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Altered DNA methylation occurs ubiquitously in human cancer from the earliest measurable stages. A cogent approach
to understanding the mechanism and timing of altered DNA methylation is to analyze it in the context of carcinogenesis
by a defined agent. Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associated with lymphoma and nasopha-
ryngeal carcinoma, but also used commonly in the laboratory to immortalize human B-cells in culture. Here we have
performed whole-genome bisulfite sequencing of normal B-cells, activated B-cells, and EBV-immortalized B-cells from the
same three individuals, in order to identify the impact of transformation on the methylome. Surprisingly, large-scale
hypomethylated blocks comprising two-thirds of the genome were induced by EBV immortalization but not by B-cell
activation per se. These regions largely corresponded to hypomethylated blocks that we have observed in human cancer,
and they were associated with gene-expression hypervariability, similar to human cancer, and consistent with a model of
epigenomic change promoting tumor cell heterogeneity. We also describe small-scale changes in DNA methylation near
CpG islands. These results suggest that methylation disruption is an early and critical step in malignant transformation.

[Supplemental material is available for this article.]

The original discovery of altered DNA methylation in cancer involved

widespread loss of DNA methylation (Feinberg and Vogelstein

1983). Recently, whole-genome bisulfite sequencing (WGBS) by us

and others has shown that approximately one-half of the tumor

genome is hypomethylated, involving one-third of single-copy

genes (Hansen et al. 2011; Berman et al. 2012). Furthermore, this

hypomethylation includes large blocks corresponding to large or-

ganized chromatin lysine (K)-modified regions associated with the

nuclear lamina, called LOCKs, blocks, or LADs (Guelen et al. 2008;

Wen et al. 2009; Hawkins et al. 2010).

The timing and role of altered DNA methylation in cancer has

not been fully worked out, although some changes like hypo-

methylation occur at the earliest discernible time points in human

tumor formation (Goelz et al. 1985; Teschendorff et al. 2012). One

way to approach the issue of epigenetic timing mechanistically is

to relate epigenetic changes to known causal agents. One such

agent is Epstein-Barr virus (EBV), associated with Burkitt’s lym-

phoma, nasopharyngeal carcinoma, post-transplant lymphopro-

liferative disease, and to a large extent, Hodgkin’s disease (Rickinson

and Kieff 2007).

Epstein-Barr virus (EBV) is a tumorigenic human herpesvirus

that promotes proliferation and inhibits apoptosis in infected cells.

The association of EBV with cancer was initially discovered in

Burkitt’s lymphoma, and a causative link with the disease was

suggested by the finding that EBV infection immortalized B-lym-

phocytes in vitro, generating continuously proliferating lympho-

blastoid cell lines (LCL) (Pope et al. 1973). After the primary in-

fection, EBV persists in memory B-cells in an inert latent state

(Kieff and Rickinson 2007). In addition to this state, designated as

latency type 0, there are three additional latency types, called types

I, II, and III, characterized by the differential expression of latent

viral proteins (Thorley-Lawson 2001; Young and Rickinson 2004).

Although cells with an LCL (type III) phenotype can be found in

infectious mononucleosis, their proliferation is controlled by the

immune system. Although type III latency viral products (espe-

cially EBNA-2 and LMP-1) are essential to induce and maintain

B-cell activation and proliferation, and several cellular pathways

and genes targeted by these proteins have been described (Kieff

and Rickinson 2007), the process of EBV-induced immortalization

is still not well understood. Several observations, however, sug-

gested that the epigenetic reprogramming of the host genome by

viral products may play a central role in the process of immortal-

ization (Niller et al. 2012).

An adequate characterization of EBV-induced alterations in

the host methylome is lacking, since most publications analyzed

the effects of EBV infection on only a few selected genes (Tsai et al.

2002; Paschos et al. 2009), and prior genome-wide DNA methyl-

ation studies have not used biological measurement and/or ana-

lytical methods that would permit detection of the major finding

in this study.
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Here we performed whole-genome bisulfite sequencing on

quiescent, CD40/IL4-activated, and matched EBV transformed

B-cells in order to characterize their methylome at high resolution.

Including CD40/IL4-activated cells in our study design enabled

us to identify DNA methylation changes specific to the process of

B-cell immortalization by EBV, in contrast to earlier studies. In

addition, the comprehensive methylome profile we ascertained by

WGBS allowed us to discover the presence of long hypomethylated

blocks following EBV transformation.

Results
In order to address the epigenetic effects of EBV transformation

independent of activation effects per se or confounding genetic

differences between subjects, we chose to study matched B-cells

from three healthy volunteers. Furthermore, in contrast to pre-

vious studies (Grafodatskaya et al. 2010; Sun et al. 2010; Caliskan

et al. 2011; Sugawara et al. 2011; Aberg et al. 2012), we directly

compared EBV immortalized cells to activated B-cells. Our rea-

soning was that since EBV infection and antigen stimulation in-

duce similar gene pathways in quiescent B-cells (Calender et al.

