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Abstract

In macroscopic dynamic models of fermentation processes, elementary modes (EM)

derived from metabolic networks are often used to describe the reaction stoichiometry

in a simplified manner and to build predictive models by parameterizing kinetic rate

equations for the EM. In this procedure, the selection of a set of EM is a key step which

is followed by an estimation of their reaction rates and of the associated confidence

bounds. In this paper, we present a method for the computation of reaction rates of

cellular reactions and EM as well as an algorithm for the selection of EM for process

modeling. The method is based on the dynamic metabolic flux analysis (DMFA) pro-

posed by Leighty and Antoniewicz (2011, Metab Eng, 13(6), 745–755) with additional

constraints, regularization and analysis of uncertainty. Instead of using estimated up-

take or secretion rates, concentration measurements are used directly to avoid an

amplification of measurement errors by numerical differentiation. It is shown that the

regularized DMFA for EM method is significantly more robust against measurement

noise than methods using estimated rates. The confidence intervals for the estimated

reaction rates are obtained by bootstrapping. For the selection of a set of EM for a

given st oichiometric model, the DMFA for EM method is combined with a multi-

objective genetic algorithm. The method is applied to real data from a CHO

fed‐batch process. From measurements of six fed‐batch experiments, 10 EM were

identified as the smallest subset of EM based upon which the data can be described

sufficiently accurately by a dynamic model. The estimated EM reaction rates and their

confidence intervals at different process conditions provide useful information for the

kinetic modeling and subsequent process optimization.
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1 | INTRODUCTION

For model‐based optimization of fermentation processes, for ex-

ample, for process design or control, simple dynamic models which

are accurate enough to predict the process behavior under varying

conditions are needed (Frahm et al., 2002; Neddermeyer, Rossner, &

King, 2015; Teixeira, Alves, Alves, Carrondo, & Oliveira, 2007).

Essential elements of models of fermentation processes are the

stoichiometry of the biochemical conversion and the dependency of

the reaction rates on the process conditions. The metabolism of the

cells is very complex and comprises hundreds of chemical reactions, so

that it is infeasible to derive rate equations for all these reactions. For

the derivation of efficient models—efficient meaning sufficiently ac-

curate with predictive capabilities but not overly complex—the usage

of small metabolic networks at steady state (Nolan & Lee, 2011) or

selections of elementary modes (EM) as macro reactions (Gao,

Gorenflo, Scharer, & Budman, 2007; Provost, 2006; Soons, Ferreira, &

Rocha, 2011; Teixeira et al., 2007) have been shown to be a powerful

approaches. EM are calculated from a metabolic network and there-

fore provide a physiologically meaningful abstraction of the metabo-

lism without the need of including dynamic intracellular mass balances

and reaction kinetics. Formal kinetics or black‐box models like multi-

layer perceptron networks (MLP) can then be used to model the de-

pendency of the reaction rates of the EM on the process conditions or

on the concentrations of species in the reactor.

Alternative modeling approaches use empirical qualitative reac-

tion schemes as macro reactions and fit the corresponding stoichio-

metric coefficients to data (Herold & King, 2014; Mailier &

Wouwer, 2009). The complexity of these models is comparable with

the complexity of models which use EM as macro reactions, as internal

balances and reactions are lumped onto a few macroscopic pathways.

However, physiological constraints as, for example, balances of inter-

nal components, energy carriers, or redox‐species cannot be taken into

account and available biological knowledge is neglected.

For the generation of models that are based on EM it is neces-

sary to (a) select a set of EM from a usually large number of possible

EM and (b) select and fit kinetics for each of the reactions in the set.

Previously published methods for the selection of EM use esti-

mated uptake or secretion rates. Soons et al. (2010) use a controlled

random search algorithm to find the best set of EMwhich minimizes the

difference to the estimated rates, and Abbate et al. (2019) link the

number of reactions to the fraction of the explained variance

in the estimated rates by comparing eigenvalues of a SVD decomposi-

tion. The subset is then found by solving a linear optimization problem.

In both approaches, the trade‐off between the size of the set of EM and

the accuracy of the representation of the estimated rates is exploited.

For the selection and fitting of kinetics, estimates of the cell‐
specific EM reaction rates are needed. Several algorithms that have

been proposed for this analysis use measured cell‐specific fluxes of

medium components (Poolman, Venkatesh, Pidcock, & Fell, 2004;

Schwartz & Kanehisa, 2006).

A disadvantage of these algorithms for the selection of the EM

and the estimation of their reaction rates is that the estimation of the

cell‐specific uptake or secretion rates has to be carried out first. This

implies that derivatives of concentrations have to be computed in the

first step, and, as the data is usually significantly corrupted by mea-

surement errors, the resulting rates show large fluctuations as the

derivation amplifies the errors.

In this paper, we present methods for the analysis and selection of

EM for process modeling where measurement data is used directly: A

method for the analysis of EM reaction rates is presented which is

based on the approach for dynamic metabolic flux analysis (DMFA) by

Leighty and Antoniewicz (2011) for the computation of internal flux

distributions of a metabolic network. This method was not developed

for the analysis of EM, but, as will be shown, it can be used for this

purpose as well. The advantage of the approach by Leighty and Anto-

niewicz (2011) is that random noise in the measurements is attenuated

by solving a linear optimization problem such that smoothing and nu-

merical differentiation is not necessary. The method from Leighty and

Antoniewicz (2011) is extended in this paper by the following elements:

• Additional linear constraints are included so that the fluxes are

estimated taking into account the irreversibility of certain reactions.

• For large sets of reactions, the objective which was proposed in

the approach of Schwartz and Kanehisa (2005) is considered in the

objective of the DMFA method as a regularization term.

• The propagation of the measurement errors to the computed rates

is obtained by bootstrapping.

