
ORIGINAL RESEARCH ARTICLE
published: 16 January 2014

doi: 10.3389/fninf.2013.00041

LFPy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons
Henrik Lindén1,2 †, Espen Hagen1†, Szymon Łęski1,3, Eivind S. Norheim1, Klas H. Pettersen1,4 and

Gaute T. Einevoll1*

1 Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
2 Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology (KTH), Stockholm, Sweden
3 Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
4 CIGENE, Norwegian University of Life Sciences, Ås, Norway

Edited by:

Andrew P. Davison, Centre National
de la Recherche Scientifique, France

Reviewed by:

Nicholas T. Carnevale, Yale
University School of Medicine, USA
Shyam Diwakar, Amrita University,
India

*Correspondence:

Gaute T. Einevoll, Department of
Mathematical Sciences and
Technology, Norwegian University of
Life Sciences, PO Box 5003,
Ås 1432, Norway
e-mail: gaute.einevoll@nmbu.no
†These authors have contributed
equally to this work.

Electrical extracellular recordings, i.e., recordings of the electrical potentials in the
extracellular medium between cells, have been a main work-horse in electrophysiology
for almost a century. The high-frequency part of the signal (�500 Hz), i.e., the multi-unit
activity (MUA), contains information about the firing of action potentials in surrounding
neurons, while the low-frequency part, the local field potential (LFP), contains information
about how these neurons integrate synaptic inputs. As the recorded extracellular signals
arise from multiple neural processes, their interpretation is typically ambiguous and
difficult. Fortunately, a precise biophysical modeling scheme linking activity at the cellular
level and the recorded signal has been established: the extracellular potential can be
calculated as a weighted sum of all transmembrane currents in all cells located in the
vicinity of the electrode. This computational scheme can considerably aid the modeling
and analysis of MUA and LFP signals. Here, we describe LFPy, an open source
Python package for numerical simulations of extracellular potentials. LFPy consists of
a set of easy-to-use classes for defining cells, synapses and recording electrodes as
Python objects, implementing this biophysical modeling scheme. It runs on top of the
widely used NEURON simulation environment, which allows for flexible usage of both
new and existing cell models. Further, calculation of extracellular potentials using the
line-source-method is efficiently implemented. We describe the theoretical framework
underlying the extracellular potential calculations and illustrate by examples how LFPy
can be used both for simulating LFPs, i.e., synaptic contributions from single cells as well
a populations of cells, and MUAs, i.e., extracellular signatures of action potentials.

Keywords: local field potential, extracellular potential, biophysics, forward modeling, compartmental modeling,

detailed morphology, spike waveform, Python

1. INTRODUCTION
A host of experimental techniques are now available for stud-
ies of neural activity in cortex. In addition to intracellular and
extracellular recordings with various types of single- or multi-
contact electrodes, several imaging techniques (e.g., two-photon
calcium, intrinsic optical, voltage-sensitive dye) have been devel-
oped and refined in the last decade. To take full advantage of
these new powerful techniques, proper links between the under-
lying neural activity and what is recorded in the experiments,
must be established. Such quantitatively accurate links generally
require detailed understanding of the underlying physics of neural
activity measurements, as well as efficient mathematical modeling
schemes (Brette and Destexhe, 2012 ; Panzeri and Quian Quiroga,
2013). Computational neuroscience has until now largely focused
on how neurons and neural networks may process information,
while less attention has been given to the relationship between
the neural activity and measurable quantities. As the ultimate
test of candidate theories in all natural sciences is comparison
with experiments, we believe more focus on the latter is needed
to bring the field forward. Not only must precise mathematical

links between activity in neural networks and the various mea-
surements be forged, efficient and easy-to-use neuroinformatics
tools must be developed to facilitate such comparisons.

The present paper describes a step toward this goal, that
is, a new Python-based tool, LFPy (compneuro.umb.no/LFPy,
software.incf.org/software/lfpy), for modeling of extracellular
potentials stemming from neural activity in brain tissue. While
extracellular electrical recordings have been the main workhorse
in electrophysiology for almost a century, the interpretation of
such recordings is not trivial. The recorded extracellular poten-
tials in general arise from a complicated sum of contributions
from all transmembrane currents of the cells, predominantly
neurons, in the vicinity of the electrode contact. The high-
frequency part of the signal (�500 Hz), the multi-unit activity
(MUA), contains information about the firing of action poten-
tials of neurons within a few tens of micrometers or so from the
electrode contact (Buzsáki, 2004; Pettersen and Einevoll, 2008).
The low-frequency part, the local field potential (LFP), contains
information about the integration of synaptic inputs in popu-
lations of neurons within radii of hundreds of micrometers or

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00041/abstract
http://www.frontiersin.org/people/u/77960
http://www.frontiersin.org/people/u/22070
http://community.frontiersin.org/people/SzymonLeski/42095
http://www.frontiersin.org/people/u/124225
http://www.frontiersin.org/people/u/54279
http://www.frontiersin.org/people/u/940
mailto:gaute.einevoll@nmbu.no
http://compneuro.umb.no/LFPy
http://software.incf.org/software/lfpy
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

more (Lindén et al., 2011; Łęski et al., 2013). Both the MUA
and LFP are difficult signals to interpret (Pettersen et al., 2008;
Buzsáki et al., 2012; Einevoll et al., 2012, 2013a,b; Reimann et al.,
2013), and in order to take full advantage of the new generation of
silicon-based multielectrodes recording from tens or hundreds of
positions simultaneously, we need to develop and validate meth-
ods that can be used to infer information about the underlying
neural network from these extracellular signals (Einevoll et al.,
2013a).

A key advantage compared to other important measures of
neural activity, such as fMRI, is that the ‘measurement physics’,
i.e., the link between neural activity and what is measured, is
well-understood. In fact, the last decade has seen the refinement
of a well-founded biophysical forward-modeling scheme based
on volume conduction theory (Rall and Shepherd, 1968; Holt
and Koch, 1999) to incorporate detailed reconstructed neuronal
morphologies in precise calculations of extracellular potentials —
both spikes (Holt and Koch, 1999; Gold et al., 2006, 2007;
Pettersen and Einevoll, 2008; Pettersen et al., 2008; Schomburg
et al., 2012; Reimann et al., 2013), and LFPs (Einevoll et al., 2007;
Pettersen et al., 2008; Lindén et al., 2010, 2011; Gratiy et al., 2011;
Schomburg et al., 2012; Łęski et al., 2013; Reimann et al., 2013).
The word ‘forward’ denotes that the extracellular potentials are
modeled from known neural sources (as opposed to the ill-posed
“inverse” problem of estimating the underlying sources from
recorded potentials). According to the linear volume conduction
theory, the extracellular potentials at the electrode contact can
be calculated by adding contributions from the transmembrane
currents (Nunez and Srinivasan, 2006). In a now frequently used
two-step computational scheme, morphologically reconstructed
neurons are first simulated with compartmental modeling using
a simulation program such as NEURON (Carnevale and Hines,
2006; Carnevale, 2007) to provide transmembrane currents, and
next the extracellular potentials are calculated based on these
(Holt and Koch, 1999; Pettersen et al., 2012); (Einevoll et al.,
2013a,b).

In LFPy these two steps are performed in an inte-
grated Python environment employing the NEURON simula-
tor (Carnevale and Hines, 2006; Carnevale, 2007; Hines et al.,
2009) under the hood, allowing full advantage of the plethora
of packages available for the Python programming language. For
example, existing multicompartmental neuron models, available
from databases like ModelDB 1 (Hines et al., 2004), can readily
be adapted for use with the LFPy-package. An example of such
analysis made simple with LFPy is shown in Figure 1, showing a
spike, i.e., the extracellular signature of an action potential, from
simulations using a recently published rat L5b model neuron by
Hay et al. (2011) with LFPy. While the first released version
of LFPy described here focuses on calculations of extracellular
potentials around individual neurons, the tool is directly appli-
cable also to populations of many such individual neurons, that
is, model populations for which the synaptic input onto each
neuron is described explicitly and do not necessarily follow from
concurrent network simulations (Lindén et al., 2011; Łęski et al.,
2013).

1http://senselab.med.yale.edu/modeldb/.

A B

C

FIGURE 1 | Calculated extracellular spike waveforms using LFPy. (A)

Position-dependent extracellular spike waveforms during an action potential
in a rat L5b pyramidal-cell model (Hay et al., 2011) produced by executing
example2.py, see section 4.2. Black dots correspond to the positions of
the (virtual) electrode contact points. Spike traces at each position are
normalized and color coded according to the magnitude of the negative
peak. (B) Corresponding somatic membrane potential during the action
potential. Vertical dashed lines illustrate temporal alignment with the
maximum magnitude Vsoma(t) and of an extracellular waveform (C) for the
position denoted with an asterisk in (A). Corresponding alignment with the
maximum positive extracellular peak is illustrated by vertical dotted lines.

The paper is organized as follows: In section 2 we briefly review
the biophysics underlying the forward-modeling scheme used in
LFPy, in section 3 we give an overview over the different Python
class-objects in LFPy, in section 4 we show several examples
of the use of LFPy, more technical aspects of the package are
described in section 5, while some concluding remarks are given
in the final section 6.

