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Abstract: Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic
organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric,
pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called
interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG)n repeats in the
karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization.
All examined species showed the expected terminal topology of telomeric motifs at the edges of
chromosomes. We detected ITRs in only five species from three families. Combining our and literature
data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in
centromeric positions, often in several chromosomal pairs, in a given species. Their distribution
does not correspond directly to interchromosomal rearrangements. Our findings support that
centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions,
even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate
reptiles (lizards and snakes), where ITRs were found in more than half of the examined species,
and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates
of chromosomal rearrangements and rather slow karyotype evolution in this group.

Keywords: evolution; FISH; in situ hybridization; ITRs; interstitial telomeric repeats; ITSs; interstitial
telomeric sequences; karyotype; telomeres; turtles

1. Introduction

Telomeres are regions of repetitive DNA motifs and associated proteins localized at the edges
of chromosomes. They play a crucial role in maintaining the chromosome structure as a single unit,
preventing fusions of free “sticky” chromosome ends, or degeneration and loss of genetic information
during the replication events [1]. In vertebrates, telomeric regions consist of long tandem repeats of
the TTAGGG motif, which was first characterized in humans [2] and seems to be extremely conserved
across all studied vertebrates [3]. Telomeres are formed and preserved by telomerase, a reverse
transcriptase able to add new TTAGGG repeats based on an RNA template and to compensate for
the normal shortening of telomeres after each replication event [4–7]. However, the presence and,
therefore, activity of telomerase varies across cell types and developmental stages [8]. Notably,

Genes 2020, 11, 657; doi:10.3390/genes11060657 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0003-0647-9609
https://orcid.org/0000-0001-9554-9984
https://orcid.org/0000-0001-9171-5199
https://orcid.org/0000-0002-0460-2688
https://orcid.org/0000-0002-6740-7214
https://orcid.org//0000-0002-3515-729X
https://orcid.org/0000-0002-8429-5680
http://dx.doi.org/10.3390/genes11060657
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/11/6/657?type=check_update&version=2


Genes 2020, 11, 657 2 of 17

the shortening of the telomeres is associated with cell aging and cell death [9–12]. Interestingly,
(TTAGGG)n motifs can be found also in non-terminal positions of the chromosomes [3,13,14] in the
form of interstitial telomeric repeats (ITRs) also referred to as interstitial telomeric sequences (ITSs).
Some authors classified ITRs into two main groups: the short ITRs (s-ITRs) and the heterochromatic
ITRs (Het-ITRs) [15]. Other authors report a more detailed classification including s-ITRs, subtelomeric
ITRs, fusion ITRs and pericentromeric ITRs [14–18]. s-ITRs are characterized by a low copy number
of (TTAGGG)n tandem repeats, located in interstitial positions of the chromosomes. The bloom
of genome sequencing projects revealed that s-ITRs are common in vertebrate genomes [19–26].
They are often not detectable by molecular cytogenetic methods, for example by fluorescence in situ
hybridization (FISH), due to the low number of repeats [15]. In contrast, Het-ITRs consist of an extensive
accumulation of (TTAGGG)n tandem repeats mainly located in heterochromatic regions, particularly
in centromeric and pericentromeric areas, but occasionally also interspersed within chromosome arms.
Het-ITRs are less common than s-ITRs in vertebrate genomes and are often detectable by molecular
cytogenetic methods [15,27–30]. In our study, we classify ITRs into three categories: centromeric,
pericentromeric and intermediate ITRs, according to their position following our previous classification
for squamate reptiles [28].

The origin and function of ITRs still remain unclear. According to the most prevalent hypothesis,
ITRs are remnants of former terminal telomeric sequences that have been repositioned to interstitial
position as a consequence of chromosomal fusions [3], fissions and inversions. Especially Het-ITRs are
linked to chromosomal rearrangements [15], and their presence in centromeric and pericentromeric
regions are often taken as a marker of former chromosomal fusions [22,31,32]. Alternatively, ITRs can
emerge in hotspots for DNA breakage and recombination [14,17], produced by the cell repair machinery
after unequal crossing over and double-strand breaks [33–36]. This last hypothesis explains the origin
of s-ITRs, and it is supported by the observation that telomerase is able to insert telomeric repeats
into double strand break sites during chromosome healing [37,38]. Notably, long regions of ITRs can
also emerge via amplification of pre-existing short (TTAGGG)n repeats present in the genomes as
latent telomeres [3].

