC values 
relative to using these two feature groups separately. This lack of in-
crease in predictive capacity could reflect strong correlation between the 
features or non-linear effects that cannot be captured by linear pre-
dictors. We computed the correlation between our predictors using 
STAT1, STAT2, and IRF9 features and using chromatin state features, 
respectively. We found relatively low correlation levels, < 0.40. Further, 
we noted that many ISRE displayed high values of STAT1, STAT2, and 
IRF9 signals or chromatin state signals, but not both, suggesting a model 
in which some ISRE bound under IFN stimulation are bound by ISGF3 
components at homeostasis, while other ISRE are not bound by ISGF3 
components at homeostasis but instead have an activated chromatin 
state that leads to IFN stimulated binding. 

4. Discussion 

In this work, we examined ISRE binding signatures under type I IFN 
stimulation in six cell types. Within each cell type, bound ISREs were 
most dense in promoter regions, but most (70% − 80%) bound ISREs 
were more than 3 kb away from a TSS, in what we referred to as 
enhancer regions. Most genes (>60%) and a substantial percentage of 
ISGs (>25%) with bound ISREs had bound ISREs in their enhancer re-
gion. We further found that a substantial percentage of genes and ISGs 
(>40% and >10% respectively) with bound ISRE had their bound ISRE 
restricted to enhancer regions, although this result depends on ChIPseq 
sensitivity. We found that bound ISRE in promoters were shared across 
cell types at higher levels (41% − 92%) than in enhancers regions 
(6% − 31%). Overall, these results demonstrate that a substantial 
portion, if not a majority, of ISGF3 binding occurs on ISRE in enhancer 
elements. 

Presumably, ISREs function to induce or restrict expression of ISGs. 
In keeping with canonical models of ISG regulation, we found that 
25% − 69% of genes with bound ISRE in the promoter were ISGs, even in 
cases where bound ISRE were restricted to the promoter region. The role 
of enhancers in regulating ISGs is more subtle. Comparing genes with no 
bound ISRE within 100 kb of their TSS and genes with a bound ISRE just 
in the enhancer region, 1% − 3% and 5% − 11%, respectively, were ISGs, 
a relatively small effect though statistically significant. This small effect 
could be due to misclassification errors or a functionally weak contri-
bution to differential expression by ISRE in enhancer regions. Alterna-
tively, enhancer regulation may only take place in certain contexts 
beyond the presence of IFN stimulation, or the timing of differential 
expression may be delayed beyond the 2 − 6 hour window post stimu-
lation that we consider. Genes with a bound ISRE in the promoter and 
enhancer regions were more likely to be ISGs than genes with a bound 
ISRE just in the promoter region, suggesting that bound ISRE in 
enhancer and promoter regions work synergistically even within the 
first few hours of IFN stimulation. Overall, these results support a 
functional role for ISGF3 binding to ISRE in enhancer elements. 

Using homeostatic chromatin state features, which we constructed 
using ATACseq and histone modification ChIPseq datasets, we built 
classifiers to predict whether an ISRE was bound or unbound under IFN 
stimulation. For ISRE in both enhancer and promoter regions, our 
classifiers had significant predictive capacity, with AUCs roughly in the 
range 0.70 − 0.90. We found similar results when we restricted to ISRE 
that were bound only in a specific cell type. Interestingly, we found that 
the B cell, homeostatic state had particularly high predictive capacity, 
with an AUC of roughly 0.90. In fibroblasts, the homeostatic state had a 
higher predictive capacity for ISRE bound only in fibroblasts relative to 
ISRE bound in fibroblasts and other cell types. These results suggest a 
modulatory role for the homeostatic state in shaping the IFN response. 
We speculate that in B cells the homeostatic state allows for a quick 
response to IFN stimulation. In fibroblasts, a quick response might occur 