2. BIOPHYSICS BEHIND LFPy
Extracellular potentials recorded inside the brain are generated by
transmembrane currents from cells in the vicinity of electrode. To
propagate from the membrane to the recording electrode, the sig-
nal has to pass through brain tissue consisting of a tightly packed
matrix of neurons and glial cells embedded in a low-resistance
extracellular medium filling less than one fifth of the total vol-
ume (Nunez and Srinivasan, 2006). The low resistance of the
extracellular medium ensures that neighboring cells are typically
electrically decoupled. Further, the difference between the extra-
cellular potentials recorded at different positions will be small,
typically much smaller than a millivolt, i.e., about two orders of
magnitude smaller than the potential difference across the highly
resistant cell membranes.

The biophysical origin of the recorded signals is fortu-
nately quite well-understood, and a well-founded computa-
tional scheme has been developed for the forward modeling
of the signals. This scheme naturally divides into two consec-
utive steps: calculation of transmembrane currents stemming
from activity in neurons (and glia cells, if relevant) fol-
lowed by calculation of the extracellular potentials generated by
these transmembrane currents. The calculations of extracellular

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 2

http://senselab.med.yale.edu/modeldb/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

potentials as implemented in LFPy are thus also organized in two
steps:

1. Calculation of transmembrane currents of each neuron,
using multicompartmental model neurons derived from
detailed morphological reconstructions of neurons within
NEURON simulation environment (Carnevale and Hines,
2006; Carnevale, 2007).

2. Calculation of the extracellular potential from the trans-
membrane currents using a biophysical forward-modeling
formalism derived within so called volume-conductor
theory (Hämäläinen et al., 1993; Nunez and Srinivasan, 2006).

2.1. MULTICOMPARTMENTAL MODELING OF TRANSMEMBRANE
CURRENTS

In the first step, multicompartment neuron models are used
to calculate transmembrane currents. Figure 2A illustrates the
principle behind the construction of such multicompartmental
models where the neuron is divided into compartments, each so
small that the electrical potential can be assumed to be the same
throughout the compartment (Segev et al., 1989; De Schutter,
2009). Every compartment is described as an equivalent electri-
cal circuit where the key dynamical variable is the membrane
potential V , and the equation describing the dynamics of this
variable follows from Kirchhoff ’s current law stating that the cur-
rents going into a circuit node have to sum to zero. For the
case where the extracellular potential is assumed constant, the
mathematical equation describing the temporal development of
the membrane potential Vn of compartment n in Figure 2A is
given by

gn, n + 1(Vn + 1 − Vn) − gn − 1, n(Vn − Vn−1) = Cn
dVn

dt
+

∑
j

I
j
n (1)

The two terms on the left hand side of the equation represent
intracellular ohmic currents between compartment n and the
neighboring compartments n + 1 and n − 1. The first term on
the right hand side represents currents due to capacitive prop-
erties of the cell membrane, while the second term represents
currents due to various other membrane processes such as passive
and active intrinsic ion channels and synaptic inputs. In the full
multicompartmental model of a neuron there will be an equation
of the type shown in Equation (1) for each compartment, and
the equation set is solved numerically using dedicated simulation
tools such as NEURON (Carnevale and Hines, 2006; Carnevale,
2007). The transmembrane current from each neuronal compart-
ment n is then at each instant in time given by the right hand
side of Equation (1), denoted by In in Figure 2A. There are dif-
ferent numerical strategies in terms of the spatial discretization
of neuronal models, and in NEURON, the spatial discretization is
equivalent to assuming that the transmembrane current density is
uniformly distributed in each compartment so that second order
accurate intracellular potentials between nodes can be found by
linear interpolation (Hines and Carnevale, 2001; Carnevale and
Hines, 2006).

Note that Kirchhoff ’s current law implies that the net trans-
membrane currents (including the capacitive current) coming
out of a neuron at all times must equal zero. Thus with the
neuron depicted in Figure 2A divided into N compartments,
one must at all times have

∑N
n = 1 In(t) = 0. Therefore a single-

compartment neuron model cannot generate any extracellular
potential since the net transmembrane current necessarily will
be zero. The simplest model producing an extracellular poten-
tial is a two-compartment model where a transmembrane current
entering the neuron at one compartment leaves at the other com-
partment. The simplest possible multipole configuration is thus
the current dipole (Pettersen et al., 2012).

2.2. FROM TRANSMEMBRANE CURRENTS TO EXTRACELLULAR
POTENTIALS

Given the numerical value and spatial position of all transmem-
brane currents, the extracellular potentials can be computed on
the basis of volume conductor theory. Here the system can be
envisioned as a three-dimensional smooth extracellular contin-
uum with the transmembrane currents represented as volume
current sources (Nunez and Srinivasan, 2006). In this framework
the fundamental relationship between an extracellular potential
φ(t) recorded at position r due to a transmembrane current I0(t)
at position r0 is given by (Hämäläinen et al., 1993; Nunez and
Srinivasan, 2006):

φ(r, t) = 1

4πσ

I0(t)

|r − r0| . (2)

Here the extracellular potential φ is set to be zero infinitely far
away from the transmembrane current, and σ is the extracellular
conductivity, assumed to be real, scalar (the same in all directions)
and homogeneous (the same everywhere in an infinite volume
conductor). Equation (2) relies on two key assumptions:

1. The quasistatic approximation of Maxwell’s equations amount-
ing to omitting terms with time derivatives of the electric (E)
or magnetic fields (B) so that these field effectively decouple.
For the frequencies inherent in neural activity, i.e., less than
a few thousand hertz, this approximation seems to be well-
justified [see, e.g., argument on p. 426 in Hämäläinen et al.
(1993)].

2. The assumption of a linear, isotropic, homogeneous and ohmic
extracellular medium, i.e., a linear relationship between the
current density j and the electrical field E, j = σE, where σ is
a real scalar. The absence of an imaginary part of the conduc-
tivity σ implies that the capacitive effects of the extracellular
tissue are assumed to be negligible compared to resistive
effects. This appears to be well-fulfilled for the relevant fre-
quencies in extracellular recordings (Nunez and Srinivasan,
2006; Logothetis et al., 2007). The fact that σ is a scalar reflects
the assumption of isotropic and homogeneous medium.

Note that while the present version of LFPy is based on
these assumptions, the forward model in Equation (2) can
be generalized to account for, for example, different con-
ductivities in different directions (Nicholson and Freeman,

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

A B

FIGURE 2 | Illustration of biophysical modeling scheme and

corresponding organization of LFPy-package. (A) Principle of
multicompartmental modeling where a piece of an apical dendritic
branch, in this example assumed purely passive with only capacitive
and leak membrane currents, is divided into a set of
compartments indexed by n. The circuit diagram shows the
equivalent electric circuit of the compartment where the dynamics
is governed by an equation set consisting of equations of the type
shown in Equation (1). The net transmembrane current In(t), in this
case the sum over the capacitive and leak membrane currents in

compartment n, is then used in the forward-modeling schemes in
Equations (3–5) to calculate extracellular potentials. (B) LFPy is a
Python package, dependent on numpy, Cython and NEURON,
implementing this combined modeling scheme. Its main features are
object-oriented representations of biophysically detailed neurons
(LFPy.Cell, LFPy.TemplateCell), point-process mechanisms such
as synapses or patch electrodes attached to different locations of
the cell-objects (LFPy.Synapse, LFPy.StimIntElectrode), and an
extracellular recording device allowing calculation of extracellular
potentials at arbitrary locations (LFPy.RecExtElectrode).

1975; Logothetis et al., 2007), discontinuities in conductivity
at interfaces between gray and white matter or between the
gray matter and the cortical surface (Pettersen et al., 2006),
or, if warranted, frequency-dependent and/or complex extra-
cellular conductivities σ (Bédard et al., 2004; Bédard and
Destexhe, 2012). For more discussion of the validity and possi-
ble generalizations of the present forward-modeling scheme, see
Pettersen et al. (2012).

Equation (2) applies to the situation with a single current
I0, but since contributions from several transmembrane cur-
rent sources add linearly, the equation straightforwardly gener-
alizes to a situation with many transmembrane current sources.
With N point current sources the formula in Equation (2)
generalizes to:

φ(r, t) = 1

4πσ

N∑
n = 1

In(t)

|r − rn| . (3)

With a neuron divided into N compartments, the natu-
ral use of the formula in Equation (3) is to set rn at the
“mean” position of compartment n, e.g., at the center of a
spherical soma compartment or the mid-point of a cylindri-
cal dendritic compartment. This scheme corresponds to the
so called point-source approximation (Holt and Koch, 1999;

Pettersen et al., 2008) since all transmembrane currents into
the extracellular medium go through a single point. Another
scheme, the line-source approximation, assumes the transmem-
brane currents from each cylindrical compartment to be evenly
distributed along a line corresponding to the cylinder axis
(Holt and Koch, 1999; Pettersen et al., 2008). The analo-
gous formula for the line-source approximation is obtained
by integrating Equation (3) along the center-line axis along
each compartment (Holt and Koch, 1999; Pettersen et al.,
2008):

φ(r, t) = 1

4πσ

N∑
n = 1

In(t)

∫
drn

|r − rn|

= 1

4πσ

N∑
n = 1

In(t)
1

�sn
log

∣∣∣∣∣
√

h2
n + ρ2

n − hn√
l2n + ρ2

n − ln

∣∣∣∣∣ . (4)

Here �sn denotes the length of the compartment, ρn the distance
perpendicular to the line compartment, hn the longitudinal dis-
tance from the end of the compartment, and ln = �sn + hn the
longitudinal distance from the start of the compartment. In this
and the above method, singularities are avoided by strictly pre-
venting the denominators (i.e., |r − rn|) to be less than the radius
of the relevant cylindrical compartment. Both the point-source

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

and the line-source approximation schemes are implemented
in LFPy, together with a mixed method applicable for models
with a single-compartment soma as the root section (defined
to be compartment 1), effectively treating the soma as a sphere
source:

φ(r, t) = 1

4 π σ

(
I1(t)

|r − r1|

+
N∑

n = 2

In(t)
1

�sn
log

∣∣∣∣∣
√

h2
n + ρ2

n − hn√
l2n + ρ2

n − ln

∣∣∣∣∣
)

. (5)

The three methods described by Eqs. (3-5) are expected to give
similar results in electrode positions far from the cell, while results
may differ more for electrode positions close to the neuron’s
membrane (Holt and Koch, 1999).