1987; O’Nions and Allday 2004), we compared DNA methylation

levels between EBV-transformed and CD40L/IL4-activated cells to

identify differences specific to the process of transformation (Fig.

1). We also compared activated B-cells to quiescent B-cells (Fig. 1).

Since we did not know in advance where the most significant

differences in methylation might occur, we performed whole-ge-

nome bisulfite sequencing (WGBS). This method also allows us to

detect large-scale changes to the methylome, such as large hypo-

methylated blocks.

We generated sequencing data to a depth of 8–12 times across

samples and analyzed it using BSmooth (Hansen et al. 2012), an

algorithm designed for determining DNA methylation in low-

coverage WGBS data. Our previous work demonstrated that

BSmooth reliably estimates methylation levels at single base-pair

resolution by borrowing information from nearby CpGs. BSmooth

also allows for the identification of small and large-scale changes in

DNA methylation, properly accounting for biological replicates.

Using BSmooth we were earlier able to discover large-scale blocks

of hypomethylation in colon cancer (Hansen et al. 2011), which

was later confirmed in an independent study (Berman et al. 2012).

We performed quality control, mapping, and smoothing of

our WGBS data using the BSmooth pipeline (Methods; Supple-

mental Fig. 1; Supplemental Tables 1,2). After filtering out reads

with methylation bias and low-mapping quality (see Methods), we

obtained on average 180 million reads (626 million reads) that

contained at least one CpG site (Supplemental Table 2). This

amount of sequencing provided us with at least one sequencing

read for 24.3 million CpG sites per sample (61 million CpG sites)

(Supplemental Table 2). Bisulfite conversion rates were estimated

to be 96%–99% across samples using lambda phage DNA as a spike-

in control (Methods; Supplemental Table 2).

We observed extensive differences in the genome-wide dis-

tribution of DNA methylation between EBV-transformed and ac-

tivated B-cells from each of the three individuals. Remarkably,

there was a dramatic change in large regions of the genome, with

10,565 large-scale blocks of hypomethylation encompassing 2.18

Gb of the genome, of which 485 were longer than 1 Mb (Fig. 2A;

Supplemental Data 1). As a control, we permuted the data labels

and reran the analysis a total of nine times. We use these permu-

tations to compute a family-wise error rate (corrected for multiple

testing) for each of these blocks. This error rate describes how often

we see another block of similar length and effect size anywhere in

the genome and in any of the permutations. Due to the small

number of permutations, this error rate has a very coarse resolu-

tion, and we choose a stringent cutoff of 5%. This cutoff translates

to a requirement that we cannot see an equally good block in any

of the permutations anywhere in the genome. Since we believe this

to be a very stringent cutoff, perhaps too stringent, we report re-

sults before and after permutation testing. Surprisingly, we found

a total of 3888 blocks encompassing 1.96 Gb at a family-wise error

rate of <5%. This confirms the large amount of difference between

the two conditions.

While BSmooth is capable of estimating methylation levels at

single-base resolution, the smoothed methylation values in Figure

2A estimate methylation levels at the kilobase scale. These blocks

are relatively gene poor and contain roughly one-third of the an-

notated UCSC gene promoters despite encompassing roughly two-

thirds of the genome. The methylation level inside these hypo-

methylated blocks is generally above 50% (Supplemental Fig. 2). To

ensure that copy-number variation did not confound our results

we estimated genome-wide CNV levels using our bisulfite-con-

verted sequencing reads, and did not find any large-scale copy-

number changes. We also compared the position of EBV blocks

with other large-scale genomic domains, specifically LADs (Guelen

et al. 2008) and LOCKs (Wen et al. 2012), and found a significant

overlap with both of these domains (Table 1) (P < 2.2 3 10�16).

Note that these epigenetic marks are tissue specific and that we

used data derived from lung fibroblasts for LADs (Guelen et al.

2008) and pulmonary fibroblasts for LOCKS (Wen et al. 2009).

Hence, we may be underestimating the true correlation between

hypomethylated blocks and these domains. We also compared the

EBV blocks with epigenetics marks from the ENCODE Project

obtained on the Tier 1 cell line GM12878, which is a lympho-

blastoid cell line. We used all available ChIP-seq tracks on this

cell line, for a total of 192 tracks, including all transcription

factors and histone marks assays. We found enrichment of

H3K27me3 (a repressive mark) inside the EBV blocks (odds-ratio =

3.48, P < 2.2 3 10�16 and present in 97% of all blocks) and depletion

of all transcription factors. We also examined block boundaries

(defined as 10 kb on either side of a block). Again we found

Figure 1. DNA methylation and gene expression changes following
EBV transformation and CD40L/IL4 activation. The number of differen-
tially methylated regions (DMRs), differentially expressed (DE) genes, and
bases covered by hypomethylated blocks is listed for each condition.
Numbers after the slash are at a family-wise error rate of <5% using
permutation testing. Differences specific to the process of transformation
(dashed line) were identified by comparing EBV immortalized B-cells to
CD40L/IL4 activated B-cells.
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enrichment of H3K27me3 (odds-ratio = 2.16, P < 2.2 3 10�16 and