It is shown that the regularized DMFA for EM method is more

robust against measurement noise than other methods which are

based upon the estimation of cell specific fluxes and that tuning of

the algorithm is straightforward by using cross‐validation.
The selection of a subset of EM which are suitable for dynamic

process modeling is determined by the following procedure:

(1) Before the EM are analyzed, the original DMFA problem with

additional constraints to account for the irreversibility of certain

reactions provides the best possible fit for a given metabolic net-

work and therefore can be used as a benchmark. A suitable se-

lection of EM should exhibit a comparable fit to the data. If the

quality‐of‐fit is sufficient, the selection of EM can be carried out,

otherwise essential reactions in the metabolic network are missing.

(2) A first reduction is carried out by means of geometrical reduction

in which geometrically similar EM are discarded from the possi-

bly large set of possible EM.

(3) For a further reduction, a multiobjective genetic algorithm (GA) is

used together with the DMFA for EM method. The two objectives

of the multiobjective GA are to optimize the fit of the predictions

to the measured data and to minimize the size of the employed

subset of the EM To explore the trade‐off between a good fit to

the data and a low number of EM which is preferable because it

reduces the model complexity.

After a set of EM has been found, the pdf of the corresponding EM

reaction rates over time at different process conditions can be
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evaluated by a bootstrap method in which the estimation is repeated

with resampled measurements. This information is useful for selecting

and fitting kinetic expressions of the reactions by statistical methods. A

quantification of the uncertainty of the estimated cell‐specific rates is

necessary as the magnitude of this uncertainty varies considerably

during the course of a fermentation process. Figure 1 gives a graphical

overview about the different steps of our modeling procedure.

Some elements of this procedure were already published pre-

sented in (Hebing, Neymann, Thüte, Jockwer, & Engell, 2016). This

contribution extends this study by (a) adding regularization to the

DMFA for EM problem, (b) adding linear constraints to the original

DMFA approach, (c) showing how the bounded DMFA method can be

used for the evaluation of a metabolic network, and (d) calculating

confidence intervals of the specific reaction rates.

The selection and analysis of EM from a small metabolic network

is demonstrated in Section 4 with real data from a CHO cultivation

fed‐batch process under varying conditions based on an extended

metabolic network from Nolan and Lee (2011). The selection and

fitting of the kinetic equations based on these estimates is only

sketched, as this is beyond the scope of this contribution.

2 | THEORY

In this section, a short introduction of the original DMFA method by

Leighty and Antoniewicz (2011) (which we will call unbounded DMFA)

and the related new formulations (bounded DMFA and DMFA for EM)

is given. Furthermore, the evaluation of the confidence intervals of

the DMFA estimates and the regularization are explained.

2.1 | Dynamic metabolic flux analysis

The differential equations that govern the evolution of the con-

centrations of the species in the reaction medium in a batch process

(i.e., without addition or removal of substances from the reaction

volume) can be calculated from the time‐dependent vector of fluxes
in the metabolic network, tν

¯
( ):

dc
dt

P t X t
_

_ ,vν= ⋅ ( ) ⋅ ( ) (1)

where P is the (external) stoichiometric matrix, tν
¯
( ) the cell‐specific

flux vector, and X tv ( ) is the concentration of viable cells. The volu-

metric flux vector t
¯
( ) is:

t t X t_ _ .vν( ) = ( ) ⋅ ( ) (2)

The evolution of the concentrations of the species inside the

cell can also be calculated from the time‐dependent fluxes in the

metabolic network, tν
¯
( ). The steady state assumption for the in-

ternal metabolites in metabolic flux analysis (MFA) postulates

that the derivatives of the internal concentrations are zero.

This results in a, usually under‐determined, system of linear

equations:

N t_ 0,⋅ ( ) = (3)

where N is the (internal) stoichiometric matrix. Under this assump-

tion, t_ ( ) can be calculated from volumetric rates of the so‐called
free fluxes U t

¯
( ):

t K U t_ _ ,( ) = ⋅ ( ) (4a)

K Nnull ,= ( ) (4b)

where null(N) denotes thatN K 0⋅ = . All fluxes which satisfy Equation (4)

fulfill the steady state assumption for the internal metabolites.

Leighty and Antoniewicz (2011) assume that the volumetric free

fluxes U t
¯
( ) are piece‐wise linear over time between inflection points Tj,

F IGURE 1 Overview of the steps for the selection and analysis of EM for process modeling. After a metabolic network has been chosen, the

possible quality‐of‐fit can be tested using the bounded DMFA method. If this fit is sufficient, a selection of EM from this network can be performed
using the geometrical reduction and the multiobjective genetic algorithm. The reaction rates of the selected set of EM and their confidence intervals
are then obtained from the DMFA for EM method with bootstrapping. To obtain a dynamic model, kinetic equations are finally fitted to the estimates

of the reaction rates. DMFA, dynamic metabolic flux analysis; EM, elementary modes [Color figure can be viewed at wileyonlinelibrary.com]
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such that Equation (1) has a simple analytic solution. The values ofU Tk j( )

can then be determined by solving the unbounded DMFA problem (5):

SSRmin ,
U T U T, .1 1 1 2( ) ( )…

(5)

where sums of squared residuals (SSR) is the sim of squared

residuals:

SSR
c t c t

t
.

i

n

j

n
i
m

j i j

i j1 1

2c t

σ
∑∑⎜ ⎟= ⎛

⎝

( ) − ˆ ( )

( )
⎞

⎠= =

(6)

Each c ti jˆ ( ) in Equation (6) can be computed as a linear combi-

nation of the estimated fluxes U Tk j( ). The number of inflection points

is usually chosen manually according to the expected profiles of the

volumetric rates which are computed by this method.

In general, the resulting estimation problem is over‐determined

and the estimated concentration profiles c ti jˆ ( ) therefore are

smoothened and the influence of the measurement noise is averaged

out to a certain extent. The smoothing of the estimated concentra-

tion profile is a consequence of the limited flexibility of the assumed

piece‐wise linear volumetric reaction rates. For further details, the

reader is referred to Leighty and Antoniewicz (2011).