Cytogenetic studies have detected ITRs in numerous species across vertebrate lineages, including
mammals, fishes, birds, non-avian reptiles and amphibians [3,27–30,39–46]. In non-avian reptiles,
distribution of telomeric sequences have been extensively studied in squamates, i.e., lizards and snakes,
where ITRs were detected in approximately 100 species, despite the generally conserved chromosome
morphology in this group [28,45,47–64]. It was proposed that intrachromosomal rearrangements might
have a crucial role in the formation of ITRs in squamate reptiles [28,63]. A telomere-only pattern
was instead reported in Crocodylus siamensis [65], and as far as we know, no other representative of
Crocodylia has been studied. In birds, ITRs are relatively common and mostly found in centromeric
and pericentromeric positions [39,44,66,67]. Notably, in some cases, the telomeric motif TTAGGG is
part of a larger satellite DNA sequence, and its presence and amplification in the genome is not directly
connected to chromosomal rearrangements [68,69]. In turtles, the distribution of telomeric motifs
have been studied up to our knowledge in 27 out of the 353 extant species [70,71], but ITRs have been
previously reported in only six species [72–82], reviewed further in this study, but more systematic
survey is needed before drawing solid conclusions on the frequency of ITRs in turtles.

Turtles have diploid chromosome numbers ranging from 2n = 26 to 2n = 68 [76,83]; however,
diploid numbers and chromosome morphology seem to be conserved and rather stable among
species within a family [76,84,85]. Phylogenetic reconstruction suggested that the ancestral turtle
karyotype was composed of 2n = 52 chromosomes [76]. The variability in chromosome numbers
across turtles is driven mainly by fusions involving microchromosomes leading to reduction of diploid
chromosome numbers (e.g., in the ancestor of the families Pelomedusidae and Podocnemididae),
and by chromosome fissions leading to increase of diploid chromosome numbers (e.g., in the ancestor
of the families Carettochelyidae and Trionychidae) [76].
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In this study, we explored the distribution of telomeric repeats from representative species across
the turtle phylogeny by analyzing 30 species from nine families using fluorescence in situ hybridization
with a probe specific for the telomeric repeats. We combine our results with previously published data,
and present an overview of the distribution of ITRs across turtles and compare their frequency to other
reptile lineages.

2. Materials and Methods

2.1. Sampling

We studied the distribution of telomeric (TTAGGG)n repeats in the karyotypes of 30 turtle species
representing nine families (Table 1). Blood samples were collected from captive-bred or legally imported
turtles from the Münster Zoo (Germany), Plzeň Zoo, Prague Zoo (both Czech Republic), the Museum
of Zoology, Senckenberg Dresden (Germany), Turtle Island (Austria) and private keepers. Experiments
with animals were performed by accredited researchers (LK: CZ02535, MR: CZ03540). When needed,
turtles were temporarily kept in the animal facility of the Faculty of Science, Charles University
(accreditation No. 37428/2019-MZE-18134). The species identity of studied turtles was verified in
morphologically challenging taxa using mtDNA sequences that were compared to the sequences
published in the revisionary works by Fritz et al. [86] for the genus Cyclemys, Petzold et al. [87] for
Pelomedusa, and Ihlow et al. [88] for Malayemys. The Galápagos giant tortoises used in the present
study from the Prague Zoo are of known provenance and species identity. All experimental procedures
were carried out under the supervision and with the approval of the Ethics Committee of the Faculty
of Science, Charles University, approved by the Committee for Animal Welfare of the Ministry of
Agriculture of the Czech Republic (permit No. MSMT-34426/2019-7).