present in 72% of all boundaries), but also a number of other marks

involved in either gene regulation or chromatin stability during

mitosis. BATF (odds-ratio = 1.55, P < 2.2 3 10�16, present in 15% of

block boundaries) encodes a transcription factor that complexes

with IRF4 in targeting genes during immune activation (Glasmacher

et al. 2012). H4K20me1 (odds-ratio = 1.36, P < 2.2 3 10�16, present in

48% of block boundaries) is thought to regulate S-phase pro-

gression and genome stability (Jorgensen et al. 2013) and is

a WNT-signaling mediator (Li et al. 2011). EZH2 (odds-ratio =

1.59, P < 2.2 3 10�16, present in 66% of block boundaries)

encodes a canonical histone methyltransferase for H3K27me3

and is both overexpressed and mutated in lymphomas and

other neoplasms (Chase and Cross 2011). The protein encoded

by RAD21 (odds-ratio = 1.43, P < 2 3 10�16, present in 30% of

block boundaries) associates with mitotic chromatin stability

(Deardorff et al. 2012). The protein encoded by BCL11A (odds-

ratio = 1.44, P < 2 3 10�16, present in 11% of block boundaries)

has been shown to interact with a complex of transcriptional

corepressors (RCOR1/KDM1A) in modulating hemoglobin

switching and fetal hemoglobin silencing (Xu et al. 2013). Note

that since ENCODE only profiled EBV-transformed cells, we

Figure 2. Large hypomethylated genomic blocks in EBV-immortalized B-cells. (A) Smoothed methylation values from bisulfite sequencing data for
quiescent (dark blue), activated (light blue), and EBV immortalized (red) B-cells, top panel. The smoothed methylation values estimate average DNA
methylation on the kilobase scale. Hypomethylated EBV blocks are demarcated in pink shading. The bottom panel shows smoothed DNA methylation
values for normal colon (purple) and colon tumor (orange) samples, from Hansen et al. (2011). (B) Genome-wide distribution of DNA methylation. The
large block domains appear as a large bump around 0.6. (C ) Simulations show that block locations co-occur. For each of the three EBV transformed
samples, we find sample-specific blocks by comparing the sample in question to all three activated samples. For each set of sample-specific blocks, we
computed the distance from the observed start position of each sample-specific block to the closest start position in the other two sets. The boxplot on the left
shows the distribution of these distances, pooled across all six comparisons. The boxplot on the right shows the expected distribution of distances under the
null hypothesis that the block start positions do not agree. The smaller values seen in the left boxplot demonstrates that the start positions of the sample-
specific blocks co-occur much more frequently than expected by chance. (D) Enrichment of hypervariable genes in EBV-transformed cell lines, inside EBV
blocks. The x-axis denotes a standard deviation cutoff, above which genes are considered hypervariable. The y-axis is the log2 odds ratio of enrichment of
these hypervariable genes inside EBV blocks. The gray shaded area is a 95% confidence interval, and values above 0 mark enrichment.
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cannot observe whether these marks change as a consequence of

transformation.

We then searched for large-scale DNA methylation differences

between activated and quiescent cells and found hypomethylated

blocks encompassing 60.7 Mb of the genome with the largest block

being just under 95 kb (Supplemental Data 1). Of these, <1%, i.e.,

0.6 Mb, were hypermethylated, which we think is likely noise and

do not report. Using a permutation approach as above (see

Methods), we found that none of these putative activation blocks

had a family-wise error rate of <5%. The close agreement between

activated and quiescent cells is apparent in Figure 2A, where the

kilobase-scale methylation estimates for the activated cells very

closely track the estimates for the quiescent cells. Similarly, the

genome-wide distribution of DNA methylation showed little or no

differences between activated and quiescent cells, but a dramatic

shift in distribution was observed between activated and EBV-

transformed cells (Fig. 2B). We conclude that the formation of

hypomethylated blocks occur specifically in the immortalization

step and is not associated with activation.

To further pinpoint the timing of the hypomethylation and

to investigate the possibility that an increased number of cell di-

visions could lead to hypomethylation, we examined additional

samples at 16 d and 3 wk post EBV infection (one sample each time

point) and CD40 activation (two samples at each time point), as

3 wk is the longest that CD40 activation can be maintained in

culture. We repeated the analysis with these new samples, com-

paring each of the four new conditions to the three CD40-activated

samples described above (which were measured at day 6). For the

activated samples, at day 16 we found 10,433 blocks encompassing

267 Mb, of which one block/0.03 Mb had a family-wise error rate of

<5% using a permutation procedure. At 3 wk post-activation we

found 11,195 blocks/242 Mb, of which three blocks/0.22 Mb had

a family-wise error rate of <5%. In conclusion, we see no evidence

of extensive large-scale hypomethylation at up to 3 wk post-acti-

vation. For the EBV infected cells we also observed, at most, very

small differences at these two time points. Specifically, at day 16 we

found 8984 blocks/165 Mb reducing to 194 blocks/3.89 Mb at

a family-wise error rate of <5%, and at wk 3 we found 9418 blocks/

208 Mb reducing to 13 blocks/1.45 Mb at a family-wise error rate of

<5%. We conclude that the large-scale hypomethylation described

above occurs after 3 wk post-infection, but before 6 wk.