Note that the modeling scheme as presented here is not fully
self-consistent as the calculation of the transmembrane currents
(Equation (1)) is done assuming constant potentials outside the
neuron, which corresponds to assuming negligible resistivity in
the extracellular medium. In contrast, a finite resistivity (∼ 1/σ)
is assumed in the forward models. This approximation ensures
efficient forward modeling of extracellular potentials allowing, for
example, for calculation of LFPs from populations of tens of thou-
sands of neurons (Lindén et al., 2011; Łęski et al., 2013; Reimann
et al., 2013).

The forward-modeling formulas in Eqs. (3-5) all predict
potentials at points, while real recording electrodes of course have
a physical extension. Finite-sized electrode appears to measure the
average potential across the uninsulated electrode surface (Nelson
and Pouget, 2010), and here we thus approximate the potential
recorded by an ideal electrode contact as the average potential
across its surface S as:

φ(r, t; S) = 1
AS

�
S φ(r′, t)d2r′

≈ 1
m

∑m
i = 1 φi(r′

i, t) , (6)

for m random locations r′
i on the surface S, with surface area AS,

of the electrode contact. The surface S is by LFPy assumed to be
flat and circular.

3. OVERVIEW OF LFPy
In this section we give a brief overview over the different classes
available in LFPy as illustrated in Figure 2B.

3.1. REPRESENTING CELLS IN LFPy
The main class in LFPy is LFPy.Cell. It is used to create
objects that represent individual model cells, and it serves as an
interface with the NEURON simulation environment (Carnevale
and Hines, 2006; Carnevale, 2007; Hines et al., 2009). It is also
necessary for interactions with other LFPy class-objects. Each
LFPy.Cell-object stores information about the neuron model,
most importantly references to all sections (branches) of the neu-
ron and their geometry, and some parameters of the simulation.

When creating a LFPy.Cell object, one can set various
properties of the neuron model and specify the simulation.
During initialization it will:

1. Load the neuron geometry file,
2. Load additional model-specific files (e.g., defining active chan-

nels),
3. Assign biophysical properties and insert channel densities,
4. Split sections into appropriate numbers of compartments,
5. Assign all compartments an index at the global cell level (see

Sec. 5.7),
6. Specify the position and orientation of the cell and its com-

partments in space, and
7. Specify simulation duration and temporal resolution.

The standard way of creating a cell object is thus to call
LFPy.Cell(), as in the example in section 4.1 below. However,
some NEURON models make use of templates (Carnevale
and Hines, 2006, Ch. 13), and for such models one has to
use the inherited class LFPy.TemplateCell, as described
in section 4.2. LFPy.Cell will assign references to differ-
ent sections in the top-level of the NEURON environment,
while LFPy.TemplateCell will assign them to a spe-
cific template. Although several LFPy.Cell objects may
exist simultaneously in Python, only LFPy.TemplateCell
allows for multiple cell representations internally in NEURON.
Nevertheless, simulations of networks of cells are currently not
supported in LFPy for reasons discussed in section 5.6.

After the cell object is created the user can interact with vari-
ous methods and attributes implemented in the LFPy.Cell (or
LFPy.TemplateCell) object. It is, for example, possible to
position the cell, inspect properties of sections and compartments
of the cell, and to specify which of the variables (membrane volt-
age, ionic currents) should be recorded during the simulation.
Finally, the simulation is started by calling the simulate()
method which initializes and executes the model in NEURON.

3.2. CELL STIMULATION
LFPy provides two classes, LFPy.Synapse and LFPy.StimI
ntElectrode (cf. red dot in Figure 2B), which can be used to
specify inputs to the cell. They manage synaptic currents triggered
by input spike trains and intracellular patch-clamp electrodes,
respectively, using NEURON point processes, such as ExpSyn
and IClamp (but user-defined synapses or stimulation elec-
trodes are possible through the use of .mod-files specified using
the NEURON model description language NMODL (Carnevale
and Hines, 2006, Ch. 9)). One important difference between
synapses and electrodes is that an electrode current is not a
transmembrane current in that the current does not come from
the extracellular space. This implies that the total current across
the cell’s membrane no longer will sum to zero, resulting in
monopole contributions in the extracellular potential (as the
injected current is not included when calculating the extracellular
potential). Direct specification of inputs via NEURON is possi-
ble as in Hines et al. (2009), but the classes provided in LFPy are
usually more convenient: they allow for easy placement of stim-
ulation mechanisms at specified dendritic positions and for easy

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

recording of stimulation currents and membrane voltages in the
compartments they are attached to.

3.3. EXTRACELLULAR RECORDING ELECTRODES
Extracellular recording electrode contacts are in LFPy repre-
sented by the LFPy.RecExtElectrode class (blue dots,
Figure 2B). Creating an electrode object allows specification of
the extracellular conductivity and arbitrary configurations of
electrode contact points in 3D-space, and choosing either point
contacts [i.e., employing Equations (3), (4) or (5)] or finite-size
electrode contacts [i.e., Equation (6)].

The RecExtElectrode class provides three different
methods for calculating the extracellular potential. These are (1)
the point-source approximation [Equation (3), keyword argu-
ment method="pointsource"], (2) the line-source approx-
imation [Equation (4), keyword argument method="lines
ource"], and (3) the mixed method where the soma sec-
tion is treated as a point source and dendritic compartments
are treated as line sources [Equation (5), keyword argument
method=som_as_point]. The last method should only be
used if the soma is the root of the morphology and represented
by a single compartment. If this is not the case, LFPy erroneously
assigns a point current-source to another compartment.

The extracellular potential can be calculated using RecExt
Electrode either after the simulation using stored recorded
membrane currents, or at run time, i.e., each time the NEURON
simulation advances one time step (see section 5.9). The lat-
ter approach avoids the need for storing recorded membrane
currents. We illustrate both methods in Examples below.

As the methods for calculating the extracellular potential
may be useful outside LFPy, the low-level implementations
of Eqs. (3–5) are not contained within RecExtElectrode,
but may be used directly by means of any of the func-
tions LFPy.lfpcalc.calc_lfp∗. They take keyword argu-
ments cell, x, y, z, sigma, respectively a Cell-like
instance, extracellular coordinates and extracellular conductivity,
and return the extracellular potentials calculated from recorded,
transmembrane currents. In section 5.9 we discuss how to use
LFPy with other methods for calculating the extracellular poten-
tials, i.e., other forward models, than the ones currently provided
and described in section 2.2.

4. EXAMPLES
We next consider a few simple examples on how LFPy can be
used for calculations of extracellular potentials. (For installation
instructions and other technical aspects please see section 5, and
the online documentation2).

4.1. SINGLE SYNAPTIC INPUT INTO PASSIVE PYRAMIDAL CELL
We start with a minimal example (example1.py), in which we
set up a passive layer-5 pyramidal cell receiving input through a
single synapse, run the simulation, and calculate the extracellular
potential, similar to the setup used in Lindén et al. (2010).

First we import LFPy and numpy3 (Jones et al., 2001):

2compneuro.umb.no/LFPy.
3numpy.scipy.org.

import LFPy
import numpy as np

Then we define a dictionary with keyword arguments to be used
with LFPy.Cell:

cell_parameters = {
’morphology’: ’patdemo/cells/j4a.hoc’,
’tstartms’: 0.,# start time of simulation,
’tstopms’: 100.,# stop simulation at 100ms.
}

The only mandatory entry is morphology, here pointing to
a reconstructed neuron morphology 4 (Mainen and Sejnowski,
1996) defined with NEURON’s HOC-scripting language in a hoc-
file. We also specify the start and end times of the simulation (in
milliseconds). Several other options are available (such as speci-
fying passive and active parameters of the cell), but for now we
leave them at default values.

We are now ready to create our cell instance using the
LFPy.Cell-class:

cell = LFPy.Cell(**cell_parameters)
cell.set_rotation(x=4.99, y=-4.33, z=3.14)

Here we use the cell.set_rotation method to align the
apical dendritic branch with the z-axis (cf. section 5.3), providing
rotation angles in radians.

We next attach a synapse to our cell. Again, we define the
synapse parameters in a dictionary, and use a method of the cell
object to find an appropriate synapse location:

synapse_parameters = {
’idx’ : cell.get_closest_idx(x=-200., y=0., z=800.),
’e’ : 0., # reversal potential
’syntype’ : ’ExpSyn’, # synapse model
’tau’ : 5., # synapse time constant
’weight’ : .001, # synapse weight
’record_current’ : True, # record synapse

current
}

We then create a Synapse object that is connected to our cell by
passing cell as an argument, and activate it once at t = 20 ms
by providing the set_spike_times-method with a numpy-
array:

synapse = LFPy.Synapse(cell, **synapse_parameters)
synapse.set_spike_times(np.array([20.]))