In the bounded DMFA problem, constraints for certain internal

fluxes that are non‐negative due to the irreversibility of the corre-

sponding reactions _ irr are taken into account:

SSRmin .
U T U T, .1 1 1 2( ) ( )…

(7a)

s.t.

T K U T_ _ 0.irr j Irr j( ) = ⋅ ( ) ≥ (7b)

All fluxes which are calculated from Equations (4) and (127) fulfill

the steady state assumption and the irreversibility constraints.

The (volumetric) fluxes t
¯
( ) which fulfill the steady state as-

sumption and irreversibility constraints can also be expressed as a

non‐negative linear combination of reaction rates of EM, assembled

in the vector R t
¯
( ) (Schuster & Hilgetag, 1994):

t E R t_ ,( ) = ⋅
¯
( ) (8)

where E is the elementary mode matrix. The profile of the (volumetric)

EM reaction rates over time R t
¯
( ) is obtained by solving the DMFA for

EM problem (9):

SSRmin .
R T R T, .1 1 2( ) ( )…

(9a)

s.t.

R T k n j n0, 1, , , 1, , ,k j r T( ) ≥ ∀ ∈ { … } ∀ ∈ { … } (9b)

where R Tk j( ) is the value of the (volumetric) reaction rate of EM k at

the inflection point Tj, nr is the number of EM and nT the number of

inflection points. Each c ti jˆ ( ) can be computed as a linear combination

of all estimated quantities R Tk j( ). The cell‐specific reaction rates r t
¯
( )

can be obtained from the volumetric rates R t
¯
( ) by:

r t
R t
X t

.k
k

v
( ) =

( )

( )
(10)

2.2 | Regularization: Minimizing the norm of the
specific reaction rates

For large sets of EM, the solution of the estimation problem (9) may

lead to ill‐conditioned problems, so that even large changes in R Tk j( )

result in only small changes of the value of the objective function, as

many EM with a similar stoichiometry exits. To overcome this pro-

blem, a penalty term is added to the cost function:

SSR
R T

X T
min ,

R T R T
k j

k j

v j, .

2

1 1 2

α ∑∑⎜ ⎟+ ⋅ ⎛

⎝

( )

( )
⎞

⎠( ) ( )…
(11)

where Xv is the concentration of viable cells and α is a scalar

weighting factor which optimal value is found by cross‐validation.
With this additional term, the L2‐norm of the cell‐specific rates is

penalized. Penalizing cell‐specific rates is preferred over penalizing

volumetric rates as unwanted and unrealistic behavior on the cellular

level is less likely to occur. Otherwise, unrealistically high cell‐specific
rates might be obtained from the DMFA for EM method in the be-

ginning or at the end of a process where the concentration of viable

cells is low. This criterion is also used by Schwartz and Kanehisa

(2005) for the estimation of EM reaction rates.

2.3 | Confidence intervals by resampling of
measurements

Classical methods for the estimation of confidence intervals like the

Cramer‐Rao lower bound are problematic in systems with many para-

meters fromwhich a fewmight be unobservable, which can happen in the

DMFA method when a large number of reactions are involved. Ad-

ditionally, constraints on the reaction rates cannot be taken into account.

We therefore propose to use a bootstrap method instead. Here, the

measurements are resampled from their expected probability density

functions. Often, the probability density functions of the measurements

can be assumed to be Gaussian distributed and the variances can be

estimated or are available from sensor data. Alternatively, these un-

certainties can be estimated by a maximum likelihood estimator.

The estimation of the reaction rates with the DMFA method can

then be repeated using the sampled data. However, two major

changes have to be made to get rid of the estimation bias by the

DMFA method:

• The position of the inflection time‐points Tj must be randomized.

• The regularization coefficient α must be zero or small such that

numerically ill‐conditioned estimations can be carried out without

strongly influencing the result.

From the sampled estimates of the reaction rates and their

confidence intervals are obtained.
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2.4 | Choice of a subset of EM

The different variants of the DMFAmethod can be used to identify a set

of active EM directly from measurement data and thus enable the

modeler to select a suitable subset of EM for a dynamic process model.

The two DMFA problems bounded DMFA and DMFA for EM for

the complete set of EM are both based on the steady state assumption

for the internal metabolites and take the irreversibility of reactions

into account. The minimum SSR, which can be calculated from

Equations (7) and (9) therefore are equal if the complete set of EM is

used. When some EM are removed from the complete set, the cor-

responding columns in E and elements of R (Equation (8)) are deleted

and the calculated SSR will increase. So the SSR value from the

solution of the bounded DMFA provides a lower bound which is only

dependent on the assumed metabolic network. Choosing a subset of

EM will lead to a higher SSR value, that is, a worse fit to the mea-

surement data. If the results from the bounded DMFA are not

sufficiently accurate, a modification of the metabolic network should

be considered before a subset of EM is chosen.

For the selection of a subset for a process model, two algorithms

are proposed:

(1) A geometrical reduction, which discards similar EM from the

original set based on their cosine similarity. This algorithm can be

used for a preliminary reduction if the initial number of EM is

very large. The SSR value which is calculated using the DMFA for

EM method can be used to ensure that no significant EM is re-

moved. The algorithm is described in the appendix.

(2) A multiobjective GA which considers as objectives the SSR value

and the number of EM in the set.

The degrees of freedom which the GA optimizes are binary de-

cision variables iξ for each EM. The variable iξ determines whether

the corresponding EM is part of the subset or not. For each selected

F IGURE 2 True reaction rates of all EM and estimations with the Poolman, Soons and DMFA for EM methods with interpolation and
filtering steps. For this example, the variance of the Gaussian noise was chosen such that the 95% confidence interval equals 5% of the
magnitude of the measurements. DMFA, dynamic metabolic flux analysis; EM, elementary modes [Color figure can be viewed at
wileyonlinelibrary.com]
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subset, problem (9) is solved using a linear solver to obtain the

corresponding SSR value. The optimization problem can be written

formally as:

SSRmin , .iξ
ξ
{ }∑

¯

(12)

The resulting Pareto front describes the SSR which results from an

optimized selection of EM as a function of the cardinality of the set of

EM. The Pareto front helps the modeler to decide how many EM are

necessary to capture the measured behavior of the process with an ac-

ceptable model error. The SSR value approaches the SSR value of the

bounded DMFA problem when the number of EM in the subset increases.