We compared the EBV blocks to the large blocks of hypo-

methylation that we previously discovered in colon cancer (Hansen

et al. 2011). The degree of overlap between hypomethylated EBV

and cancer blocks was a striking 1.72 Gb. The consistency between

the block boundaries between EBV and colon cancer was also re-

markably high (Fig. 2A). An analysis of individual specific blocks

confirms this to be significant (P < 0.001) (Fig. 2C; Methods).

By the same token, there was a 25% difference in location of

the two sets of blocks, with 462 Mb-hypomethylated and 96 Mb-

hypermethylated blocks unique to EBV-transformed cells. Thus,

the specific blocks are not identical across all cancer mechanisms.

These differences between hypometh-

ylated blocks in EBV transformed cells

and colon cancer appeared meaningful,

based on a comparison of our data to gene-

expression barcode (Zilliox and Irizarry

2007; McCall et al. 2011) and publicly

available microarray data (Runne et al.

2007; Gyorffy et al. 2009) (see Methods)

between EBV transformed cell lines and

colon cancer. Specifically, genes inside

EBV blocks, but not in colon-cancer blocks, were more likely to be

expressed in normal colon and be transcriptionally silent in lym-

phocytes (OR = 3.5, P < 2.2 3 10�16). The converse is true for genes

inside colon-cancer blocks but not in EBV blocks (OR = 4.0, P < 2.2 3

10�16). This correlation suggests that EBV and colon-cancer blocks

have biological implications, and our findings are not due to chance.

In Hansen et al. (2011) we found hypomethylated blocks to

be enriched for genes with hypervariable expression in colon

cancer, which could drive tumor cell heterogeneity. To investigate

whether the same mechanism might be in play during EBV im-

mortalization, we examined the methylation variability in our

current data and noted that the hypomethylated blocks were also

notably more variable in methylation in the EBV immortalized

cells than in activated B-cells (Fig. 2A). When we compared the

between-sample variation in methylation for both cancer and EBV

transformed cells, we found EBV hypomethylated blocks to be

much more consistent, with cancer samples showing an increased

variance in 98% of common blocks (t-stat, P < 2.2 3 10�16) (Fig. 2A).

In order to relate the hypervariable methylation of blocks

after EBV immortalization to gene-expression variability, we needed

to examine large numbers of samples for gene expression in order

to generate such a metric. We reasoned that since the HapMap

project was based on EBV-immortalized cell lines, we could use pub-

licly available data on gene expression from 257 EBV-transformed

HapMap samples (Choy et al. 2008) to address this question. We

normalized the array data using the gene-expression barcode and

discarded unexpressed genes. The remaining genes were then

sorted based on whether they were located inside or outside of

hypomethylated blocks, and the standard deviation in expression

was calculated. This analysis revealed EBV hypomethylated blocks

to be enriched for highly variable genes, no matter which standard

deviation cutoff was used to define high variability (Fig. 2D).

Surprisingly, the genes exhibiting the highest degree of hy-

pervariability in hypomethylated blocks are genes encoding

immunoglobulin variable domains including IGHV3-7, IGHV3-9,

IGHV3-21, IGHV3-23, and IGKV4-1. A functional annotation

analysis of genes with hypervariable expression in the blocks (most

relevant functionally) shows that the most enriched category is

immune response genes (P = 1.2 3 10�9). The presence of these

genes in hypomethylated blocks is intriguing and suggests that it is

feasible that hypomethylated blocks have properties that enable

inactive genes to be induced, perhaps in a coordinated manner,

when required.

In addition to large-scale blocks, we also identified small

DMRs associated with transformation. Note that these latter results

would be akin to the studies done in a more limited way on

microarrays by other investigators (Grafodatskaya et al. 2010; Sun

et al. 2010; Caliskan et al. 2011; Sugawara et al. 2011; Aberg et al.