We are now ready to initialize and simulate the postsynaptic
response of the cell:

cell.simulate(rec_imem=True, rec_isyn=True)

Note the keyword arguments: rec_imem=True sets up the
recording of transmembrane current (these are needed later to

4senselab.med.yale.edu/modeldb/ShowModel.asp?model=2488.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 6

http://compneuro.umb.no/LFPy
http://numpy.scipy.org/
http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=2488
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

calculate the extracellular potential), while rec_isyn=True
specifies that the synapse current(s) is recorded.

The final step is to set up the extracellular electrode object.
Again, we start by defining the parameters,

point_electrode_parameters = {
’sigma’ : 0.3, # extracellular conductivity
’x’ : np.array([-130., -220.]),
’y’ : np.array([0., 0.]),
’z’ : np.array([0., 700.]),

}

which sets the positions of two extracellular electrode contacts at
(x, y, z) = (−130, 0, 0) and (−220,0,700) μm, respectively. The
number of electrode contact points is defined by the length of the
passed arrays containing the contact positions; this allows the user
to flexibly define an arbitrary number of recording positions.

By employing class LFPy.RecExtElectrode, we create a
Python object representing the extracellular recording devices:

electrode = LFPy.RecExtElectrode(cell,

**point_electrode_parameters)

Finally, we calculate the extracellular potential at the specified
electrode locations:

electrode.calc_lfp()

The resulting two extracellular potentials are stored in the
numpy-array electrode.LFP, and the results for this exam-
ple are shown in the left panels of Figure 3. This figure
also shows equipotential lines in the xz−plane for the max-
imum potential magnitude, obtained by setting up a sec-
ond LFPy.RecExtElectrode object representing a grid of
recording positions.

X,Y,Z = np.mgrid[-700:701:50, 0:1, -400:1201:50]

4.2. SPIKING PYRAMIDAL CELL WITH CUSTOM HOC CODE
In the next example the extracellular signature of an action poten-
tial generated by a layer-5 pyramidal cell model from Hay et al.
(2011) is considered. This example (example2.py), whose
outcome is depicted in Figure 1, describes a somewhat more
advanced scenario, and serves to illustrate the following features:

1. Use of network-ready models with the
LFPy.TemplateCell-class,

2. Use of models with active conductances,
3. Use of NeuroLucida V3 morphology file format,
4. Definition of non-zero electrode contact surface area,
5. Calculation of extracellular potentials at run time.

This example requires model files that can be obtained from
ModelDB (Hines et al., 2004) (model no. 1396535). By unzipping

5senselab.med.yale.edu/modeldb/ShowModel.asp?model=139653.

FIGURE 3 | Extracellular potential generated by a single synaptic input

produced by executing example1.py. Extracellular potentials (middle

and bottom left panels) generated at positions marked by green and blue
dot, respectively, by a synaptic input current (upper left panel) injected in
the apical dendrite at the position marked by red dot. The pyramidal cell
corresponds to a layer-5 pyramidal cell from cat visual cortex with passive
membranes but without adjustment of the membrane area to compensate
for spines (Mainen and Sejnowski, 1996). The contour plot shows
equipotential lines for the maximum magnitude of the extracellular potential
in the xz-plane.

the downloaded model files, all necessary files should be avail-
able in the folder L5bPCmodelsEH, including the morphology
file and .mod-files describing active membrane mechanisms
using NMODL-syntax in L5bPCmodelsEH/mod/. The .mod-
files must be compiled with the shell script nrnivmodl (or
mknrndll on Windows machines) provided with NEURON,
and loaded:

import neuron
neuron.load_mechanisms(’L5bPCmodelsEH/mod’)

We start by specifying the LFPy.TemplateCell keyword
arguments:

cell_parameters = {
’morphology’: ’L5bPCmodelsEH/morphologies/cell1.asc’,
’templatefile’:[’L5bPCmodelsEH/models/L5PCbiophys3.hoc’,

’L5bPCmodelsEH/models/L5PCtemplate.hoc’],
’templatename’: ’L5PCtemplate’,
’templateargs’: ’L5bPCmodelsEH/morphologies/cell1.asc’,
’passive’: False,
’nsegs_method’: None,
’timeres_NEURON’: 2**-6,
’timeres_python’: 2**-6,
’tstartms’: -159,
’tstopms’: 10,
’v_init’: -60,

}

The following keyword arguments are specific to the
TemplateCell class:

• templatefile, a (list of) HOC-file(s), specifying the
template-file(s) used for the cell object,

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 7

http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=139653
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

• templatename, a string with the name that
LFPy.templateCell uses to access the underlying
NEURON object, and

• templateargs (optional), that can be used to supply argu-
ments to the template.

Here, we allow the template-files to define the full set of
membrane properties as well as the degree of cell compartmen-
talization [a brief description of template usage are given in
section 5.5, but see also (Carnevale and Hines, 2006, Ch. 13)].
The membrane potential is however set to v_init in all sections
when the model is initialized, and we override the default values
for temporal resolution of the simulation. We are here starting the
simulation at t = −159 ms to remove a start-up transient and a
period of depolarization before the action potential is generated.
Recordings of variables and estimations of extracellular potentials
will however not occur until the time-step corresponding to t = 0
ms is reached.

Since the cell is now defined using a template in NEURON,
we employ LFPy.TemplateCell instead of LFPy.Cell to
create the cell:

cell = LFPy.TemplateCell(**cell_parameters)
cell.set_rotation(x=4.729, y=-3.166)

To invoke an action potential in the model, we override the default
reversal potential of the passive leak channel originally specified in
L5PCbiophys3.hoc:

for section in cell.allseclist:
for segment in section:

segment.e_pas = -59.7

For the extracellular recording device, we simulate the extracel-
lular potentials in a two-dimensional, 9×9 evenly spaced grid
with a contact spacing of 20 μm, and specify parameters for
contact-surface averaging, including each contact’s surface nor-
mal vector, common radius and the number of points to include
in the estimation of the average potential (cf. Equation 6):

X, Y, Z = np.mgrid[-4:5, 1:2, -4:5] * 20
electrodeParameters = {

’sigma’ : 0.3, # extracellular conductivity
’x’ : X.flatten(), # x,y,z-coordinates of contacts
’y’ : Y.flatten(),
’z’ : Z.flatten(),
’method’ : ’som_as_point’, #sphere-source soma

#compartment
’N’ : np.array([[0, 1, 0]]*X.size), #surface normals
’r’ : 2.5, # contact site radius in micrometers
’n’ : 20, # datapoints for averaging

}
electrode = LFPy.RecExtElectrode(**electrode_parameters)

This time we tell LFPy to calculate the extracellular poten-
tials at runtime, by passing the electrode object to
cell.simulate:

cell.simulate(electrode=electrode,rec_imem=False)

instead of passing cell to the electrode object as we did
in the first example above (section 4.1). This assures that the
transmembrane currents are discarded after every simulation
time step, allowing for more efficient memory usage. Simulation
results are shown in Figure 1.

4.3. USING MPI FOR DISTRIBUTED SIMULATIONS
The present version of LFPy is primarily developed for the study
of single cells, but under the present assumption that contribu-
tions to the extracellular potential from different cells add linearly
(cf. section 2.2), it is straightforward to simulate large popula-
tions of cells and sum their contributions. While one option is
to simulate cells one after the other, and subsequently sum their
contributions, simulations on modern multi-core computers and
supercomputers can facilitate greatly from parallelization, e.g., by
running computations for different cells on different cores simul-
taneously. One common way of distributing such simulations
is with the Message Passing Interface 6 (MPI). Below
we describe a simple procedure for calculating the extracellular
potential from a population of pyramidal cells receiving input
from a common pool of presynaptic spike trains. Each neuron
is simulated independently, and we rely on MPI to communi-
cate the simulation results of each individual neuron to the root
process. This example (example3.py) illustrates how one can
easily simulate extracellular potentials of large population of cells
similar to the setup used in Lindén et al. (2011) and Łęski et al.
(2013) with only a few additional lines of code added to the single
cell simulation.

In Python, we will use mpi4py 7 to interact with the MPI
environment:

from mpi4py import MPI
COMM = MPI.COMM_WORLD
n_cells = COMM.Get_size()
cell_id = COMM.Get_rank()

Here, we set the number of cells in the population identi-
cal to the number of MPI processes (COMM.Get_size()),
and index each cell by the rank of the current process
(COMM.Get_rank()). The number of processes is given as an
argument to the MPI executable using the -n flag,

mpirun -n 6 python example3.py

which in this case will simulate extracellular potentials from
a population of 6 cells, distributed over 6 different Python-
processes. Each MPI process will execute the same script, but
we can differentiate the instructions to different cells depend-
ing on their MPI rank, i.e., with the index returned by COMM.

Getrank(). Note that it is also straightforward to combine serial
and parallel execution and to have a constant number of cells in
the population, regardless of the number of MPI processes (not
shown here).