Fig. 7. In Enhancer and Promoter Re-
gions, the Mean, Homeostatic ISGF3 Sig-
nals Differed Between Bound and 
Unbound ISRE. Shown are the mean SPMR 
signals of bound (RED) and unbound (BLUE) 
ISRE loci in (A) enhancer and (B) the pro-
moter regions. An ISRE was bound or un-
bound based on STAT1, STAT2, and IRF9 
ChIPseq datasets collected under IFN stimu-
lation. Signals shown are from STAT1, 
STAT2, and IRF9 ChIPseq datasets collected 
under homeostasis. The exception are the 
K562 signals, which are from datasets 
collected 30 min after IFN stimulation.   
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in association with cell specific ISRE, but other ISRE that are bound 
during IFN stimulation might be associated with a slower response. 
Further datasets would be needed to explore these speculations. 

We used homeostatic STAT1, STAT2, and IRF9 ChIPseq datasets to 
explore the capacity of ISGF3 component binding at homeostasis to 
predict binding under IFN stimulation. For ISRE in enhancer regions, 
chromatin state at homeostasis was a similar or a better predictor than 
ISGF3 component binding, while in promoter regions ISGF3 component 
binding was a much better predictor than chromatin state. Interestingly, 
in enhancers, prediction based on chromatin state and homeostatic 
ISGF3 binding were not strongly correlated, suggesting a model in which 
some ISRE are at least weakly bound by ISGF3 at homeostasis, while 
others have an active chromatin state but require IFN stimulation to 
allow for binding. 

The main limitation of this work is the dependence on six STAT1, 
STAT2, and IRF9 ChIPseq datasets, one for each cell type. We used the 
STAT1, STAT2, and IRF9 ChIPseq datasets collected under IFN stimu-
lation to determine the bound ISRE, which in turn affected every other 
analysis we did. We cannot rule out that some of our results reflect the 
bias of a particular ChIPseq dataset. Further, more datasets would allow 
us to better investigate cell type specific differences. For example, pre-
diction for B cells was particularly accurate, but whether this was 
associated with the specific dataset or reflective of homeostatic regula-
tion in B cells is unclear. The relative scarcity of STAT1, STAT2, and 
IRF9 ChIPseq datasets, for example in the GEO and ENCODE databases, 
has been previously noted [63] and limited our analysis. 

Overall, we have shown that ISRE signatures both overlap and vary 
between cell types, reflecting cell type specificity in enhancer regions 
and a conserved antiviral response in promoter regions. We have shown 
that ISRE signatures correlate with ISG signatures, with bound ISREs in 
promoters strongly correlated with differential expression of ISGs and 
with bound ISREs in enhancers also correlating with differential 
expression, although more weakly. Finally, we have shown that chro-
matin state at homeostasis is predictive of ISRE binding under IFN 
stimulation. Together, these results support a significant role for 
enhancer elements in the IFN response and suggest that cell types 
modulate ISGF3 binding to ISRE through homeostatic pathways that 
shape chromatin state. 

Funding 

This research received no external funding. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

We are deeply indebted to the many groups that collected the 
datasets used in this study. In particular, this work would not have been 
possible without the BMDM, fibroblast, and THP1 data collected by 
Platanitis et al. in [24] and the HeLa data collected by Au-Yeung and 
Horvath in [33], and we thank T. Decker and E. Platanitis for answering 
our questions relating to their datasets. This work benefited from data 
assembled by the ImmGen consortium and the ENCODE consortium. 

Appendix A. Supplementary material 

Supplementary data associated with this article can be found, in the 
online version, at https://doi.org/10.1016/j.cytox.2021.100056. 

References 

[1] W.M. Schneider, M.D. Chevillotte, C.M. Rice, Interferon-stimulated genes: a 
complex web of host defenses., Annual review of immunology 32 (2014) 513–45. 
arXiv:NIHMS150003, doi:10.1146/annurev-immunol-032713-120231. http:// 
www.pubmedcentral.nih.gov/articlerender.fcgi? 
artid=4313732&tool=pmcentrez&rendertype=abstract. 