2012), although the current results are more comprehensive, based

on WGBS. These small DMRs were typically 250–500 bp in length,

with the longest being 2.5 kb, and encompassed roughly 1 Mb of

the genome. In total, we identified 2970 small DMRs, of which

Table 1. Overlap of blocks with genomic domains

Genomic
domain

Size
(in GBs)

Size
(in millions
of CpGs)

Overlap
with blocks

(in GB)

Overlap with
blocks (in millions

of CpGs)
Odds
ratio

Colon cancer
blocks

1.81 14.7 1.72 13.6 20.3

LADs 1.14 8.6 1.04 7.59 5.6
LOCKs 0.77 5.75 0.74 5.4 10.5

Hansen et al.
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1502 were hypermethylated and 1468 were hypomethylated fol-

lowing EBV transformation (Supplemental Data 2). Using permu-

tation testing, as for the block analysis above, all of these DMRs

have a family-wise error rate of <5%. In total, 644 of these DMRs

overlapped and another 588 DMRs were within 2 kb of an anno-

tated UCSC gene promoter. We then looked for methylation dif-

ferences between quiescent and activated B-cells and identified

1014 small DMRs associated with activation (Supplemental Data

2). These small DMRs covered 273 kb, and were unevenly spread

between hypermethylation (293) and hypomethylation (721).

However, only one of these DMRs has a family-wise error rate of

<5%. In total, 235 of these DMRs overlapped and another 191

DMRs were within 2 kb of an annotated UCSC gene promoter.

Using a GO analysis, genes with a hypermethylated small DMR

within 2 kb of their promoter region were found to be enriched for

genes associated with translation (P = 7.81 3 10�8), chromatin

reorganization (P = 4.34 3 10�3), and RNA catabolism (P = 6.37 3

10�3). No enrichment was found for any functional categories for

genes near hypermethylated small DMRs. We found that genes

harboring a small DMR within 2 kb of their promoter were not

enriched for genes with hypervariable expression, using the same

analytical strategy we used to associate hypervariable genes with

hypomethylated blocks.

As above, we also examined the time points of 16 d and 3 wk

post-activation and EBV infection using two activation samples

and one EBV-infected sample measured at the two time points. As

for the block analysis, we initially identify some number of small

DMRs, but almost none are present after permutation testing.

Specifically, comparing samples at 16 d post-activation to samples

at day 6 after activation, we found 1788 small DMRs/432 kb, but

none of these have a family-wise error rate of <5%. At 3 wk post-

activation we found 2870 small DMRs/746 kb, but only three of

these DMRs have a family-wise error rate of <5%. We conclude

that after permutation testing there remains little evidence of

small differentially methylated regions between activation at day

6 and 16 d and 3 wk post-activation. At 16 d post-EBV infection

we find 938 small DMRs/246 kb of which seven DMRs have

a family-wise error rate of <5%, and at 3 wk post-EBV infection we

find 1641 DMRs/406 kb, of which five DMRs have a family-wise

error rate of <5%.

To validate the small DMRs, we performed bisulfite pyrose-

quencing on a number of small DMRs. Based on the estimated

mean difference between EBV-transformed cells and activated

cells, we picked seven high-ranked DMRs (ranks between 16 and

186 out of 2970) and two DMRs much lower ranked (ranks 2328

and 2586 out of 2970). In the seven high-ranking DMRs, bisulfite

pyrosequencing demonstrated a large decrease in DNA methyla-

tion of EBV transformed cells compared with quiescent and acti-

vated B-cells, which is in agreement with our whole-genome bi-

sulfite sequencing results (Supplemental Figs. 3,4). Differential

methylation was not observed in the two low-ranking DMRs.

To determine the relationship between DNA methylation and

functional properties, we next measured gene expression using

Affymetrix microarrays on the same nine samples used for WGBS.

Gene-expression barcodes were used to normalize the array data.

Comparing EBV transformed and activated cells, we identified

1769 genes to be differentially expressed above background with

a fold change of two or greater (Supplemental Data 3). A total of 959

of these genes were up-regulated and 810 were down-regulated.

We identified genes with promoters within 2 kb or overlapping

a small DMR and found, as expected, an inverse relationship be-

tween DNA methylation and gene expression with a correlation of

�0.36 (P < 2.2 3 10�16) (Supplemental Figs. 5, 6). Comparing ac-

tivated and quiescent cells, we found 4502 genes to be differen-

tially expressed above background with a fold change of two or

greater (Supplemental Data 3). These genes include markers of

activation (FCER2) and proliferation (CCND2, CCNE1, CCNE2),

highlighting the need for using activated cells as controls when

studying EBV transformation. We also found the lamin genes

LMNB1, LMNB2, and LMNA to be more than fourfold up-regulated

between quiescent and activated cells, but unchanged between

EBV transformed and activated cells. We performed TaqMan qPCR,

and measured relative expression levels for the CCND2, CCNE1,

CCNE2, FCER2, LMNA, LMNB1, and LMNB2 genes (Supplemental

Fig. 7; Methods). Consistent with our microarray results, we found

the expression of the cyclin and the FCER2 genes, which are acti-

vation markers, to be up-regulated in activated cells compared with

quiescent cells. We also found these genes to be up-regulated in

EBV transformed cells. In addition, we found overexpression of

LMNA, LMNB1, and LMNB2 genes to be up-regulated in both EBV

transformed and activated cells compared with quiescent cells.

