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Abstract

The pooled estimate of the average effect is of primary interest when fitting

the random-effects model for meta-analysis. However estimates of study spe-

cific effects, for example those displayed on forest plots, are also often of inter-

est. In this tutorial, we present the case, with the accompanying statistical

theory, for estimating the study specific true effects using so called 'empirical

Bayes estimates' or 'Best Unbiased Linear Predictions' under the random-

effects model. These estimates can be accompanied by prediction intervals that

indicate a plausible range of study specific true effects. We coalesce and eluci-

date the available literature and illustrate the methodology using two publi-

shed meta-analyses as examples. We also perform a simulation study that

reveals that coverage probability of study specific prediction intervals are sub-

stantially too low if the between-study variance is small but not negligible.

Researchers need to be aware of this defect when interpreting prediction inter-

vals. We also show how empirical Bayes estimates, accompanied with study

specific prediction intervals, can embellish forest plots. We hope that this tuto-

rial will serve to provide a clear theoretical underpinning for this methodology

and encourage its widespread adoption.
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1 | INTRODUCTION

The random-effects model1–6 is routinely used in meta-
analyses. This model allows us to make inferences about
the average effect whilst relaxing the usually strong, and
so difficult to defend, assumption that all studies estimate
a common treatment effect. The random-effects model

achieves this by incorporating a between-study variance
parameter. This parameter quantifies the variation in the
studies' estimated effects that is not explained by within-
study variation alone. A wide variety of estimators for the
between-study variance, and corresponding methods for
calculating confidence intervals, have been proposed.7,8

Statistical tests for the absence of between-study
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heterogeneity,9,10 and statistics that quantify its impact,11

are also available.
Despite this variety of statistical methods relating to

between-study heterogeneity, formal statistical inference
usually focuses on the average effect. In conventional
meta-analysis methodologies, the uncertainty in the esti-
mation of the between-study variance is ignored when
making inferences about this parameter. By further
ignoring the uncertainty in the within-study variances
throughout the analysis, simple statistical methods can
then be used. A consequence of ignoring the uncertainty
in the variance components is that inferences from con-
ventional meta-analysis are merely approximate, because
all uncertainty in the estimated variance components has
been ignored,12 which may yield inaccurate statistical
inferences.13–16

Inferences for the average effect usually include point
estimates, standard errors, confidence intervals, and the
results from hypothesis tests. Routinely reporting predic-
tion intervals for the true effect in a new study has also
been proposed.5,6 These prediction intervals provide
insight into the extent of the between-study heterogeneity
and are intended to accompany confidence intervals for
the pooled effect. This is especially of importance for clin-
ical practice and decision making, because this type of
prediction interval may, for example, clearly convey that
a treatment or drug is efficacious in some studies but not
in others.

Although the random-effects model only includes two
parameters (the average effect and the between-study
variance) it also includes an unobserved random-effect
for each study. This means that every study is assumed to
estimate a different true underlying effect. Study specific
estimated effects are conventionally displayed, with their
confidence intervals, on forest plots.17 Only within-study
information is used when computing these estimates that
are identical, and valid, under both the common-effect
(between-study variance taken to be zero) and random-
effects models. This is in contrast to the statistical infer-
ences for the average effect discussed above, that make
extensive use of the assumptions of the random-effects
model12 and information from all studies. These observa-
tions beg the question, can the assumptions of the
random-effects model be used further to produce
(in some senses) better, or even just alternative, study
specific effect size estimates and corresponding intervals?

The answer to this question is 'yes'. By assuming the
random-effects model, we can justify the use of so called
'empirical Bayes estimates' or 'Best Linear Unbiased Pre-
dictions' (BLUPs) of the study specific true effects.18

These are linear combinations of the conventional study
specific estimated effects and the estimated average
effect, reflecting the intuition that estimates from other

studies add information to any specific study's true effect.
That is, a study specific true effect estimate 'borrows
strength' from the other studies in the meta-analysis to
obtain an estimate closer to the underlying true value.
These study specific true effects are of interest, because a
meta-analyst may want to know what the true effect is in a
particular study population. These populations could, for
example, correspond to a specific country, type of patient,
or drug dosage; study specific true effects allow drawing
inferences for studies with these particular characteristics.
A study specific true effect could also be used when design-
ing a new study, for example, when computing the
required sample size using a statistical power analysis.