[2] A.H.H. van Boxel-Dezaire, J.A. Zula, Y. Xu, R.M. Ransohoff, J.W. Jacobberger, G. 
R. Stark, Major Differences in the Responses of Primary Human Leukocyte Subsets 
to IFN-β, J. Immunol. 185 (10) (2010) 5888–5899, https://doi.org/10.4049/ 
jimmunol.0902314. 

[3] S.W. Cho, J. Xu, R. Sun, M.R. Mumbach, A.C. Carter, Y.G. Chen, K.E. Yost, J. Kim, 
J. He, S.A. Nevins, S.F. Chin, C. Caldas, S.J. Liu, M.A. Horlbeck, D.A. Lim, J. 
S. Weissman, C. Curtis, H.Y. Chang, Promoter of lncRNA Gene PVT1 Is a Tumor- 
Suppressor DNA Boundary Element, Cell 173 (6) (2018) 1398–1412.e22, https:// 
doi.org/10.1016/j.cell.2018.03.068. URL https://doi.org/10.1016/j. 
cell.2018.03.068. 

[4] X. Wu, V.L. Dao Thi, Y. Huang, E. Billerbeck, D. Saha, H.H. Hoffmann, Y. Wang, L. 
A. Silva, S. Sarbanes, T. Sun, L. Andrus, Y. Yu, C. Quirk, M. Li, M.R. MacDonald, W. 
M. Schneider, X. An, B.R. Rosenberg, C.M. Rice, Intrinsic Immunity Shapes Viral 
Resistance of Stem Cells, Cell 172 (3) (2018) 423–438.e25. doi:10.1016/j. 
cell.2017.11.018. doi: 10.1016/j.cell.2017.11.018. 

[5] J. Zurney, K.E. Howard, B. Sherry, Basal expression levels of IFNAR and Jak-STAT 
components are determinants of cell-type-specific differences in cardiac antiviral 
responses., Journal of virology 81 (24) (2007) 13668–80. doi:10.1128/JVI.01172- 
07. http://www.ncbi.nlm.nih.gov/pubmed/17942530%0Ahttp://www. 
pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2168836. 

[6] F.J. Barrat, M.K. Crow, L.B. Ivashkiv, Interferon target-gene expression and 
epigenomic signatures in health and disease, Nat. Immunol. 20 (12) (2019) 

Fig. 8. For ISRE in Promoters But Not in Enhancers, STAT1, STAT2, and IRF9 ChIPseq Signals Collected at Homeostasis Were Better Predictors of IFN 
Stimulated Binding than Chromatin State. Shown are AUC values using the STAT1, STAT2, and IRF9 signals (ISGF3); the chromatin signals (chr); and the STAT1, 
STAT2, IRF9 and chromatin signals jointly (chr,ISGF3) for ISRE in enhancer and promoter regions. 

S. Leviyang                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.cytox.2021.100056
https://doi.org/10.4049/jimmunol.0902314
https://doi.org/10.4049/jimmunol.0902314
https://doi.org/10.1016/j.cell.2018.03.068
https://doi.org/10.1016/j.cell.2018.03.068


Cytokine: X 3 (2021) 100056

9

1574–1583, https://doi.org/10.1038/s41590-019-0466-2. URL https://doi.org/ 
10.1038/s41590-019-0466-2. 

[7] J.E. Darnell, I.M. Kerr, G.R. Stark, Jak-STAT pathways and transcriptional 
activation in response to IFNs and other extracellular signaling proteins, Science 
264 (5164) (1994) 1415–1421, https://doi.org/10.1126/science.8197455. 

[8] L.B. Ivashkiv, L.T. Donlin, Regulation of type i interferon responses, Nature 
Reviews Immunology 14 (1) (2014) 36–49. arXiv:NIHMS150003, doi:10.1038/ 
nri3581. doi: 10.1038/nri3581. 

[9] H.H. Ho, L.B. Ivashkiv, Role of STAT3 in type I interferon responses: Negative 
regulation of STAT1-dependent inflammatory gene activation, J. Biol. Chem. 281 
(20) (2006) 14111–14118, https://doi.org/10.1074/jbc.M511797200. 