Table 1. Summary of species analyzed in this study.

Suborder Family Species Sex

Genes 2020, 11, x FOR PEER REVIEW 3 of 18 

 

2. Materials and Methods 

2.1. Sampling 

We studied the distribution of telomeric (TTAGGG)n repeats in the karyotypes of 30 turtle 
species representing nine families (Table 1). Blood samples were collected from captive-bred or 
legally imported turtles from the Münster Zoo (Germany), Plzeň Zoo, Prague Zoo (both Czech 
Republic), the Museum of Zoology, Senckenberg Dresden (Germany), Turtle Island (Austria) and 
private keepers. Experiments with animals were performed by accredited researchers (LK: CZ02535, 
MR: CZ03540). When needed, turtles were temporarily kept in the animal facility of the Faculty of 
Science, Charles University (accreditation No. 37428/2019-MZE-18134). The species identity of 
studied turtles was verified in morphologically challenging taxa using mtDNA sequences that were 
compared to the sequences published in the revisionary works by Fritz et al. [86] for the genus 
Cyclemys, Petzold et al. [87] for Pelomedusa, and Ihlow et al. [88] for Malayemys. The Galápagos giant 
tortoises used in the present study from the Prague Zoo are of known provenance and species 
identity. All experimental procedures were carried out under the supervision and with the approval 
of the Ethics Committee of the Faculty of Science, Charles University, approved by the Committee 
for Animal Welfare of the Ministry of Agriculture of the Czech Republic (permit No. MSMT-
34426/2019-7). 

Table 1. Summary of species analyzed in this study. 

Suborder Family Species 
Sex 
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Cryptodira 

Carettochelyidae Carettochelys insculpta  - - 1 

Emydidae 
Graptemys pseudogeographica    1   

Trachemys decussata  1 - - 

Geoemydidae 

Cyclemys dentata  - - 1 
Cyclemys pulchristriata  2 - - 

Hardella thurjii    1   
Heosemys depressa  - 1 - 

Leucocephalon yuwonoi  1 1 - 
Malayemys macrocephala  1 - - 
Mauremys annamensis  2 2 - 

Mauremys japonica  - - 4 
Mauremys rivulata  - 1 - 

Siebenrockiella crassicollis  - 1 - 

Kinosternidae 
Claudius angustatus 1 1 - 
Staurotypus salvinii 1 - - 

Testudinidae 

Astrochelys radiata - - 1 
Chelonoidis carbonarius  - - 1 
Chelonoidis duncanensis 1 - - 

Geochelone elegans  1 1 - 
Gopherus berlandieri  1 - - 
Stigmochelys pardalis 1 - - 

Testudo horsfieldii  - 1 - 
Testudo kleinmanni  1 - - 

Trionychidae 
Apalone ferox  - 1 1 

Lissemys punctata - 1 - 

Pleurodira 

Chelidae 
Emydura subglobosa  - 1 - 
Mesoclemmys hogei  1 - - 

Pelomedusidae Pelomedusa variabilis 1 1 - 

Podocnemididae 
Peltocephalus dumerilianus  1 - - 

Podocnemis unifilis 1 - - 
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Unknown

Cryptodira

Carettochelyidae Carettochelys insculpta - - 1

Emydidae Graptemys pseudogeographica 1
Trachemys decussata 1 - -

Geoemydidae

Cyclemys dentata - - 1
Cyclemys pulchristriata 2 - -

Hardella thurjii 1
Heosemys depressa - 1 -

Leucocephalon yuwonoi 1 1 -
Malayemys macrocephala 1 - -
Mauremys annamensis 2 2 -

Mauremys japonica - - 4
Mauremys rivulata - 1 -

Siebenrockiella crassicollis - 1 -

Kinosternidae
Claudius angustatus 1 1 -
Staurotypus salvinii 1 - -

Testudinidae

Astrochelys radiata - - 1
Chelonoidis carbonarius - - 1
Chelonoidis duncanensis 1 - -