In the present example we want all cells to share the same
pool of presynaptic spike trains, albeit with a different selection

6www.open-mpi.org/.
7mpi4py.scipy.org.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 8

COMM.Get_rank()
COMM.Get_rank()
http://www.open-mpi.org/
http://mpi4py.scipy.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

of input spike trains for each cell. We first generate the random
presynaptic spike trains on each rank, and ensure that the spike-
trains are equal for each process by setting the random seed of
the numpy random number generator before creating the spike
trains:

global_seed = 1234
np.random.seed(global_seed)

Once the presynaptic spike trains have been created we define the
position and rotation for all cells as in previous examples. We then
draw a number of presynaptic spike trains for each neuron from
the common pool. By setting the number of synapses (each receiv-
ing one presynaptic spike train from the pool) for each neuron we
can adjust the level of input correlation to the population (Lindén
et al., 2011; Łęski et al., 2013). We here choose 100 spike trains
for each cell from the pool of 1000 spike trains, giving an input
correlation of 0.1 (Lindén et al., 2011). Since these random selec-
tions are now done for each cell independently, we assign unique
random seeds on each rank:

cell_seed = global_seed + cell_id
np.random.seed(cell_seed)

We then create the cell, set up synapses with activation times from
the pool of spike trains, and simulate each cell as in the pre-
vious example with a single synaptic input (but here with 100
distributed synapses instead of one). Different Python-processes
do not yet see each others simulation results, but we may com-
municate these to the root process (rank zero) using the send,
receive and reduce commands provided by MPI:

if COMM.Get_rank() == 0:
single_LFPs = [point_electrode.LFP[0]]
for i in range(1, COMM.Get_size()):

single_LFPs = np.r_[’0,2’, single_LFPs,
COMM.recv(source=i)]

else:
COMM.send(point_electrode.LFP[0], dest=0)

We can also use MPI to sum arrays directly:

summed_LFP = COMM.reduce(point_electrode.LFP[0])

At this point, simulation results have been collected into numpy-
arrays on the root process, containing both single-cell and
summed contributions to the extracellular potential of the pop-
ulation, as shown in Figure 4.

4.4. MORE EXAMPLES
Full simulation scripts for reproducing Figure 1 (example2.p
y) , Figure 3 (example1.py), and Figure 4 (example3.py)
can be obtained together with the LFPy source code (ref. section
5.2) in the folder /path/to/LFPy/examples/, along with
additional example scripts.

5. TECHNICAL ASPECTS
5.1. REQUIREMENTS
LFPy is a package for the Python programming language 8

(Langtangen, 2009), and has primarily been developed and
tested on Python 2.7.x, and checked for forward compatibil-
ity with Python 3.x. LFPy should work on any common 32-
or 64-bit platform. The main development and testing plat-
forms have been Debian 9 derivates and OS X, but LFPy
should work equally well on other Unix-like operating systems
and Windows. LFPy requires the Python packages NumPy and
Cython 10. Cython allows building C-extensions from com-
parably slow Python code, which we employed to speed up
time-consuming parts of the LFPy codebase, such as the low-
level calculations in the line-source method (Holt and Koch,
1999) and the while-loop advancing the simulation time step
by time step. The cProfile module 11 has been used to iden-
tify bottlenecks in the code, and the corresponding code was then
rewritten using Cython. If Cython is not installed, LFPy will
fall back to equivalent but slower Python code. In order to enable
all functionality and to run all the example scripts and IPython
notebooks successfully, the pylab environment may be required
[NumPy, SciPy12 (Jones et al., 2001), matplotlib13 (Hunter,
2007)], and in addition h5py 14, mpi4py 15, IPython 16

(Pérez and Granger, 2007) version 0.13 or newer with IPython
notebook.

LFPy requires the NEURON simulation environment 17

(Hines and Carnevale, 2001; Carnevale and Hines, 2006) for
calculation of the transmembrane currents from activity in mul-
ticompartment neuron models. Generic instructions on how
to build NEURON as an extension to Python are found in
Hines et al. (2009, Appendix), and we maintain some step-by-
step instructions for Ubuntu Linux and OS X at the LFPy
homepage18. Availability of the neuron-module can be checked
by issuing:

python -c "import neuron"
NEURON -- VERSION 7.3 (736+:19ad148877ff+) 19ad148877ff
Duke, Yale, and the BlueBrain Project -- Copyright
1984-2012
See http://www.neuron.yale.edu/credits.html

While we normally recommend using the standard Python or
the interactive IPython interpreters with LFPy, it is in principle
possible to use the Python-interpreter supplied with the standard
release of NEURON19, cf. Section 5.2.3.

8www.python.org.
9www.debian.org.
10www.cython.org.
11docs.python.org/2.7/library/profile.
12www.scipy.org.
13matplotlib.org.
14alfven.org/wp/hdf5-for-python.
15mpi4py.scipy.org.
16www.ipython.org.
17www.neuron.yale.edu.
18compneuro.umb.no/LFPy.
19www.neuron.yale.edu/neuron/download.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 9

http://www.python.org
http://www.debian.org
http://www.cython.org/
http://docs.python.org/2.7/library/profile
http://www.scipy.org
http://matplotlib.org
http://alfven.org/wp/hdf5-for-python/
http://mpi4py.scipy.org/
http://www.ipython.org/
http://www.neuron.yale.edu
http://compneuro.umb.no/LFPy
http://www.neuron.yale.edu/neuron/download
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

FIGURE 4 | Simulation of extracellular potentials from a population

of neurons using MPI. A population of pyramidal cells (Middle panel)
receiving input spikes from a presynaptic pool of spike trains (Left

panel) is simulated by distributing cells on different MPI processes and

by collecting their individual contributions in the root MPI process.
Summation of the individual contribution then gives the total population
potential (Right panel). Results shown come from executing
example3.py.

5.2. INSTALLATION AND TESTING
5.2.1. Easy install of LFPy
‘Official’ releases of LFPy can be installed in one line from the
Python Package index20, using either easy_install or pip,
with or without administrative privileges:

$ pip install LFPy --user # or
$ sudo pip install LFPy

If LFPy was previously installed, add the --upgrade flag to
force reinstall or upgrade.

5.2.2. Installation from source
The LFPy sources can be obtained either by downloading official
releases, or by checking out the latest development code from the
repository with subversion21:

$ svn co \
http://bebiservice.umb.no/svn-public/LFPy-release/
trunk LFPy

LFPy can then be installed by executing the supplied
distutils setup.py script with or without administrative
rights:

$ cd /path/to/LFPy/
$ python setup.py install --user # or
$ sudo python setup.py install

LFPy can also be used from any folder containing the source
code by either issuing or adding the following line to the
$HOME/.bashrc or similar file:

20https://pypi.python.org/pypi/LFPy.
21subversion.tigris.org/.

$ export PYTHONPATH=PYTHONPATH/:/path/to/LFPy/:

The Cython extensions must then be built in-place by issuing:

$ python setup.py build_ext -i

5.2.3. Testing the installation
If the installation finished without error, and other Python
requirements are met (see section 5.1), the importing of LFPy
using Python or NEURON as the interpreter, should print out
some NEURON credits:

$ python -c "import LFPy" # or
$ nrngui -python -c "import LFPy"
NEURON -- VERSION 7.3 (736+:19ad148877ff+) ...

5.2.4. Unit tests
If the LFPy source code has been obtained, a test suite built using
the unittest module can be run as:

$ cd /path/to/LFPy/unittest
$ python testLFPy.py

The script will execute a series of tests, and summarize the results:

...
Ran 25 tests in 28.735s

OK

The test suite initially calculates the extracellular potentials from
a stick neuron with sinusoidal synaptic input applied to one
end, obtained by numerically solving the analytical expression
for the extracellular potential (Pettersen and Einevoll, 2008),

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 10

https://pypi.python.org/pypi/LFPy
http://subversion.tigris.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

and subsequently compare with results obtained from equivalent
LFPy simulations. If the discrepancy between the extracellular
potentials from the analytical expression and LFPy simulations
is sufficiently small (typically 3 running digits), tests will pass.
Other tests check consistency at different time resolutions, and
whether the outputs of the different calculation methods (Eqs.
3-5) converge in the far field, i.e., far away from the neuronal
source.

5.3. MORPHOLOGY FILES
The morphology keyword argument for LFPy.Cell should
be a .hoc-file similar to those from the export dialog of the
Import3D tool or from the 3D Neuron Viewer application
at NeuroMorpho.org 22 (Ascoli et al., 2007), with the full 3D-
specification of the neuron. However, the Cell class will also
load SWC, NeuroLucida (v1 and v3), and NeuroML 23 (Gleeson
et al., 2010) files using the Import3D tool internally if such files
are detected. The procedure loading the morphology also attempt
to load a .rot-file alongside the morphology file itself, with
default rotation angles typically applied to orient the apical den-
dritic tree along the positive z-axis pointing upwards (using the
right-hand rule, the xy-plane is the horizontal plane). The mor-
phology is rotated around the center of the soma. A .rot file is a
pure text file containing three lines, each telling the rotation angle
in radians around each axis, similar to:

x = 4.729
y = -3.166
z = 0

i.e., as generated by the script /examples/create_
rot_file.py.

With the cell keyword argument pt3d=True, rotating or
repositioning of cell is applied also to the pt3d information
within NEURON.