Thus, before any kinetic expression is fitted, the SSR value of the

resulting sets of EM give an indication of the expected quality‐of‐fit
and of the complexity of the process model which is based on this set

of reactions. Practically, one will search for the lowest number of EM

which still provide a desired fit to the data.

3 | SIMULATION STUDY: EM ANALYSIS
USING NOISY CONCENTRATION DATA

In this simulation study, the capability of predicting reaction rates of

EM from noisy concentration measurements is tested. We compare

the DMFA for EM method that was presented above with other

commonly used techniques that are based on the analysis of cell‐
specific uptake or secretion rates, namely Poolman et al. (2004) and

Soons et al. (2011). As the estimation method of these cell‐specific
rates from time‐series of noisy concentration measurements plays a

significant role in the analysis, several combinations for smoothing,

interpolation, and filtering are also tested.

A small metabolic network with known kinetic terms was used to

generate artificial measurement data of a fed‐batch process at different

levels of measurement noise. The complete model, the chosen boundary

conditions and the estimation methods are described in the appendix.

Figure 2 shows all estimated reaction rates together with the

real reaction rates of the EM.

It can be seen that either smoothing or filtering is necessary to

obtain good estimates when the Poolman or the Soons methods are

used. The choice of the interpolation and filtering method which is

used for calculating the specific rates has a significantly higher im-

pact on the result than the estimation method itself. Table 1 shows

the average approximation error at different levels of measurement

noise. It can be seen that the estimations from the regularized DMFA

for EM method are more accurate in the presence of realistic mea-

surement noise. However, in the absence of noise the estimation is

worse due to the lower flexibility of the piece‐wise linear volumetric

rates.

TABLE 1 Average reconstruction error r rtrueˆ − of different estimation methods for EM reaction rates r̂ at different levels of simulated

measurement noise

    measurement noise level 
Method Interpolation Filtering 0% 2.5% 5% 7.5% 10% 12.5% 15%   

Poolman 

splines 
none 0.10 0.22 0.36 0.47 0.59 0.69 0.81 

A
ve

ra
ge

 re
co

ns
tru

ct
io

n 
er

ro
r |

̂
|

MA (30h) 0.06 0.12 0.23 0.32 0.43 0.52 0.63 
MA (90h) 0.07 0.12 0.22 0.31 0.41 0.49 0.59 

smoothing 
splines (low 
tol.) 

none 0.10 0.20 0.29 0.37 0.47 0.55 0.63 
MA (30h) 0.06 0.11 0.18 0.25 0.33 0.40 0.48 
MA (90h) 0.07 0.11 0.18 0.23 0.31 0.38 0.45 

smoothing 
splines (high 
tol.) 

none 0.10 0.19 0.28 0.46 0.58 0.75 0.57 
MA (30h) 0.06 0.10 0.17 0.31 0.41 0.60 0.41 
MA (90h) 0.07 0.10 0.17 0.29 0.38 0.53 0.39 

Soons 

splines 
none 0.10 0.20 0.31 0.40 0.51 0.59 0.69 

MA (30h) 0.06 0.10 0.19 0.26 0.36 0.43 0.51 
MA (90h) 0.07 0.11 0.18 0.25 0.34 0.40 0.48 

smoothing 
splines (low 
tol.) 

none 0.10 0.18 0.26 0.33 0.41 0.48 0.55 
MA (30h) 0.06 0.09 0.15 0.21 0.28 0.33 0.39 
MA (90h) 0.07 0.09 0.15 0.20 0.26 0.31 0.37 

smoothing 
splines (high 
tol.) 

none 0.10 0.18 0.25 0.39 0.49 0.62 0.49 
MA (30h) 0.06 0.09 0.14 0.25 0.33 0.48 0.34 
MA (90h) 0.07 0.09 0.14 0.24 0.31 0.42 0.32 

DMFA for EM 0.20 0.15 0.15 0.16 0.17 0.20 0.21 
regularized DMFA for EM 0.20 0.06 0.06 0.06 0.06 0.06 0.06 

Note: The calculation of specific rates is carried out using different interpolation (splines, smoothing splines)‐ and filtering methods (MA =moving average

filter). No smoothing and filtering is employed for the DMFA for EM method. More details are described in the appendix.
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TABLE 2 Reactions of the reduced metabolic network from Nolan and Lee (2011), extended as described. Components which are written in
red are extracellular

Reaction no. Stoichiometry
(1) G6P →2 PYR + 3 ATP + 2 NADHcyt 
(2) PYR + NADHcyt ↔ LAC 
(3) PYR + GLU ↔ ALA + AKG 
(4) PYR →AcCoA + CO2int + NADH 
(5) AcCoA + OXA → AKG + CO2int + NADH 
(6) AKG → Succ + CO2int + NADH + ATP 
(7) Succ → MAL + FADH2

(8) MAL → OXA + NADH 
(9) 2 AcCoA → Succ + NADH 
(10) MAL → PYR + CO2int 
(11) GLN ↔ GLU + NH3

(12) AKG + NH3 + NADH ↔ GLU 
(13) ASN ↔ ASP + NH3

(14) ASP + AKG → OXA + GLU 
(15) SER + CO2int + NH3 + NADHcyt ↔ 2 GLY 
(16) NADH + 0.5 O2int → 2.5 ATP 
(17) FADH2 + 0.5 O2int → 1.5 ATP 
(18) 0.084 ALA + 0.041 ASN + 0.080 ASP + 8.68 ATP + 0.026 CYS + 0.452 G6P + 