Geochelone elegans 1 1 -
Gopherus berlandieri 1 - -
Stigmochelys pardalis 1 - -

Testudo horsfieldii - 1 -
Testudo kleinmanni 1 - -

Trionychidae Apalone ferox - 1 1
Lissemys punctata - 1 -

Pleurodira

Chelidae
Emydura subglobosa - 1 -
Mesoclemmys hogei 1 - -

Pelomedusidae Pelomedusa variabilis 1 1 -

Podocnemididae
Peltocephalus dumerilianus 1 - -

Podocnemis unifilis 1 - -
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2.2. Chromosome Preparation and Staining

Chromosome suspensions were prepared from whole blood cell cultures. Briefly, the cultivation
medium consisted of 90 mL of D-MEM medium (Sigma-Aldrich, St. Louis, MO, USA), enriched with
10 mL of fetal bovine serum (GIBCO, Carlsbad, CA, USA), 3 mL of phytohemagglutinin M (GIBCO,
Carlsbad, CA, USA), 1 mL of penicillin/streptomycin solution (10,000 units/mL; GIBCO, Carlsbad,
CA, USA), 1 mL L-glutamine solution (200 mM; Sigma-Aldrich, St. Louis, MO, USA) and 1 mL
lipopolysaccharide solution (10 mg/mL; Sigma-Aldrich, St. Louis, MO, USA). Then, 100–300 µL of
blood samples were added to the 5 mL of cultivation medium and incubated for one week at 30 ◦C,
without CO2 supplementation. After the incubation period, the cultures were first treated with 35 µL
of colcemid (10 µg/mL; Roche, Basel, Switzerland) and incubated for 3 h and 30 min at 30 ◦C. The cells
were treated with a pre-warmed 0.075 M KCl hypotonic solution for 30 min at 37 ◦C, washed and fixed
four times with cold 3:1 methanol/acetic acid solution. The chromosome suspensions were later stored
at −20 ◦C for further use.

2.3. Giemsa Staining and Karyotype Reconstruction

Metaphases from species with undescribed karyotypes were stained with 8% Giemsa solution.
Selected metaphases were captured using a Zeiss Axio Imager Z2 (Zeiss, Oberkochen, Germany),
equipped with a Metafer-MSearch automatic scanning platform (MetaSystems, Altlussheim, Germany)
and CoolCube 1 b/w digital camera (MetaSystems, Altlussheim, Germany). Karyograms were prepared
using the Ikaros karyotyping platform (MetaSystems, Altlussheim, Germany). At least 10 metaphases
per individual were studied.

2.4. Fluorescence In Situ Hybridization with Probes for Telomeric Repeats

The (TTAGGG)n probe for telomeric sequences was prepared and labelled with dUTP-biotin by
PCR, using the (TTAGGG)5 and (CCCTAA)5 primers, without DNA template following the protocol of
Ijdo et al. [89] and Rovatsos et al. [27]. The probe was diluted in a hybridization buffer (50% formamide
in 2 × SSC, pH 7) and stored in the freezer for further use.

The slides with chromosome spreads were aged either overnight at 37 ◦C or for 1 h at 60 ◦C.
The FISH experiment was conducted in two days. During the first day, the chromosome spreads were
treated with RNase (100 µg/mL) for 1 h at 37 ◦C, 0.01% pepsin for 10 min at 37 ◦C, post-fixed in 1%
formaldehyde solution for 10 min and dehydrated in a 70–85–95% ethanol series. Once dried, the slides
were denatured in 70% formamide for 4 min at 75 ◦C and dehydrated once more with the ethanol series.
Meanwhile, the probe was denatured for 6 min at 73 ◦C and kept in ice for at least 10 min. To each slide,
10 µL of probe was added, covered with a coverslide and incubated overnight at 37 ◦C. During the
second day, the slides were washed 3 times with 50% formamide/2 × SSC solution for 5 min at 37 ◦C,
two times with 2 × SSC for 5 min and once with 4 × SSC/0.05% Tween 20 (Sigma-Aldrich, St. Louis, MO,
USA) for 5 min. The slides were incubated in 4 × SSC/5% blocking reagent (Roche) for 45 min at 37 ◦C
and then in 4 × SSC/5% blocking reagent containing avidin-FITC (Vector laboratories, Burlingame,
CA, USA) for 30 min at 37 ◦C. The fluorescence signal was twice amplified by the fluorescein–avidin
D/biotinylated anti-avidin system (Vector Laboratories, Burlingame, CA, USA). After this treatment,
the slides were dehydrated in ethanol series, air-dried and stained with Fluoroshield with DAPI
(Sigma-Aldrich, St. Louis, MO, USA).