5.3.1. Visualization
While LFPy does not provide specific plotting functionality, a
cell may easily be visualized using, e.g., matplotlib and the
following code:

from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt
zips = []
for x, z in cell.get_idx_polygons():

zips.append(zip(x, z))
polycol = PolyCollection(zips,

edgecolors=’none’, facecolors=’k’)
ax = plt.gca()
ax.add_collection(polycol)
ax.axis(ax.axis(’equal’))

5.4. SETTING THE BIOPHYSICAL PROPERTIES
The custom_code argument of the Cell-class can be used
to pass additional biophysical properties of the model neuron.
This argument should be used with HOC-language or Python-
statements in .hoc or .py files, respectively. The path to the

22www.neuromorpho.org.
23www.neuroml.org.

file should either be provided as strings, or a list pointing a
set of files. The files typically contain procedures looping over
the sections of the morphology, defining which membrane mech-
anisms and corresponding densities and properties are present
on the section- or compartment level. Another option is to
use custom_fun and custom_fun_args arguments of the
Cell class to pass regular python functions and optionally
arguments for these to set the biophysical properties of the model.

A few example files (e.g., /examples/example5.py
and /examples/example6.py) supplied with LFPy, make
use of these different methods to specify the biophysical proper-
ties of a layer-5 cat pyramidal cell model adapted from Mainen
and Sejnowski (1996), by using the relevant parts from the
original model code from ModelDB24.

Note that the default behavior of the Cell is to insert
NEURON’s pas and extracellular mechanisms across all
sections, and set the number of compartments for each section
according to the d_lambda rule, with distance between nodes
no longer than a fraction d_lambda = 0.1 of length constants
λf computed at f = 100 Hz (Hines and Carnevale, 2001). This
default behavior can be switched off with the Cell keyword
arguments:

cell_parameters = dict(
passive=False,
extracellular=False,
nsegs_method=None)

In this case the passive properties, compartmentalization, and
optionally the extracellular mechanism to enable calculation of
extracellular potentials, must be set by the procedures that also set
the remaining biophysics of the cell model, otherwise NEURON
may fail to assess the equivalent circuit of the model neuron.

If a model loaded in LFPy fails to reproduce the origi-
nal model behavior, a simple way to verify that properties like
temperature, morphology or channel densities are correct is to
print and compare the properties of all compartments in both
implementations:

In HOC:

forall psection()

In Python:

neuron.h(’forall psection()’)

Note that compiled NMODL files present in the working folder will
be loaded by default, but such files located elsewhere have to be
imported explicitly:

neuron.load_mechanisms("/path/to/mod-files")

Above, the morphology and specifications of the biophysical
properties were given as keyword arguments to LFPy.Cell.
Models existing in memory can in principle be executed by
supplying the keyword arguments morphology=None,

24senselab.med.yale.edu/modeldb/ShowModel.asp?model=2488.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 11

http://www.neuromorpho.org
http://www.neuroml.org
http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=2488
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

delete_sections=False in addition to the above
cell_parameters, e.g., if a model is defined via the
NEURON graphical or command line interface. Defining scripts
with the full specification of the model loaded with LFPy.Cell,
is, however, in most cases more tractable.

5.5. USING CELL TEMPLATES
As illustrated in Section 4.2, the TemplateCell class requires
a template specification to assign section references. The template
specification file should conform to the basic structure of the
following example, assigning the somatic, dendritic and axonal
sections of a reconstructed morphology to lists:

begintemplate LFPyCellTemplate
public soma, axon, dend, apic
public all, somatic, axonal, basal, apical
objref all, somatic, axonal, basal, apical
proc init() {

all = new SectionList()
somatic = new SectionList()
axonal = new SectionList()
basal = new SectionList()
apical = new SectionList()

}
create soma[1], axon[1], dend[1], apic[1]
endtemplate LFPyCellTemplate

5.6. THE EXTRACELLULAR MECHANISM AND PARALLEL NEURON
LFPy by default inserts the extracellular mechanism
provided by NEURON in every compartment (which is use-
ful to simulate the use of e.g., extracellular stimulation elec-
trodes). This mechanism conveniently provides direct access to
the total transmembrane current In, eliminating the need to
individually extract all ionic, resistive, capacitive and synap-
tic transmembrane currents and sum them. While certain
minor limitations for use of the extracellular mechanism
together with the parallel capabilities of NEURON provided
by ParallelContext exist, i.e., in combination with the
multisplit-method and splitcell-method applied to dendritic trees
of individual cells (Hines et al., 2008), the present version ofLFPy
has not been written in a way that exploit NEURONs parallel
capabilities. Therefore, LFPy does not support implicit parallel
simulations of extracellular potentials with interconnected neu-
rons. Within that scope, different cell-objects in general have to be
distributed between different MPI-ranks, and their correspond-
ing connections have to be communicated using the provided
ParallelContext interface. Note that in the MPI example in
Section 4.3, each cell exists independently without connections
on different MPI ranks which does not require the NEURON
ParallelContext.

5.7. INDEXED COMPARTMENTS AND SECTION REFERENCES
LFPy extensively uses numpy array-operations for efficient cal-
culation of extracellular potentials. Most data regarding specific
compartments in the model neuron is therefore stored in numpy-
arrays with length equal to the total number of compartments
in the cell. This includes, for example, the start- and end coor-
dinates of current sources along the x, y, z-dimensions and the
transmembrane currents in each time step. Each compartment is
in this representation assigned a specific (unique) index.

However, the usual way to access compartments in NEURON
is through section references and relative coordinates:

segment = neuron.h.apic[0](0.5)

i.e., there are no ’global’ indices as in LFPy where instead the
compartment indices, idx, correspond to a counter in a nested
loop over all sections and compartments:

idx = 0
for section in neuron.h.allsec():

for segment in section:
print section.name(), segment.x, idx
idx += 1

Therefore, to ease this transition for users accustomed to working
with specific models in NEURON, LFPy.Cell provides meth-
ods for getting indices corresponding to sections in the NEURON
namespace

cell.get_idx(section="dend[1]")

or conversely, getting section names and positions from compart-
ment indices:

cell.get_idx_name(idx=np.array([1, 2, 3]))

5.8. CONSTRUCTING LINE SOURCES
Morphologically detailed neuron models resulting from histolog-
ical reconstruction (De Schutter, 2009, Ch. 8), typically specify
sections with an arbitrary number of data points (x, y, z, d),
i.e., 3D locations and diameters. For a section corresponding
to a continuous piece of dendrite split into Nseg compartments,
NEURON creates equivalent cables that correspond to the arc
length as specified by the histological 3D-points, where the cables
have equal length, but varying diameter, effectively with different
electrotonic length constants. The total length of the compart-
ments is equal to the total arc-length of the reconstructed section,
but the detailed geometry is not needed for solving the cable
equation. Compartments and their respective transmembrane
currents must however be assigned a location and orientation in
3D space. In LFPy, the start and end-point coordinates of each
straight line source are obtained using linear interpolation along
the total arc-length of each section, so that for a section with
section.nseg==1 the line source is a straight line between
the start and end-points of the section, for section.nseg==2,
straight lines between the start, mid- and end-points of each sec-
tion are used and so forth. As a consequence, the total length
of the line sources will typically be less than the total arc length
of the section depending on its geometry, but more histological
information may be preserved with line sources by increasing the
number of compartments per section. This reduction in morpho-
logical detail is implied in Figure 2A. The diameter and surface
area of each compartment as reported by NEURON is preserved,
however, such that the minimum allowable distance between a
putative extracellular site and compartment axis will be equal to
its radius. If conflicts are detected, the minimum radius employed

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

in extracellular potential calculations is automatically set equal to
the respective compartment radius.

5.9. FAST AND MEMORY-EFFICIENT SCHEME FOR CALCULATING
EXTRACELLULAR POTENTIALS

The traditional way of employing the forward formalism for cal-
culation of extracellular potentials as described in section 2.2 is
to first extract the membrane currents of a model neuron for the
entire duration of the simulation time, and to store them tem-
porarily either in memory or on file (Holt and Koch, 1999; Gold
et al., 2006, 2007; Pettersen et al., 2008). The stored transmem-
brane currents may then be used to calculate the extracellular
potentials offline. This is, however, a computationally ineffi-
cient and memory-consuming procedure. For example, storing all
transmembrane currents of a 1000-compartment neuron model
at 64-bit float precision for 1 s of simulation time running at 20
kHz temporal resolution, will require 160 MB of uncompressed
binary storage (e.g. with numpy.save() or with HDF525), and
as much as ∼500 MB in a text file using numpy.savetxt()
with %.18e formatting.

As shown in section 4.2, this inefficient and memory-
consuming process of intermediate storage of membrane currents
can be omitted altogether. Assuming linear superposition of
extracellular potentials from different current sources in extracel-
lular media, LFPy can geometrically map the contribution from
each compartment-current to any electrode contact point defined
with the class LFPy.RecExtElectrode. This is done by tem-
porarily substituting the cell’s membrane currents with an (N, N)
identity-matrix, and running the cell object and corresponding
identity matrix through the LFPy.RecExtElectrode class,
defining the geometry of an extracellular recording device with
Ncontacts contact points. The end result is an (N, Ncontacts) coef-
ficient matrix C, that only needs to be computed once. For
simulations of extracellular potentials, the potentials at the dif-
ferent electrode contacts at every time step ti is then simply given
by the dot product

�(ti) = C · I(ti) , (7)

where the vector I(ti) of length N contains the respective mem-
brane currents, and �(ti) a vector with length Ncontacts con-
taining the extracellular potentials at time-step ti. The memory
requirements are potentially reduced by orders of magnitude (≈
N/Ncontacts) vs. in-memory storage of transmembrane currents,
at the cost of calculating C. Any such array Cx (or list thereof)
can readily be passed with keyword argument dotprodcoeffs
to cell.simulate(). LFPy thereby facilitates additional
computations relying on compartmental membrane currents,
where cell and stimulus can still be used to set up the
model.