0.087 GLN + 0.056 GLY + 0.427 OXA + 0.096 SER → + 0.004 FADH2 + 0.008 
GLU + 0.445 MAL + 0.639 NADH + 0.209 PYR

(19) 0.061 ALA + 0.034 ASN + 0.039 ASP + 9.2 ATP + 0.024 CYS + 0.084 GLU + 0.045 
GLN + 0.072 GLY + 0.126 SER → mAb

(20) GLNpp → GLN + ATP 
(21) ATP →
(22) NADH →
(23) NADHcyt →
(24) →
(25) mAb → mAb
(26) Glc + ATP → G6P 
(27) LAC ↔ Lac
(28) ALA ↔ Ala
(29) ASN → Asn
(30) ASP ↔ Asp
(31) GLN ↔ Gln
(32) GLY ↔ Gly
(33) Ser → SER 
(34) NH3 → Amm
(35) O2 → O2int 
(36) CO2int → CO2

(37) Cys → CYS 
(38) GLU ↔ Glu
(39) NADHcyt → 0.5 NADH + 0.5 FADH2

(Death) →
(Lysis) →

Note: Components which are written in red are extracellular.
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4 | REAL WORLD EXAMPLE: EM SELECTION
AND ANALYSIS USING EXPERIMENTAL CHO
FED‐BATCH FERMENTATION DATA

The concept for the choice of an EM reaction set was applied to data‐
sets from six fed‐batch fermentations of a CHO culture. One experi-

ment was excluded from this procedure and used as a validation data

set for the model which was built using the chosen set of EM and fitted

to the other five data sets. For brevity, we will show only three of the

remaining five experiments in the following which represent the most

“extreme” responses of the process to different set‐points for the pH

value and glucose levels. Measurements of the viable cell density (Xv),

the total cell density, concentrations of the components of the medium,

and dissolved oxygen‐sensor information were available and used. For

confidentiality reasons, not more details can be given and not all mea-

sured components can be shown in the following.

4.1 | Metabolic network

For the calculation of pseudo‐batch data from the fed‐batch mea-

surements, the influence of the liquid feed as well as the mass‐
transfer over the gas‐liquid phase boundary were compensated ac-

cording to the shifting method which is described in the appendix.

F IGURE 3 Measured data of different medium concentrations of one data set with the profiles of the estimated concentrations ĉ which
were generated using the bounded DMFA (in blue, left column) and unbounded DMFA (in red, right column) methods. The color shadings refer to
the 95% and the 68% confidence bounds and the median of all estimations after 500 resamples of the measurements (cf. Section 2.3). The
estimated evolutions of the concentrations do not differ much, but from the evolution of mAb and Amm it can be seen that flux bounds bounds

are useful for the reduction of the confidence bounds as the uptake of these substances is ruled out in the bounded DMFA. DMFA, dynamic
metabolic flux analysis [Color figure can be viewed at wileyonlinelibrary.com]
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The metabolic network from which the EM were calculated was

taken from Nolan and Lee (2011) and extended by the glyoxylate‐
cycle and a maintenance reaction in which ATP is consumed. The

network reactions are listed in Table 2.

Before the EM analysis and the choice of an EM subset, it was

determined how well the network can explain the evolutions of the

concentrations in the measured data. With the methods unbounded

DMFA (5) and bounded DMFA (7), the fluxes of the reactions in the

F IGURE 4 Estimated reaction rates of eight chosen reactions from the metabolic network obtained using the bounded DMFA (in blue) and

unbounded DMFA (in red) methods for the data of one CHO fermentation fed‐batch experiment. The color shadings refer to the 95% and the 68%
confidence bounds and the median of all estimations after 500 resamples of the measurements (cf. Section 2.3). Although the estimated
concentrations ĉ are similar in the unbounded and bounded estimations, the differences in the estimated rates are quite large for some intracellular

reactions. The major reason for this is the reversibility of the death rate in the unbounded DMFA method which also leads to lower reaction rates in
anaplerotic reactions in the TCA cycle. The low concentration of the biomass Xv in the beginning of the process leads to larger confidence bounds of
the rates at these time‐points. DMFA, dynamic metabolic flux analysis [Color figure can be viewed at wileyonlinelibrary.com]
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network and their confidence intervals were estimated by minimizing

the difference between the estimated concentration profile and the

(resampled) measured data (cf. Section 2.3).

Figure 3 shows the fit to the data of one experiment for four out of

10 different concentration profiles. Figure 4 shows the estimated

reaction rates from eight chosen reactions of the metabolic network. It

can be seen that the irreversibility of some reactions is violated when

the unbounded DMFA method is used which leads to unrealistic results.

The quality‐of‐fit of the bounded DMFA method determines how

well the measured concentration profiles can be expressed by any

selection of EM of the network. As this quality‐of‐fit is satisfactory,

the EM analysis and the selection of a subset of EM were carried out.

4.2 | Identifying the set of active EM

Using the metatool‐software (Pfeiffer, Nu, Montero, & Schuster, 1999),

more than 18,000 EM were calculated from the network. With the

geometrical reduction technique, based on the cosine similarity (cf.

chapter 2.4), this number was first reduced. The resulting approximation

errors for the different EM selections are shown in Figure 5. The tol-

erance value in the geometrical reduction was set to 1% of the initial

SSR. With <100 EM this tolerance value is exceeded. It can be seen that

a further reduction of the set of EM below 100 would lead to an sig-

nificant increase of the SSR when the geometrical reduction is used.