For each specimen, at least 20 images were obtained using a Provis AX70 (Olympus, Tokyo,
Japan) fluorescence microscope equipped with a DP30BW digital camera (Olympus, Tokyo, Japan).
The pictures were obtained in BW and later superimposed in color with DP Manager imaging software
(Olympus, Tokyo, Japan).



Genes 2020, 11, 657 5 of 17

2.5. Distribution of ITRs across the Turtle Phylogeny

Data for the topology on the karyotype of telomeric sequences from the species studied here was
supplemented by previously published records in order to reconstruct the phylogenetic history of
the presence/absence of ITRs in turtles (Figure 1). The phylogenetic trees by Pereira et al. [90] and
Kehlmaier et al. [91] were used for this phylogenetic reconstruction in the software Mesquite v3.61 [92].
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Figure 1. Distribution of the presence of telomeric repeats across turtles. Telomeric repeats were
detected in terminal topology (t) in all studied species of turtles, and additionally, interstitial telomeric
repeats (ITRs) were identified in centromeric (c) (9 species) and intermediate (int) (1 species) positions.
ITRs identification follows our previous classification for squamate reptiles by Rovatsos et al. [28].
Phylogeny follows Pereira et al. [90] and Kehlmaier et al. [91].

3. Results

3.1. Karyotype Description

We analyzed 30 species with karyotypes ranging from 2n = 26 in Peltocephalus dumerilianus to 2n = 66
in the softshell turtles Apalone ferox and Lissemys punctata. To the best of our knowledge, the karyotypes
of the following 12 species are presented here for the first time (Figure 2): Trachemys decussata 2n = 50
(Emydidae), Cyclemys pulchristriata (2n = 52), Hardella thurjii (2n = 52), Heosemys depressa (2n = 52),
Leucocephalon yuwonoi (2n = 52), Mauremys annamensis (2n = 52) (all Geoemydidae), Pelomedusa variabilis
(2n = 36) (Pelomedusidae), Astrochelys radiata (2n = 52), Chelonoidis duncanensis (2n = 52), Geochelone elegans
(2n = 52), Testudo horsfieldii (2n = 52) and Testudo kleinmanni (2n = 52) (all Testudinidae).
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3.2. Presence of ITRs

We analyzed the topology of TTAGGG repeats across a wide range of species, covering nine out
of the 14 extant families of turtles. All examined species possessed multiple TTAGGG repeats in the
expected terminal telomeric positions (Figures 3 and 4). The telomeric signals looked brighter on
microchromosomes than on macrochromosomes in almost all species.
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Figure 4. The telomeric (TTAGGG)n repeats were detected only in terminal positions in (a) Carettochelys insculpta
(Carettochelyidae), (b) Emydura subglobosa, (c) Mesoclemmyshogei (both Chelidae), (d) Graptemys pseudogeographica,
(e) Trachemys decussata (both Emydidae), (f) Cyclemys dentata, (g) Cyclemys pulchristriata, (h) Hardella thurjii,
(i) Heosemys depressa, (j) Leucocephalon yuwonoi, (k) Malayemys macrocephala, (l) Mauremys annamensis,
(m) Mauremys japonica, (n) Mauremys rivulata, (o) Siebenrockiella crassicollis (all Geoemydidae),
(p) Pelomedusa variabilis (Pelomedusidae), (q) Peltocephalus dumerilianus (Podocnemididae), (r) Astrochelys radiata,
(s)Chelonoidis carbonarius, (t)Geocheloneelegans, (u)Gopherusberlandieri, (v)Testudohorsfieldii, (w)Testudokleinmanni
(all Testudinidae), (x) Apalone ferox, (y) Lissemys punctata (both Trionychidae).