LFPy will default to storing results in-memory, but sim-
ulation of extracellular potentials to HDF5 directly with
h5py is supported by setting LFPy.Cell.simulate key-
word arguments to_memory=False, to_file=True, and
file_name="some/file/name.h5".

25www.hdfgroup.org/HDF5/.

6. DISCUSSION AND OUTLOOK
We have presented a new Python software package, LFPy, for
calculation of extracellular potentials around morphologically
reconstructed neurons. Despite its name, the software is not only
applicable for calculation of local field potentials (LFPs), the low-
frequency part of the extracellular potentials (cf. Example 1 in
section 3.1). As the biophysical forward-modeling scheme is also
applicable for the higher frequencies contained in electrical sig-
nals recorded in the brain, LFPy can equally efficiently be used
for simulations of high-frequency signals such as extracellular
spikes (cf. Example 2 in section 3.2).

While the present version 1.0 of LFPy is focused on the
calculation of single-neuron contributions to the extracellular
potentials, the computational scheme generalizes directly to the
calculation of signals from populations of neurons. This was illus-
trated in Example 3 in section 3.3 where also parallelization of the
computational scheme by means of MPI was employed, however
without communication between units. At present, LFPy is how-
ever less suitable for the investigation of extracellular potentials
generated in genuine network models that require paralleliza-
tion of the network activity. At present, this is a limitation in
the current version of the software mainly in that the simula-
tion control is incorporated as an LFPy.Cell class method,
and that the class LFPy.TemplateCell (which allows for
multiple simultaneous cell representations) is not using the capa-
bilities of NEURON for assigning each cell to different MPI
ranks. However, as simulation of extracellular signals from net-
work activity likely will become increasingly important, we aim
to implement solutions to these limitations in future versions of
LFPy.

The computational scheme presented here, and implemented
in version 1.0 of LFPy, is based on the biophysical for-
ward model in Equation (2). This formula inherently assumes
an infinite, isotropic, homogeneous, and ohmic extracellular
medium (Pettersen et al., 2012). However, the scheme can be
straightforwardly generalized to account for anisotropic conduc-
tivities (Nicholson and Freeman, 1975; Logothetis et al., 2007;
Goto et al., 2010), or jumps in conductivities at tissue inter-
faces (Pettersen et al., 2006). Also, even if the conductivity σ is
found to be frequency dependent, the forward modeling scheme
can still be used for each frequency (Fourier) component sepa-
rately. For further discussion of the validity and possible general-
izations of the present scheme, see Pettersen et al. (2012). Finally,
when the extracellular conductivities around the recording elec-
trodes have such a complicated spatial structure that analytical
formulas either do not exist or are unpractical [e.g., in cortical
slice recordings with multielectrode arrays (MEAs) Bakker et al.,
2009], one can always solve the forward problem by means of
finite element modeling (FEM) (Logg et al., 2012 ; Ness et al., 2012;
Lempka and McIntyre, 2013). A natural avenue of future work
is to expand LFPy to account for such new situations as needs
arises.

Another natural application of LFPy is the investigation of
effects from externally imposed electrical potentials in the extra-
cellular medium, for example due to currents injected during
deep-brain stimulation (DBS) (Oluigbo et al., 2012) or induced
by transcranial magnetic stimulation (TMS) or transcranial direct

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 13

http://www.hdfgroup.org/HDF5/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

current stimulation (tDCS) (McKinley et al., 2012). In fact, exter-
nally imposed spatiotemporally distributed extracellular poten-
tials (Anastassiou et al., 2010, 2011; Pashut et al., 2011) may
already be included in the present version of LFPy (by use
of cell.insert_v_ext()). However, effects from so called
ephaptic coupling (Anastassiou et al., 2011), where neurons
mutually interact via extracellular potentials stemming from their
own neuronal activity, is less amenable for investigation by the
present version of LFPy.

The development of neuroinformatics tools obviously benefits
strongly from an active community of users providing feed-
back, and possibly even new code reflecting new applications.
As we believe that detailed biophysical modeling of extracellular
potentials must become an integral ingredient in the future inter-
pretation of such signals, we are hopeful that the present launch
of LFPy will signal the beginning of an active community of
such modelers, preferably contributing to the joint development
of this tool.

ACKNOWLEDGMENTS
We acknowledge support from the The Research Council of
Norway (NOTUR, eNeuro, NevroNor), the EU Grant 269921
(BrainScaleS), the Polish Ministry of Science and Higher
Education (grants N N303 542839 and IP2011 030971), and the
International Neuroinformatics Coordinating Facility (INCF).

REFERENCES
Anastassiou, C. A., Montgomery, S. M., Barahona, M., Buzsáki, G., and Koch,

C. (2010). The effect of spatially inhomogeneous extracellular electric fields
on neurons. J. Neurosci. 30, 1925–1936. doi: 10.1523/JNEUROSCI.3635-
09.2010

Anastassiou, C. A., Perin, R., Markram, H., and Koch, C. (2011). Ephaptic coupling
of cortical neurons. Nat. Neurosci. 14, 217–223. doi: 10.1038/nn.2727

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). Neuromorpho.org: a
central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251. doi:
10.1523/JNEUROSCI.2055-07.2007

Bakker, R., Schubert, D., Levels, K., Bezgin, G., Bojak, I., and Kötter, R.
(2009). Classification of cortical microcircuits based on micro-electrode-
array data from slices of rat barrel cortex. Neural Netw. 22, 1159–1168. doi:
10.1016/j.neunet.2009.07.014

Bédard, C., and Destexhe, A. (2012). “Local field potentials,” in Handbook of
Neural Activity Measurement, eds R. Brette and A. Destexhe (Cambridge, UK:
Cambridge University Press), 136–191. doi: 10.1017/CBO9780511979958.005

Bédard, C., Kröger, H., and Destexhe, A. (2004). Modeling extracellular field poten-
tials and the frequency-filtering properties of extracellular space. Biophys. J. 86,
1829–1842. doi: 10.1016/S0006-3495(04)74250-2

Brette, R., and Destexhe, A. (eds.). (2012). Handbook of Neural Activity
Measurement. Cambridge, UK: Cambridge University Press. doi:
10.1017/CBO9780511979958

Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nat. Neurosci. 7,
446–451. doi: 10.1038/nn1233

Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellu-
lar fields and currents — EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13,
407–420. doi: 10.1038/nrn3241

Carnevale, N. T. (2007). Neuron simulation environment. Scholarpedia 2, 1378. doi:
10.4249/scholarpedia.1378

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge, UK:
Cambridge University Press. doi: 10.1017/CBO9780511541612

De Schutter, E. E. (2009). Computational Modeling Methods for Neuroscientists.
Cambridge, MA: MIT Press. doi: 10.7551/mitpress/9780262013277.001.0001

Einevoll, G. T., Franke, F., Hagen, E., Pouzat, C., and Harris, K. D. (2012). Towards
reliable spike-train recordings from thousands of neurons with multielectrodes.
Curr. Opin. Neurobiol. 22, 11–17. doi: 10.1016/j.conb.2011.10.001

Einevoll, G. T., Kayser, C., Logothetis, N. K., and Panzeri, S. (2013a). Modelling
and analysis of local field potentials for studying the function of cortical circuits.
Nat. Rev. Neurosci. 14, 770–785. doi: 10.1038/nrn3599

Einevoll, G. T., Lindén, H., Tetzlaff, T., Łęski, S., and Pettersen, K. H. (2013b).
“Local field potential: biophysical origin and analysis,” in Principles of Neural
Coding, eds R. Q. Quiroga and S. Panzeri (Boca Raton, FL: CRC Press),
37–59.

Einevoll, G. T., Pettersen, K. H., Devor, A., Ulbert, I., Halgren, E., and Dale, A. M.
(2007). Laminar population analysis: estimating firing rates and evoked synaptic
activity from multielectrode recordings in rat barrel cortex. J. Neurophysiol. 97,
2174–2190. doi: 10.1152/jn.00845.2006

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M.,
et al. (2010). Neuroml: a language for describing data driven models of neu-
rons and networks with a high degree of biological detail. PLOS Comput. Biol.
6:e1000815. doi: 10.1371/journal.pcbi.1000815

Gold, C., Henze, D. A., and Koch, C. (2007). Using extracellular action potential
recordings to constrain compartmental models. J. Comput. Neurosci. 23, 39–58.
doi: 10.1007/s10827-006-0018-2

Gold, C., Henze, D. A., Koch, C., and Buzsáki, G. (2006). On the origin of the
extracellular action potential waveform: a modeling study. J. Neurophysiol. 95,
3113–3128. doi: 10.1152/jn.00979.2005

Goto, T., Hatanaka, R., Ogawa, T., Sumiyoshi, A., Riera, J., and Kawashima,
R. (2010). An evaluation of the conductivity profile in the somatosen-
sory barrel cortex of wistar rats. J. Neurophysiol. 104, 3388–3412. doi:
10.1152/jn.00122.2010

Gratiy, S. L., Devor, A., Einevoll, G. T., and Dale, A. M. (2011). On the estimation of
population-specific synaptic currents from laminar multielectrode recordings.
Front. Neuroinform. 5:32. doi: 10.3389/fninf.2011.00032