Similar to the microarray results, the expression levels between the

EBV transformed and activated cells did not differ significantly in

these three genes.

Discussion
In summary, we show here that EBV immortalization of B-lym-

phocytes causes widespread demethylation of the genome, af-

fecting 2.18 Gb and including one-third of genes. The study adds

mechanistic weight to an emerging and growing story of large

domains providing a higher-order organization of the genome that

are functionally altered in development and disease. While not

entirely overlapping functionally or physically, there is neverthe-

less strong correspondence between lamin-associated domains,

large regions with heterochromatin-associated lysine methylation,

alternately called LOCKs or blocks and characterized by H3K9me2

and H3K27me3, partially methylated domains in fibroblasts, and

hypomethylated blocks in human colorectal cancer and likely

other malignancies. These domains change during iPSC repro-

gramming, comparing ES and differentiated cells, and between

cancer and normal (Reddy and Feinberg 2012). Moreover, these

hypomethylated blocks, and the genes contained within them,

overwhelmingly correspond to those seen in cancer, with an overlap

of 1.72 GB. It is remarkable that the location of hypomethylated

blocks between EBV-transformed lymphocytes and colon tumors

correlate highly with each other despite the fact that lymphocytes

and colon cells are very different in phenotype.

It is striking that the hypomethylated blocks we observe are

specific to the immortalization process itself and not to B-cell ac-

tivation by the oncogenic virus. Previous studies did not use the

matched control of activated B-cells, and therefore many of the

differences they saw between EBV-immortalization and control

cells was likely related to activation, but not the key step of im-

mortalization. Indeed, our own data show extensive differential

expression and methylation as a result of activation, with 4502

differentially expressed genes and 1014 small DMRs. Essentially no

blocks appear from activation per se. One previous study (Aberg

et al. 2012) did use a whole-genome tiling array that in theory

could see the same hypomethylated blocks we report here. How-

ever, those investigators performed quantile normalization, which

by design removes global methylation differences between sam-

ples, and thus the finding we present here. None of the previous

studies used whole-genome bisulfite sequencing.

EBV-induced hypomethylated blocks
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Finally, the present study suggests that block hypomethylation

is an early event in human cancer, consistent with its observation in

premalignant adenomas as well as colorectal carcinomas (Hansen

et al. 2011; Berman et al. 2012). What is the functional importance

of these changes? While much work needs to be done to un-

derstand its role, an important clue comes from examination of

gene expression. It is noteworthy that both hypomethylated

blocks in EBV transformed cell lines and colon tumors are enriched

for genes that exhibit hypervariable gene expression, consistent

with a role in establishing tumor cell heterogeneity early in ma-

lignant transformation.

Methods

Collection, activation, and EBV immortalization of B-cells
Blood samples were collected from three healthy donors at the
Karolinska Hospital (Stockholm) following institutional guidelines
for human subjects research (study #02-277). B-cells were isolated
by positive selection using CD19 Dynabeads PanB magnetic beads
(Invitrogen). An aliquot of the purified primary B-cells was frozen
and used as the quiescent cells in our study. A second aliquot of the
purified B-cells was activated with CD40 Ligand (CD40L) and In-
terleukin-4 (IL4) utilizing a previously described procedure (Kis
et al. 2005). The activated B-cells were kept in culture for up to 3 wk
by twice weekly replacement of media with addition of fresh
CD40L and IL4. A third aliquot of B-cells was incubated with B95-8
cell supernatant for 1.5 h at 37°C in order to infect them with EBV.
Aliquots of infected cells were collected at different time points for
analysis: day 16, week 3, and week 6 (to ensure that EBV immor-
talization had occurred).

Whole-genome bisulfite sequencing

Bisulfite sequencing libraries were constructed using the Illumina
TruSeq DNA Library Preparation Kit protocol with the following
modifications. Thirty nanograms of unmethylated lambda DNA
were added to 3 mg of genomic DNA prior to shearing in order to
monitor the efficiency of the bisulfite conversion. The sheared
DNA ends were then repaired using 13 NEB Buffer2, 400 nm each
of dATP, dGTP, and dTTP (dCTP was not included), 15 units of
T4 DNA polymerase (NEB), 5 units of Klenow DNA polymerase
(NEB), and 50 units of T4 Polynucleotide kinase (NEB). In the bi-
sulfite conversion step, 24 mL of formamide was added to an equal
volume of DNA and incubated at 95°C for 5 min. Subsequently,
100 mL of Zymo Gold bisulfite conversion reagent (Zymo) was
added, and the mixture was incubated for 8 h in 50°C. Samples
were then desulphonated and purified using spin columns fol-
lowing the Zymo EZ DNA Methylation-Gold Kit protocol. The bi-
sulfite converted library was amplified in 13 PCR buffer, 0.2 mM
dNTP, 5 mL of the TruSeq PCR Primer Cocktail, 5 units of Taq
(Denville), and 0.25 units of PfuTurbo DNA polymerase (Stratagene).
The DNA was subjected to 10 cycles of PCR.