We detected ITRs in only five out of the 30 examined species and they were located exclusively in
the centromeric positions (Figure 3). ITRs were detected at the centromeres of chromosomes 1 and 2 in
Claudius angustatus and Staurotypus salvinii (Figure 3a,b). In Podocnemis unifilis, ITRs accumulated at
the centromeres of chromosomes from the seven largest pairs (Figure 3c), confirming reports from
previous studies [76,78]. In Chelonoidis duncanensis, ITRs were detected in the centromeric regions
of chromosome pairs 1, 4, 8 and 9 (Figure 3d). In Stigmochelys pardalis, ITRs were present in the
centromeres of chromosome pairs 6, 8 and 9 (Figure 3e).
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3.3. Distribution of ITRs across the Turtle Phylogeny

Pooling together our results with data from previous studies, ITRs were identified in 10 out of
55 examined turtle species. The phylogenetic pattern of the topology of TTAGGG motifs across turtle
genomes suggested that ITRs evolved independently at least seven times (Figure 1).

4. Discussion

All examined turtle species possessed multiple telomeric repeats in terminal positions. We detected
ITRs in five species, increasing the total number of known turtle species with ITRs to 10. ITRs seem to be
restricted to the centromeres, except for the Y chromosome of Elseya novaeguineae, where telomeric-like
sequences were amplified in the intermediate position of the p-arm (Figure 1). Interestingly, as in
birds [93–97] and squamate reptiles [28,51,98], in almost all examined turtle species the telomeric signals
look brighter on microchromosomes than on macrochromosomes. This stronger signal brightness has
been previously reported in other vertebrate lineages, including birds [39] and squamates [28,48,98],
and it can be caused by a higher number of telomeric repeats on microchromosomes [94]. The species
analyzed in the present study cover a large part of turtle phylogenetic diversity from both suborders
(Pleurodira and Cryptodira) and nearly the whole variability in the diploid chromosome numbers
known in turtles. Despite this variability, only 18.2% of the studied turtle species have ITRs detectable
with molecular cytogenetic methods (Figure 1). Phylogenetic distribution suggests that ITRs evolved
independently within turtles at least seven times.

Kinosternidae are reported to have undergone minimal chromosomal changes [99,100], where the
main difference between the subfamilies Staurotypinae (2n = 54) and Kinosterninae (2n = 56) is found
in a pair of microchromosomes. Centromeric ITRs have been described for the two species of the genus
Staurotypus and their sister taxon Claudius angustatus (Figure 3a,b and Figure 1). The only other species
from the family Kinosternidae analyzed up to now, Sternotherus odoratus (2n = 56), does not have any
ITRs (Figure 1). It seems that the centromeric ITRs are an apomorphy of the subfamily Staurotypinae
and cannot be directly connected to chromosome rearrangements leading to formation of the derived
karyotype of the family Kinosternidae or its subfamily Staurotypinae.

A burst of ITRs emerged in Chelydra serpentina (Chelydridae), where they are present in seven
chromosome pairs, although this species possesses with 2n = 52 the putatively ancestral diploid
chromosome number for turtles [76] (Figure 1).