[10] Y. Tanabe, T. Nishibori, L. Su, R.M. Arduini, D.P. Baker, M. David, Cutting Edge: 
Role of STAT1, STAT3, and STAT5 in IFN-αβResponses in T Lymphocytes, 
J. Immunol. 174 (2) (2005) 609–613, https://doi.org/10.4049/ 
jimmunol.174.2.609. 

[11] W.-B. Wang, D.E. Levy, C.-K. Lee, STAT3 Negatively Regulates Type I IFN-Mediated 
Antiviral Response, J. Immunol. 187 (5) (2011) 2578–2585, https://doi.org/ 
10.4049/jimmunol.1004128. 

[12] M.P. Gil, M.J. Ploquin, W.T. Watford, S.H. Lee, K. Kim, X. Wang, Y. Kanno, J. 
J. O’Shea, C.A. Biron, Regulating type 1 IFN effects in CD8 T cells during viral 
infections: Changing STAT4 and STAT1 expression for function, Blood 120 (18) 
(2012) 3718–3728, https://doi.org/10.1182/blood-2012-05-428672. 

[13] L. Icardi, S. Lievens, R. Mori, J. Piessevaux, L. De Cauwer, K. De Bosscher, 
J. Tavernier, Opposed regulation of type I IFN-induced STAT3 and ISGF3 
transcriptional activities by histone deacetylases (HDACS) 1 and 2, FASEB J. 26 (1) 
(2012) 240–249, https://doi.org/10.1096/fj.11-191122. 

[14] A. Yarilina, K.H. Park-Min, T. Antoniv, X. Hu, L.B. Ivashkiv, TNF activates an IRF1- 
dependent autocrine loop leading to sustained expression of chemokines and 
STAT1-dependent type I interferon-response genes, Nat. Immunol. 9 (4) (2008) 
378–387, https://doi.org/10.1038/ni1576. 

[15] S.L. Ng, B.A. Friedman, S. Schmid, J. Gertz, R.M. Myers, B.R. TenOever, T. 
Maniatis, IκB kinase ∊(IKK∊) regulates the balance between type I and type II 
interferon responses, Proceedings of the National Academy of Sciences of the 
United States of America 108 (52) (2011) 21170–21175. doi:10.1073/ 
pnas.1119137109. 

[16] S. Wienerroither, P. Shukla, M. Farlik, A. Majoros, B. Stych, C. Vogl, H.J. Cheon, G. 
R. Stark, B. Strobl, M. Müller, T. Decker, Cooperative Transcriptional Activation of 
Antimicrobial Genes by STAT and NF-κB Pathways by Concerted Recruitment of 
the Mediator Complex, Cell Reports 12 (2) (2015) 300–312, https://doi.org/ 
10.1016/j.celrep.2015.06.021. 

[17] L.B. Ivashkiv, IFNγ: signalling, epigenetics and roles in immunity, metabolism, 
disease and cancer immunotherapy, Nat. Rev. Immunol. 18 (9) (2018) 545–558, 
https://doi.org/10.1038/s41577-018-0029-z. URL https://doi.org/10.1038/ 
s41577-018-0029-z. 

[18] S.E. Hartman, P. Bertone, A.K. Nath, T.E. Royce, M. Gerstein, S. Weissman, 
M. Snyder, Global changes in STAT target selection and transcription regulation 
upon interferon treatments, Genes and Development 19 (24) (2005) 2953–2968, 
https://doi.org/10.1101/gad.1371305. 

[19] G. Robertson, M. Hirst, M. Bainbridge, M. Bilenky, Y. Zhao, T. Zeng, G. Euskirchen, 
B. Bernier, R. Varhol, A. Delaney, N. Thiessen, O.L. Griffith, A. He, M. Marra, 
M. Snyder, S. Jones, Genome-wide profiles of STAT1 DNA association using 
chromatin immunoprecipitation and massively parallel sequencing, Nat. Methods 4 
(8) (2007) 651–657, https://doi.org/10.1038/nmeth1068. 
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