The multiobjective GA, described in Section 2.4, was then used

to generate optimal selections of EM on the Pareto front between

the approximation quality (SSR) over the number of EM. In each

evaluation of the objective function of the multiobjective GA, the

DMFA for EM method was used for all experiments. The number of

F IGURE 5 Pareto front of the size of the optimized EM subsets
and the corresponding optimized SSR values. The red lines indicate

the SSR values which were obtained by solving the unbounded‐
and bounded DMFA problems. The SSR values for different EM
subsets approaches the SSR value of the bounded DMFA with an

increasing number of EM in the set. DMFA, dynamic metabolic flux
analysis; EM, elementary modes; SSR, sums of squared residuals
[Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 6 Measured data of four different medium concentrations of one experiment of the CHO fermentation with the profiles of the
estimated concentrations ĉ which were generated by the DMFA for EMmethod using different EM subsets from the Pareto front of Figure 5. The
sizes of the subsets are: 1, 3, 6, 10, 29. Additionally, the death‐rate was also included. DMFA, dynamic metabolic flux analysis; EM, elementary

modes [Color figure can be viewed at wileyonlinelibrary.com]
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inflection points was set to 5. Figure 5 shows the calculated SSR

values for different reduced sets of EM together with the SSR of

the unbounded and bounded DMFA problem for the training data. In

this study, the MATLAB® implementation gamultiobj was used in

which the NSGA‐II algorithm is utilized. Custom mutation and

crossover functions were created to account for the binary vari-

ables iξ (Equation (12)). The computation time of the GA was

approximately 4 hours on an Intel four core i7 desktop computer

with 2.67 GHz.

The SSR value of the bounded DMFA problem provides the lower

limit of the SSR values for the subsets of EM. This lower bound is only

dependent on the network itself and not on the number and the

choice of the EM. The geometrical reduction turned out to be a

suitable algorithm for reducing large sets of EM without a loss of

physiologically important EM, but if smaller subset sizes are aimed at,

the evolutionary algorithm gives much better results.

From the Pareto front of the multiobjective evolutionary algo-

rithm, it is easily possible to select a subset of EM for a process

TABLE 3 Stoichiometry of the chosen subset of EM consisting of 10 EM

EM 1: 0.1649Glc + 0.010215Lac + 0.022254Gln + 0.66661O2→0.36483Xv + 0.062105Amm+ 0.50773CO2

EM 2: 0.47847Glc + 0.006275Gln + 0.015173O2→0.10287Xv + 0.86106Lac + 0.090627CO2

EM 3: 0.23253Glc + 0.0004173Gln + 9.2732e−05O2→0.046366Xv + 0.42958Glu + 0.87011CO2

EM 4: 0.045706Glc + 0.41079Lac + 0.37711Gln + 0.059863Amm+ 0.18476O2→0.10112Xv + 0.79296CO2

EM 5: 0.26767Glc + 0.014165Gln + 0.72659Amm+ 0.50654O2→0.31478mAb + 0.1456Glu + 0.15284CO2

EM 6: 0.58685Glc + 0.024585Gln + 0.57456O2→0.40304Xv

EM 7: 0.85201Glc + 0.01146Gln + 0.213O2→0.25468mAb + 0.40461Glu

EM 8: 0.065947Glc + 0.655Lac + 0.53142Glu + 0.012693Gln + 0.26659O2→0.1459Xv + 0.41281CO2

EM 9: 0.70711Glu→0.70711Gln

EM 10: 0.57735Gln→0.57735Glu + 0.57735Amm

Death rate: Xv→

Note: The death rate is added as an additional reaction.

Abbreviation: EM, elementary modes.
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F IGURE 7 Concentration data of three different experiments at different conditions with the profiles of the
estimated concentrations ĉ which were generated using the DMFA for EM method using the selected 10 EM. The color shadings refer to the 95%

and the 68% confidence bounds and the median of all estimations after 500 re‐samples of the measurements (cf. section 2.3). DMFA, dynamic
metabolic flux analysis; EM, elementary modes [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 8 Estimated EM reaction rates r(t) [mmol/106 cells/h] of three different experiments at different conditions
which were generated using the DMFA for EM method using the selected 10 EM. The color shadings refer to the

95% and the 68% confidence bounds and the median of all estimations after 500 re‐samples of the measurements (cf. section 2.3). DMFA,
dynamic metabolic flux analysis; EM, elementary modes [Color figure can be viewed at wileyonlinelibrary.com]
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model. The set should be as small as possible but with an acceptable

SSR value (i.e., an acceptable fit to the data). The fit to the data of one

experiment for four out of ten different concentration profiles is

shown for different selections of EM subsets in Figure 6. As expected

from the Pareto front (cf. Figure 5), the quality of fit of subsets with

10 reactions and more is comparable to the result obtained by the

bounded DMFA method. For <10 reactions, the approximation be-

comes significantly worse. With <10 EM, essential pathways seem to

be missing and the data cannot be reconstructed well enough. The

stoichiometry of the 10 EM is shown in Table 3. The actual state of

the metabolism can sufficiently be described by a combination of

these metabolic modes. The following metabolic features are present

in the set of EM:

• Oxic‐ and anoxic conversion of glucose with‐ and without lactate

formation

• Different yields for biomass and/or product formation

• Utilization of different nitrogen sources

• Reutilization of by‐products like lactate.

4.3 | EM reaction rates and confidence intervals

After the set of 10 EM has been found, the confidence intervals for

the EM reaction rates are estimated using the bootstrap method (cf.

Section 2.3). For each component, the measurement uncertainty was

assumed to be a linear function of the magnitude of the

measurement:

t a b c t ,i j i i i jσ ( ) = + ⋅ ( ) (13)

where ai and bi were estimated from replicates of the experi-

ments. The sampled estimates ĉ for four different components in

three different experiments are shown in (Figure 7). The differ-

ences in this experiments are due to different process conditions.

The estimated EM reaction rates and their confidence inter-

valsare shown in Figure 8. It can be seen that the magnitude of

the estimation uncertainty varies significantly over time. Espe-

cially in the beginning and at the end of the process, the con-

fidence bounds of the reaction rates are very large. This is due to

the low concentration of viable cells. As a consequence, no sig-

nificant differences in the reaction rates can be observed. Only in

the middle of the process, some reaction rates are clearly dif-

ferent due to the different process conditions. In this example,

the reaction rates of EM1, EM5, and EM9 are not significantly in-

fluenced by the different process conditions but the other EM

show observable differences.