The presence of ITRs in centromeres in Podocnemis unifilis (Figure 3c) [76–78] and P. expansa [78]
was suggested to be a remnant of ancestral fusions leading to the lower diploid chromosome number
in the family Podocnemididae [76–78]. Nevertheless, the situation is more complicated. In P. expansa,
Noronha et al. [77] detected telomeric sequences only in the terminal positions, while Cavalcante
et al. [78] reported ITRs with a similar pattern as in the closely related P. unifilis. ITRs can contain
a different number of telomeric-like repeats, which might be reflected in the intensity of the probe
signal, and there might be interindividual variability in the number of repeats. Nevertheless, such a
strong difference within the same species is surprising. None of the two studies reported a genetic
identification of the examined specimens (e.g., mtDNA sequence per specimen), leaving open the
possibility that perhaps due to taxonomic misidentification, different taxa were examined in each
study. Regardless of this questionable report, the lack of ITRs in Peltocephalus dumerilianus, another
member of family Podocnemididae, suggests that the presence of ITRs is not directly connected to
fusion events. Supporting this view, ITRs have not been found in Pelomedusa variabilis (Figure 1),
as well as in Pelomedusa subrufa [76] (Figure 1), even though it is possible that a different taxon
was studied because formerly all ten currently recognized species [87,101] were lumped together
as Pelomedusa subrufa. In any case, the genus Pelomedusa belongs to the family Pelomedusidae,
the sister taxon of Podocnemididae. Pelomedusids possess a similar or even lower diploid number
compared to podocnemidids, and the reduction in chromosome number can thus be a synapomorphy
of Pelomedusidae and Podocnemididae. If in the common ancestor of these two families the fusions
responsible for the reduction of the chromosome number would have led to ITRs in the centromeric
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region, the ITRs had to be retained for a long evolutionary time in some species, while they were lost
in others.

A connection between ITRs and chromosomal fusions is also not supported for the family
Testudinidae. Previous studies did not detect ITRs in Chelonoidis carbonarius and C. chilensis [72,75].
In Chelonoidis duncanensis, we detected centromeric ITRs in four chromosome pairs (Figure 3d), although
all three species of the genus share the same chromosome number 2n = 52. We also detected ITRs
in centromeres of three chromosome pairs in Stigmochelys pardalis, another species sharing the same
chromosome number (2n = 52) typical for the family Testudinidae (Figure 3e). The phylogenetic
position and the different topology of the accumulation of telomeric-like repeats suggest that ITRs
evolved within testudinidids independently in C. duncanensis and S. pardalis (Figure 1).

Most turtles have environmental sex determination (ESD) [76]. As far as we know, genotypic sex
determination (GSD), and hence sex chromosomes, evolved independently at least five times within
turtles: ZZ/ZW sex chromosomes in the common ancestor of softshell turtles (family Trionychidae [102]),
XX/XY sex chromosomes in the genus Glyptemys (family Emydidae [103], in the genus Staurotypus
(family Kinosternidae [104,105]), in Siebenrockiella crassicollis (Geoemydidae [106]) and in chelid turtles
(reviewed in [81]).

Non-recombining parts of the unpaired W and Y chromosomes tend to degenerate, i.e., to lose
functional genes [107–109], and to accumulate repeats such as microsatellites [49,53,56,62,110,111],
rDNA-derived repeats [50,73,81,112] and telomeric-like repeats [27,28,61,113–115]. In turtles, the Y
chromosome is not enriched in telomeric-like sequences in Glyptemys insculpta [76], Staurotypus salvinii
and S. triporcatus [76]. Similarly, a degenerated W chromosome in trionychid turtles is full of
rDNA-derived repeats, but no accumulation of telomeric-like repeats was detected in Apalone ferox,
Lissemys punctata (Figure 4x,y), Apalone spinifera or Pelodiscus sinensis [76]. Within chelids, ITRs are
present on the Y chromosomes in Elseya novaeguineae [81] but not on the putatively homologous Y
chromosomes of the genera Chelodina and Emydura [76,81]. The comparison of repeat content on
unpaired sex chromosomes across turtles suggests that it can be very variable and can reflect historical
contingency rather than a functional aspect of a given repeat.