Hämäläinen, M., Haari, R., Ilmoniemi, R. J., Knuutila, J., and Lounasmaa, O. V.
(1993). Magnetoencephalography — theory, instrumentation, and application
to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–
496. doi: 10.1103/RevModPhys.65.413

Hay, E., Hill, S., Schürmann, F., Markram, H., and Segev, I. (2011). Models of neo-
cortical layer 5b pyramidal cells capturing a wide range of dendritic and peri-
somatic active properties. PLOS Comput. Biol. 7:e1002107. doi: 10.1371/jour-
nal.pcbi.1002107

Hines, M. L., and Carnevale, N. T. (2001). Neuron: a tool for neuroscientists.
Neuroscientist 7, 123–135. doi: 10.1177/107385840100700207

Hines, M. L., Davison, A. P., and Muller, E. (2009). NEURON and Python. Front.
Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009

Hines, M. L., Markram, H., and Schürmann, F. (2008). Fully implicit parallel simu-
lation of single neurons. J. Comput. Neurosci. 25, 439–448. doi: 10.1007/s10827-
008-0087-5

Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., and Shepherd, G. M. (2004).
ModelDB: A database to support computational neuroscience. J. Comput.
Neurosci. 17, 7–11. doi: 10.1023/B:JCNS.0000023869.22017.2e

Holt, G. R., and Koch, C. (1999). Electrical interactions via the extracel-
lular potential near cell bodies. J. Comput. Neurosci. 6, 169–184. doi:

10.1023/A:1008832702585
Hunter, J. D. (2007). Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9,

90–95. doi: 10.1109/MCSE.2007.55
Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scientific tools

for Python. Available online at: http://www.scipy.org/
Langtangen, H. (2009). A Primer on Scientific Programming with Python. Berlin;

Heidelberg: Springer-Verlag Mathematics and Statistics. doi: 10.1007/978-3-
642-02475-7

Lempka, S. F., and McIntyre, C. C. (2013). Theoretical analysis of the local field
potential in deep brain stimulation applications. PLoS ONE 8:e59839. doi:
10.1371/journal.pone.0059839

Łęski, S., Lindén, H., Tetzlaff, T., Pettersen, K. H., and Einevoll, G. T.
(2013). Frequency dependence of signal power and spatial reach of the
local field potential. PLoS Comput. Biol. 9:e1003137. doi: 10.1371/journal.
pcbi.1003137

Lindén, H., Pettersen, K. H., and Einevoll, G. T. (2010). Intrinsic dendritic filtering
gives low-pass power spectra of local field potentials. J. Comput. Neurosci. 29,
423–444. doi: 10.1007/s10827-010-0245-4

Lindén, H., Tetzlaff, T., Potjans, T. C., Pettersen, K. H., Grün, S., Diesmann, M.,
et al. (2011). Modeling the spatial reach of the LFP. Neuron 72, 859–872. doi:
10.1016/j.neuron.2011.11.006

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 14

http://www.scipy.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lindén et al. LFPy: simulations of extracellular potentials

Logg, A., Mardal, K.-A., and Wells, G. N. (2012). Automated Solution of Differential
Equations by the Finite Element Method: The Fenics Book. Berlin; Heidelberg:
Springer-Verlag. doi: 10.1007/978-3-642-23099-8

Logothetis, N. K., Kayser, C., and Oeltermann, A. (2007). In vivo measurement of
cortical impedance spectrum in monkeys: implications for signal propagation.
Neuron 55, 809–823. doi: 10.1016/j.neuron.2007.07.027

Mainen, Z. F., and Sejnowski, T. J. (1996). Influence of dendritic structure
on firing pattern in model neocortical neurons. Nature 382, 363–366. doi:
10.1038/382363a0

McKinley, R., Bridges, N., Walters, C. M, and Nelson, J. (2012). Modulating
the brain at work using noninvasive transcranial stimulation. Neuroimage 59,
129–137. doi: 10.1016/j.neuroimage.2011.07.075

Nelson, M. J., and Pouget, P. (2010). Do electrode properties create a problem in
interpreting local field potential recordings? J. Neurophysiol. 103, 2315–2317.
doi: 10.1152/jn.00157.2010

Ness, T. B., Hagen, E., Negwer, M., Bakker, R., Schubert, D., and Einevoll, G. T.
(2012). “Modeling extracellular spikes and local field potentials recorded in
MEAs,” in Proceedings of the 8th international meeting on Multielectrode Arrays
(Reutlingen).

Nicholson, C., and Freeman, J. A. (1975). Theory of current source-density
analysis and determination of conductivity tensor for anuran cerebellum. J.
Neurophysiol. 38, 356–368.

Nunez, P. L., and Srinivasan, R. (2006). Electric Fields of the Brain,
2nd Edn. New York, NY: Oxford University Press, Inc. doi:
10.1093/acprof:oso/9780195050387.001.0001

Oluigbo, C. O., Salma, A., and Rezai, A. R. (2012). Deep brain stimula-
tion for neurological disorders. IEEE Rev. Biomed. Eng. 5, 88–99. doi:
10.1109/RBME.2012.2197745

Panzeri, S., and Quian Quiroga, R. (eds.). (2013). Principles of Neural Coding. Boca
Raton, FL: CRC Press.

Pashut, T., Wolfus, S., Friedman, A., Lavidor, M., Bar-Gad, I., Yeshurun, Y., et
al. (2011). Mechanisms of magnetic stimulation of central nervous system
neurons. PLoS Comput. Biol. 7:e1002022. doi: 10.1371/journal.pcbi.1002022

Pérez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific
computing. Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.2007.53

Pettersen, K. H., Devor, A., Ulbert, I., Dale, A. M., and Einevoll, G. T. (2006).
Current-source density estimation based on inversion of electrostatic for-
ward solution: effects of finite extent of neuronal activity and conductivity
discontinuities. J. Neurosci. Methods 154, 116–133. doi: 10.1016/j.jneumeth.
2005.12.005

Pettersen, K. H., and Einevoll, G. T. (2008). Amplitude variability and extra-
cellular low-pass filtering of neuronal spikes. Biophys. J. 94, 784–802. doi:
10.1529/biophysj.107.111179

Pettersen, K. H., Hagen, E., and Einevoll, G. T. (2008). Estimation of population
firing rates and current source densities from laminar electrode recordings. J.
Comput. Neurosci. 24, 291–313. doi: 10.1007/s10827-007-0056-4

Pettersen, K. H., Lindén, H., Dale, A. M., and Einevoll, G. T. (2012). “Extracellular
spikes and CSD,” in Handbook of Neural Activity Measurement, eds R. Brette
and A. Destexhe (Cambridge, UK: Cambridge University Press), 92–135. doi:
10.1017/CBO9780511979958.004

Rall, W., and Shepherd, G. M. (1968). Theoretical reconstruction of field potentials
and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol. 31,
884–915.

Reimann, M. W., Anastassiou, C. A., Perin, R., Hill, S. L., Markram, H., and Koch,
C. (2013). A biophysically detailed model of neocortical local field potentials
predicts the critical role of active membrane currents. Neuron 79, 375–390. doi:
10.1016/j.neuron.2013.05.023

Schomburg, E. W., Anastassiou, C. A., Buzsáki, G., and Koch, C. (2012). The spik-
ing component of oscillatory extracellular potentials in the rat hippocampus. J.
Neurosci. 32, 11798–11811. doi: 10.1523/JNEUROSCI.0656-12.2012

Segev, I., Fleshman, J. W., and Burke, R. E. (1989). “Compartmental models
of complex neurons,” in Methods in Neuronal Modeling: From Synapses to
Networks, eds C. Koch and I. Segev (Cambrigde, MA: MIT Press), 63–96.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 10 September 2013; accepted: 09 December 2013; published online:
January 2014.
Citation: Lindén H, Hagen E, Łęski S, Norheim ES, Pettersen KH and Einevoll GT
(2014) LFPy: a tool for biophysical simulation of extracellular potentials generated by
detailed model neurons. Front. Neuroinform. 7:41. doi: 10.3389/fninf.2013.00041
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Lindén, Hagen, Łęski, Norheim, Pettersen and Einevoll. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 41 | 15

16

http://dx.doi.org/10.3389/fninf.2013.00041
http://dx.doi.org/10.3389/fninf.2013.00041
http://dx.doi.org/10.3389/fninf.2013.00041
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons
	Introduction
	Biophysics Behind LFPy
	Multicompartmental Modeling of Transmembrane Currents
	From Transmembrane Currents to Extracellular Potentials

	Overview of LFPy
	Representing Cells in LFPy
	Cell Stimulation
	Extracellular Recording Electrodes

	Examples
	Single synaptic input into passive pyramidal cell
	Spiking Pyramidal Cell with Custom hoc Code
	Using MPI For Distributed Simulations
	More Examples

	Technical Aspects
	Requirements
	Installation and Testing
	Easy install of LFPy
	Installation from source
	Testing the installation
	Unit tests

	Morphology Files
	Visualization

	Setting the Biophysical Properties
	Using Cell Templates
	The extracellular Mechanism and Parallel NEURON
	Indexed Compartments and Section References
	Constructing Line Sources
	Fast and Memory-Efficient Scheme for Calculating Extracellular Potentials

	Discussion and Outlook
	Acknowledgments
	References