Bisulfite pyrosequencing

Four hundred nanograms of genomic DNA was bisulfite converted
using the EZ DNA Methylation-Gold Kit. Nested PCR was per-
formed using the primers listed in Supplemental Table 3. The
annealing temperature used for all PCR reactions was 50°C. The
resulting PCR reactions were used directly for pyrosequencing
(Tost and Gut 2007) in a Pyromark 96 ID instrument (Qiagen). The
sequencing primers used for pyrosequencing are listed in Supple-
mental Table 4.

Gene expression

Total RNA was extracted from the B-cells using the Qiagen RNeasy
Mini Kit. Two hundred fifty nanograms of total RNA were then
hybridized onto Affymetrix GeneChip Human Genome U133 Plus
2.0 arrays.

qPCR

Gene expression assays were performed using TaqMan prede-
signed assays purchased from Life Technologies, Inc. The catalog
numbers for the assays are Hs00233627_m1 for FCER2 (CD23),
Hs00153380_m1 for CCND2 (cyclin D2), Hs01026536_m1 for
CCNE1 (cyclin E1), Hs00180319_m1 for CCNE2 (cyclin E2),
Hs01059210_m1 for LMNB1 (Lamin B1), Hs00383326_m1 for
LMNB2 (Lamin B2), and Hs00153462_m1 for LMNA (Lamin A).
Expression between samples was normalized using the beta glu-
curonidase (GUSB) gene (Hs00939627_m1). The reactions were
carried out in an ABI Prism 7900HT real time PCR machine fol-
lowing the manufacturer’s recommended protocol.

Mapping and quality control of WGBS reads

We ran the BSmooth (Hansen et al. 2012) bisulfite alignment
pipeline (version 0.4.5-beta) on the 100-by-100 bp HiSeq 2000
paired end sequencing reads obtained for each sample using
Bowtie 2 version 2.0.0-beta8 (Langmead and Salzberg 2012) and
the GRCh37 build of the human genome including sex chromo-
somes, nonchromosomal sequences, and mitochondrial sequence,
as well as the genome for lambda phage (accession NC_001416.1)
and for Epstein-Barr virus (accession AJ507799.2). Supplemental
Table 1 summarizes alignment results. We were unable to de-
termine bisulfite conversion rates for samples quiescent 2 and EBV
immortalized 3 since we had too few reads originating from the
lambda genome, likely because lambda DNA added to these sam-
ples was degraded.

We then used BSmooth to extract read-level measurements,
and we filtered out unreliable read-level measurements in three
ways. First, we removed read-level measurements from alignments
with mapping quality less than 10, indicating that the read aligner
could not place the read in its place of origin with high confidence.
Second, we removed read-level measurements where the read nu-
cleotide’s base quality was less than 20, indicating that the se-
quencing software had relatively low confidence in the base call.
Finally, we removed read-level measurements from the 59 most
10 nucleotides of both mates, based on inspecting the ‘‘M-bias’’
plot (Hansen et al. 2012) (Supplemental Fig. 1). After filtering, we
used BSmooth to sort read-level measurements by genome co-
ordinate and compile them into a table summarizing methylation
evidence at each CpG in the reference genome. Supplemental Ta-
ble 2 summarizes the read-level measurements obtained and how
they were filtered.

Smoothing WGBS data and identification of small DMRs
and large-scale blocks

We used BSmooth to identify small DMRs and large hypomethyl-
ated blocks as previously described (Hansen et al. 2011; Hansen
et al. 2012). We analyzed CpGs that had at least a coverage of 2 in
two of the three main samples for each condition (quiescent, ac-
tivated, transformed). We used the same cutoffs as previously
(Hansen et al. 2011), specifically a t-statistics cutoff of �4.6,4.6 for
small DMRs and �2,2 for blocks. We estimated variance assuming
that samples in all conditions had equal variance. Small DMRs
were ranked by absolute mean difference, and blocks were ranked
by length. Unlike earlier work, we did not postprocess inferred
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blocks to break them if a block contains an unmethylated CpG
island, following the suggestion of Berman et al. (2012).

Permutation testing

Depending on the comparison, we had either nine null permuta-
tions (for three vs. three comparisons and for two vs. three com-
parisons) or three null permutations (one vs. three comparisons).
The relevant method was applied to the new sample labels and
blocks and/or DMRs were identified using the methods described
above, resulting in a set of null blocks/DMRs for each permutation.
We then asked, for each original block/DMR, in how many per-
mutations did we see a null block/DMR anywhere in the genome
with the same or better characteristics as the original block/DMR.
Since we are comparing each original block/DMR against anything
found anywhere in the genome, we are correcting for multiple
testing. The characteristics were length (in base pairs) and signed
mean methylation difference for blocks and size (in CpGs), and
signed mean methylation difference for small DMRs. This resulted
in a number between 0 and the number of permutations, for each
original block/DMR, and an original block/DMR was conserva-
tively found to have a family-wise error rate of <5% if this number
was zero.