ITRs occur only rarely in turtles, especially in comparison to squamates [28]. Wherever present in
turtles, ITRs are restricted to centromeric regions and to the non-recombining parts of sex chromosomes
(Figure 1). The distribution of ITRs agrees with the observation that turtle karyotypes are very
conserved [85] and that centromeres and non-recombining parts of sex chromosomes are the most
dynamic parts of genomes [116,117]. Centromeric ITRs do not seem to be directly related to
interchromosomal rearrangements in turtles. If ITRs were formed during fusions, they had to
be subsequently lost in several cases. Such a scenario was supported, for instance, by Nanda et al. [39]
for birds, possibly due to selection for smaller genome size counteracting the accumulation of repetitions
and resulting in the disappearance of ITRs. That the presence of centromeric ITRs is not related
to rearrangements is further supported by the fact that in species possessing ITRs, the number of
chromosomes with ITRs does not agree with the estimated number of interchromosomal rearrangements
for the respective karyotype. However, our conclusions on the homology of chromosomes with ITRs
are based on the comparison of chromosome morphology, and should be further tested using more
informative approaches, such as comparative BAC-FISH or chromosome painting.

Interestingly, although ITRs are generally rare in turtles, whenever they occur, they tend to be
present in centromeres in more than one chromosome pair. ITRs are present in two chromosome
pairs in the kinosternids Claudius angustatus and Staurotypus salvinii, in three chromosome pairs
in Stigmochelys pardalis, in four chromosome pairs in Chelonoidis duncanensis, and even in seven
chromosome pairs in Podocnemis unifilis and Chelydra serpentina (Figure 1; [76]). This observation
can be attributed to a phenomenon known as “centromere homogenization” potentially caused by
the involvement of telomeric-like repeats in retrotransposons colonizing centromeres [118]. Another
interesting observation is that only centromeric ITRs were detected in turtle autosomes. One reason
can be that centromeric ITRs are the most common type, at least in squamates [28]. It is therefore likely
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that they would be overrepresented also in the few cases of ITRs found in turtles. However, it is also
possible that in turtles, events leading to ITRs within chromosome arms are rarer. Intermediate ITRs
have been found in squamates [28] and in birds [39], and it was speculated that they were formed due
to chromosome inversions, which are common in these groups. Turtles, thus, may be less prone to
intrachromosomal inversions than squamates [119] and birds [97,120]. As these inversions are important
for the evolution of postzygotic reproductive isolation mechanisms, and thus speciation [120–124],
this feature may contribute to the generally low species diversity in turtles [70] and their slow molecular
evolution [125–127]. The low rate of inversions in the karyotype evolution of turtles could explain why
they exhibit a high incidence of genomic introgression and why they extensively hybridize (and are
often able to produce fertile offspring), even after many million years of divergence, as documented in
chelid, cheloniid and geoemydid turtles [81,91,128–136].

In turtles, the TTAGGG motif is restricted only to the centromeric regions. The lack of a strong
phylogenetic signal in the distribution of ITRs across all studied species (Figure 1) indicates that the
telomeric-like sequences in the centromeres of turtles are not connected to chromosomal rearrangements.
Nevertheless, the identification of ITRs is a more complicated process. Genome sequencing projects
revealed that short arrays of ITRs, below the detection efficiency of in situ hybridization methods,
are common in vertebrate genomes [19–26]. Such s-ITRs are expected to exist in turtle genomes as
well. Furthermore, long ITRs, e.g., derived from chromosome fusions, are non-essential, non-coding
regions, and like other microsatellite motifs, they can degenerate over time by reduction of copies
and/or by accumulation of mutations, which will complicate their detection by in situ hybridization or
bioinformatic methods. Previous studies in rodents [27] and birds [68,69] documented that the TTAGGG
motif can be part of a longer satellite sequence occurring in centromeres and other heterochromatic
regions. Notably, a telomeric-like TCATGGG motif forming long tandem repeats has been identified in
the pericentromeric regions of Drosophila hydei, and this motif does not seem to have a telomere-related
function [137], suggesting that this could also be the case in turtles with ITRs.

In conclusion, the centromere organization and sequence composition in turtles are currently not
well known. This calls for further research to understand whether or not the TTAGGG motif in the
centromeres of turtles has a non-telomeric origin, e.g., using long-read throughput sequencing of the
centromeric regions of phylogenetically informative species.
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