4.4 | Further modeling steps

After the EM have been chosen and analyzed, kinetic equations must

be selected for each reaction which should adequately represent the

influence of the process conditions on the reactions. The selection

and fitting of kinetics is not in the scope of this paper so these steps

are only sketched.

The information about reaction rates and their confidence in-

tervals is very useful for the modeling of the process, as it enables the

modeler to differentiate between significant and nonsignificant in-

fluences on the reaction rates. The kinetic functions for the reaction

rates r f c pH T_ , , ,ˆ = ( …) should express only the significant influences.

The results of the real‐world example showed that the eva-

luation of the confidence intervals is especially useful for fitting

specific rate equations to estimates as the observability of these

rates heavily depends on the state of the process. In this example,

the range of the confidence intervals comprises several orders of

magnitude.

In an earlier contribution (Hebing et al., 2016; Neymann,

Hebing, & Engell, 2019) we proposed to select and fit nonlinear

reaction kinetics r̂ (Θ) to estimated rates of EM r by solving:

r t r t
t

min
,

,
i

i i

i

2

σ( )∑
ˆ ( Θ) − ( )

( )Θ
(14)

here, Θ is the parameter vector and tiσ ( ) is the standard deviation of

the estimate which can be obtained from the bootstrap samples of

the estimate r t( ). Only with a reliable estimate of σ , it is possible to

fit and compare meaningful kinetics based on a statistical measure as,

for example, the Akaike information criterion.

TABLE 4 Parameter values, initial conditions, and inputs used for
the generation of artificial fed‐batch data

Parameter name value unit

Ain 300 mmol/L

fx 0.1 g/mmol

d min,μ 0.01 1/hr

d add,μ 0.025 1/hr

Kd C, 15 mmol/L

max1,ν 1.5 mmol/hr/g

KM A, 40 mmol/L

max3,ν
− 0.25 mmol/hr/g

KM C, 10 mmol/L

KI A, 5 mmol/L

max2,ν 0.5 mmol/hr/g

A t 0( = ) 100 mmol/L

C t 0( = ) 0 mmol/L

X t 0v ( = ) 0.1 g/L

V t 0( = ) 1 L

V t 0,80 , 85,120 , 125,140 , 145,200Feed
̇ ( ∈ {[ ) [ ) [ ) [ ]}) 0 L/hr

V t 0,80 , 80,85 , 120,125 , 140,145Feed
̇ ( ∈ {[ ) [ ) [ ) [ )}) 0.05 L/hr
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Also black‐box models like MLP for reaction kinetics of the se-

lected EM can be fitted to the estimated reaction rates r t( ), for

example, by back‐propagation. Here also, the standard deviation of

the rates tσ ( ) can be used for the weighting of the values at different

time‐points. If this information is neglected, the identified rate ex-

pressions would be corrupted by unreliable estimation noise, espe-

cially in beginning and at the end of the fed‐batch process where the

observability of the specific reaction rates is bad due to a low viable

cell density.

With the selected EM and fitted kinetics, the dynamic process

model for fermentation processes is ready to be used for process

design, optimization, model‐predictive control, or other purposes.

5 | CONCLUSION

This paper presents methods for the selection of small sets of EMs

and for the estimation of reaction rates from noisy concentration

measurements. We propose extensions to the method of Leighty and

Antoniewicz (2011) which help to (a) consider irreversible reactions

in the estimation and (b) increase the robustness against measure-

ment noise due to additional regularization.

It could be shown in a simulation study that the DMFA for EM

method is superior for estimating EM reaction rates from noisy

concentrations measurements.

The presented algorithm for the selection of small subsets of EM

was used to select a suitable set of EM for a model of a CHO fed‐
batch fermentation using real‐world data. It could be shown that the

metabolism can be described by 10 EM with an acceptable accuracy

at the experimental conditions.

Using a bootstrap resampling method, the confidence intervals of

the EM reaction rates of this set were calculated. This information

can then be used for the choice and fitting of kinetic equations.
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APPENDIX A: GEOMETRICAL REDUCTION

The geometrical reduction is based on the mutual cosine similarity i j,Γ

of two EM ei
¯

and e j
¯

(which are columns of the EM matrix E, cf.

Equation (8)):

e e

e e
.i j

i j

i j
,Γ = ¯

⋅
¯

¯
⋅
¯

(15)

The reduction is carried out in consecutive steps in which the

estimation error of the reduced set SSRred increases. The complete

algorithm is described in Algorithm 1.

Algorithm 1.

APPENDIX B: SHIFTING OF CONCENTRATIONS

The DMFA problems (5–11) are based on the analytical solution

of the ODE, which describes the evolution of the concentrations

in a batch process. To apply the DFMA approach to fed‐batch
processes, pseudo batch data can be computed from the measured

data of a fed‐batch process. The accumulated effects of all

changes of measured concentrations c tΔ ( ) which are caused by

inputs to the process (i.e., feeds and the exchange of mass with

the gas phase) and not by the metabolism of the cells are sub-

tracted from the trajectories of the concentrations. The resulting

concentration profiles are called shifted profiles and are com-

puted according to:

c t c t c t ,i s
m

i
m

i, ( ) = ( ) − Δ ( ) (16a)

c t c c d .i
t

i feed i gas
0

, ,τ τ τ̇ ̇∫Δ ( ) = [ ( ) + ( )] (16b)

The resulting shifted measurements can be used as if they were

batch data in the solution of the DMFA problems (5–11). The solu-

tion of the optimization problems (5–11) provides estimated shifted

concentrations cs
¯
ˆ .