Publicly available data

Large-scale hypomethylated blocks in cancer (Hansen et al. 2011),
LADs (Guelen et al. 2008), and LOCKs (Hansen et al. 2012; Wen
et al. 2012) were retrieved from public sources. Gene expression
data for HapMap samples were obtained from GEO GSE11582
(Choy et al. 2008), using only samples that were processed at the
Broad Institute and were labeled ‘‘technical replicate 1’’ for a total
of 257 samples. Gene expression data for colon cancer was
obtained from GEO GSE4183 (Gyorffy et al. 2009), for a total of
eight normal samples and 15 cancer samples. Gene expression data
for lymphocytes was obtained from GEO GSE8762 (Runne et al.
2007) for a total of 10 samples.

Overlap with ENCODE data and other large domains

We obtained 192 ENCODE tracks for the GM12878 cell line
from The ENCODE Project Consortium (2012) data hub at
UCSC. Each track consists of a number of genomic intervals,
and we divided the genome into four compartments based on
the relationship between EBV blocks and the track in question
(inside both, outside both, etc.). We only used EBV blocks with
a family-wise error rate of <5%. Because hypomethylation only
occurs at CpGs, and because we only have enough data on
a subset of CpGs (which we call ‘‘covered’’) we counted the
number of covered CpGs inside each of the four compartments,
forming a 2 3 2 table of CpGs. We calculated an odds-ratio for
this table and used Fisher’s exact test to compute a P-value. The
same analysis was performed for other large domains described
in the manuscript, such as LOCKs, LADs, and colon-cancer
blocks.

Analysis of gene expression microarray data

All gene-expression array data was normalized using frozen RMA
(McCall et al. 2010), and we used the gene-expression barcode
(Zilliox and Irizarry 2007; McCall et al. 2011) to decide whether
a gene was expressed in a given condition by requiring an average
Z-score > 5 (from the gene-expression barcode).

To decide which genes were differentially expressed between
the quiescent, activated, and transformed state, we used limma

(Smyth 2004) from Bioconductor (Gentleman et al. 2004) and
utilized an empirical Bayes shrinkage method to estimate a gene-
specific variance. In order for a gene to be differentially expressed
between two conditions, it had to be expressed (using the gene-
expression barcode) in at least one of the two conditions, it had to
have an estimated absolute log2 fold change > 1, and it had to have
a Benjamini-Hochberg adjusted P-value < 5%.

Copy-number analysis

We performed copy-number analysis as previously described
(Hansen et al. 2011).

Co-occurrence of sample-specific blocks

We evaluated the co-occurrence of sample-specific blocks as de-
scribed previously (Hansen et al. 2011). Briefly, we found sample-
specific blocks by in turn comparing each of the EBV transformed
samples to the three activated samples (BSmooth requires multiple
samples in the reference group). For each chromosome (excluding
Y) we computed the observed distribution of distances between
consecutive start locations of the sample-specific blocks. For each
chromosome, we simulated 1000 sets of start positions of blocks on
that chromosome, according to the observed distribution. We
constrained the simulated start positions to CpG locations, ac-
counting for the nonrandom distribution of CpGs across the ge-
nome. Next, we (in turn) picked one of the three individuals as
reference, and computed, for each start position, the distance to
the nearest start position of a block for each of the two other sets of
sample-specific individuals. This serves as the observed pairwise
distances. Next, we computed the same distances from the refer-
ence to each of the 1000 simulated sets of blocks, yielding 1000
simulated expected pairwise distances with the specific sample as
a reference. Since this was done using in turn each of the three EBV
samples as reference, this yielded 3 3 2 = 6 different sets of pairwise
distances and 3 3 1000 = 3000 expected pairwise distances. Figure
2C shows the distribution of the observed and expected distribu-
tion, pooled across all chromosomes.

GO analysis

Small DMRs were mapped to known genes by establishing whether
the small DMR was within 2 kb of a promoter region of a gene. As
promoter regions, we used a 2-kb interval around the transcription
start site of UCSC known genes. The known gene identifiers were
converted to official gene symbols using the kgXref table from the
UCSC Genome Browser website. Duplicate gene names were re-
moved so that each gene was only counted a single time during
the analysis. Hyper- and hypomethylated genes were then sep-
arated into two different files, and analysis was performed sep-
arately for each list using the DAVID Functional Annotation
Tool (Huang da et al. 2009a,b). The analysis was performed using
the GOTERM_BP_FATannotation, which is the summarized version
of Biological Processes in gene ontology. All tests were corrected
for multiple testing using the Benjamini procedure implemented
in DAVID. For the functional annotation analysis of hyper-
variable genes in blocks, we used all genes on the 133A array as
background.

Data access
Whole-genome bisulfite sequencing and gene expression data
have been submitted to the NCBI Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE49629.
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