APPENDIX C: GENERATION OF ARTIFICIAL FED‐
BATCH DATA

In the simulation study, a fictive small metabolic network, con-

sisting of three reactions, three external components and one in-

ternal component is used to generate synthetic data of a typical

fed‐batch fermentation. A substrate A is converted to a inter-

mediate product B which is then converted to viable biomass Xv in

reaction 2ν which has a limited capacity max2,ν . If this limit

is reached, the toxic external by‐product C is formed in a re-

versible reaction 3ν . All reactions are catalyzed by the viable bio-

mass Xv . It is assumed that the internal component B is neither

consumed nor accumulated as the sum of the reaction rates 2ν and

3ν is always equal to 1ν . The balance equations for the medium

components are shown in Equations (17a)–(17m), the corre-

sponding parameter values are listed in Table 4.

dA
dt

X D A A .v in1ν= − ⋅ + ⋅ ( − ) (17a)

dC
dt

X D C.v3ν= ⋅ − ⋅ (17b)

dX
dt

X D X .v
d v vμ μ= ( − ) ⋅ − ⋅ (17c)

f .x 1μ ν= ⋅ (17d)

C
C K

.d d min d add
d C

, ,
,

μ μ μ= + ⋅
+

(17e)

A
A K

.max
M A

1 1,
,

ν ν= ⋅
+

(17f)

C
C K

K

A K
.max

M C

I A

I A
3 3,

,

,

,
ν ν= ⋅

+
⋅

+
− − (17g)

v v v0, if .max3 1 2,= <+
( ) (17h)

v v v v v, if, .max max3 1 2, 1 2,= − ≥+
( ) ( ) (17i)

.3 3 3ν ν ν= −+ − (17j)

.2 1 3ν ν ν= − (17k)
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dV
dt

V .Feed
̇= (17l)

D
V

V
.Feed

̇
= (17m)

Given initial conditions and a feeding profile V tFeed
̇ ( ), the profile

of the concentrations A t( ), C t( ), and X tv ( ) as well as the reaction rate

vector tν
¯
( ) can be simulated using an ODE solver. In this case study,

the implicit Matlab® solver ode15s was used.

The network can be decomposed into EM. The internal and ex-

ternal stoichiometric matrices N and P are:

BN 1 1 1 .= [ − − ]⟵ (18)

X
A
C

P
0 0.1 0
1 0 0

0 0 1
.

v

=
⎡

⎣

⎢
⎢
−

⎤

⎦

⎥
⎥

⟵

⟵
⟵

(19)

The conversion factor f 0.1x = (cf. Equation (17d)) is included in the

P matrix. The EM matrix E was calculated with metatool (Pfeiffer

et al., 1999) from N (with reaction 1 and reaction 2 being irreversible):

E
0 1 1
1 0 1

1 1 0
.=

⎡

⎣

⎢
⎢−

⎤

⎦

⎥
⎥

(20)

Using Equations (1) and (8), the set of differential equations

describing the concentrations of components in the medium is:

d
dt

X
A
C

P E
r t
r t
r t

X .
v

v

1

2

3

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= ⋅ ⋅

⎡

⎣

⎢
⎢

( )

( )

( )

⎤

⎦

⎥
⎥
⋅ (21)

The matrix P E⋅ contains the stoichiometry of all EM wrt. the

external concentrations. All columns are scaled, such that the norm

equals one. The death rate is added as a fourth column. Equation (21)

is then extended to:

d
dt

X
A
C

r t
r t
r t

t

X
0.0995 0 0.0995 1

0 0.7071 0.9950 0
0.995 0.7071 0 0

.
v

d

v

1

2

3

μ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=
⎡

⎣

⎢
⎢

−
−

−

⎤

⎦

⎥
⎥
⋅

⎡

⎣

⎢
⎢
⎢
⎢

( )

( )

( )

( )

⎤

⎦

⎥
⎥
⎥
⎥

⋅

(22)

The cell‐specific reaction rates of these EM, r ttrue

¯
( ) can be cal-

culated from the vector tν
¯
( ) using Equation (8).

APPENDIX D: EM ANALYSIS USING NOISY

CONCENTRATION DATA

Estimation of specific uptake and secretion rates

The estimation is carried out according to Equation (23), where the

derivative dC dt/ is obtained numerically using central differences

from interpolated concentration measurements:

q t
D t C C t

X t
i

dC
dt t

i in i

v

,
i

( ) =
− ( ) ⋅ ( − ( ))

( )
(23)

To counteract the effect of measurement errors, the interpola-

tion of concentration measurements is usually smoothed. We com-

pare three different interpolation settings with splines, using the

MATLAB® function spaps with different tolerance settings (0, c15 i⋅ ¯ ,

c50 i⋅ ¯ ). The resulting rates q ti ( ) are then filtered with a moving

average filter (MA) using either 30 or 90 values (where each value

accounts for 1 hr of process time).

Estimation of EM reaction rates using specific uptake‐ and
secretion rates

The reaction rates of the EM r
¯
of each time‐point are obtained from q

¯
either with the method of Poolman et al. (2004) (Equation (24)) or

Soons et al. (2011) (Equation (25)).

r P E q
¯
= ( ⋅ ) ⋅

¯
# (24)

P E r qmin
r 2

2( )⋅ ⋅
¯
−
¯

¯

(25)

The matrices P and E are built from the metabolic network (cf.

appendix: generation of artificial fed‐batch data) and # denotes the

Moore‐Penrose pseudo‐inverse.

DMFA for EM

Before the data was analyzed, pseudo‐batch data was calculated from

the fed‐batch data by eliminating feeding influences.

The tuning of the DMFA for EM method is carried out by using

cross‐validation. Here, the estimation problem (11) was solved

with a different number of inflection time‐points and regular-

ization coefficients α . A few randomly selected blocks of mea-

surements were excluded from the estimation. The mean

SSR value of this test‐sets was then analyzed and used as a

measure of an appropriate selection of the number of inflection

time‐points and α . It was found that 5 inflection points with a

regularization parameter of 10α ≈ are the optimal choice in this

case study.

Comparison of methods

To evaluate the effect of random measurement noise, it is assumed

that the measurements are subject to Gaussian noise with zero

mean and a standard deviation which is dependent on the mag-

nitude of the measurements (such that the width of the 95%

confidence interval is, e.g., 5% of the magnitude of the measure-

ments). The sampling and the estimations were repeated 100 times

at different levels of noise.
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