It is sometimes argued that this approach provides a
better indication of a study's effect than the more familiar
study specific estimates conventionally displayed on for-
est plots.19,20 Although these ideas are not new, the litera-
ture on this topic is diffuse, and does not always use
consistent terminologies and statistical justifications.21–24

Furthermore, different variance formulae for computing
study specific prediction intervals are available; by exam-
ining these formulae, we are able to emphasize some
rather subtle considerations that might otherwise be
overlooked, or worse result in mistakes. The main aims
of this tutorial are to distill the relevant literature, and so
make it accessible to a wider audience, and unify empiri-
cal Bayes estimates and BLUPs by showing that these are
the same under the random-effects meta-analysis model.
Another aim of this tutorial is to make recommendations
for best practice. One concrete, but not novel, recommen-
dation is that we advise embellishing forest plots by using
the proposed alternative estimators of the study specific
effects. In addition, we enhance this tutorial by undertak-
ing a simulation study to critically evaluate the perfor-
mance of the proposed methodology. We hope that this
tutorial will lead to widespread use of the methods we
discuss, whilst simultaneously raising awareness of their
limitations.

The rest of this tutorial is set out as follows. In sec-
tion 2, we present the random-effects model using sev-
eral, but equivalent, representations. We use the second
and third of these representations to derive the empirical
Bayes estimates and the BLUPs as the same numerical
quantities. In section 3, we derive three variance formu-
lae for the empirical Bayes estimates and BLUPs, and
present the case for one of these being the preferred
approach. In section 4, we show how forest plots can be
embellished if estimates of the study specific true effects
and their prediction intervals are added. In section 5, we
enhance this tutorial with original research by examining
the statistical properties of study specific prediction inter-
vals using a simulation study. We end with a discussion
section in section 6.
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2 | THE RANDOM-
EFFECTS MODEL

The random-effects model can be represented in three
equivalent ways. This model uses normal approximations
for the estimated effects. We return to the possibility of
using more advanced models, such as generalized linear
mixed models, in the discussion. The hierarchical repre-
sentation will probably be the most familiar, so we start
by introducing it. We will then present the less com-
monly used bivariate representation, because this will be
necessary to derive empirical Bayes estimates. Finally, we
will present the variance components representation,
because this will be necessary to derive the BLUPs as the
same numerical quantities.

2.1 | The hierarchical representation

To allow for between-study heterogeneity, the random-
effects model assumes that the study specific true effects θi,
i = 1, 2, � � �n, are normally distributed, centered at the over-
all average effect θ with between-study variance τ2. The
random-effects model then further assumes, given θi, that
the estimated effect Yi from the ith study is normally distrib-
uted with mean θi. The variance of Yi in this conditional
distribution is usually referred to as a within-study variance
and can be estimated for a wide variety of outcome mea-
sures.25,26 Conventional methods for meta-analysis treat the
within-study variances as fixed and known and we also
adopt this convention throughout the tutorial. Hence, we
assume that Yi j θi �N θi,σ2i

� �
under the random-effects

model. The Yi are conventionally displayed on forest plots
with their confidence intervals [Yi� 1.96σi, Yi+ 1.96σi]
where 1.96 refers to the 1� α/2 quantile of the standard
normal distribution with α = 0.05.

We also assume that studies are independent, so that all
random variables associated with the ith study are indepen-
dent of those associated with the jth study i ≠ j. We call
this the hierarchical representation, where the models for
Yi|θi and θi are the first level, and second level, in the hier-
archical model, respectively. If τ2 = 0 then the random-
effects model collapses to the common-effect model.

2.1.1 | Making inferences

The joint probability density function of the true study
specific effect θi and the estimated effect Yi from the ith
study is given by the product of the probability densities
of the two normal distributions in the hierarchical model,
that is. f(θi, Yi) = f(θi)f(Yi|θi). The θi are usually regarded
as nuisance parameters and can be integrated out of this

joint probability density function to give the marginal
density of Yi. Elementary calculations provide the mar-
ginal distribution Yi �N θ,σ2i þ τ2

� �
. Inferences for θ and

τ2 can then be made using this marginal distribution.
A wide variety of estimators of τ2 are possible.7,8 Upon

estimating τ2, the conventional method for making infer-
ences about θ approximates the true τ2 with its estimate τ̂2 .
Hence, when making these inferences the Yi are modeled
as normally distributed random variables, centered at θ
with different (but 'known') variances σ2i þ τ̂2 . The infer-
ences for θ therefore require only calculations using the
normal distribution. Specifically, writing ŵi ¼ σ2i þ τ̂2

� ��1
,

we have that

θ̂¼
X

ŵiY i=
X

ŵi ð1Þ

where θ̂�N θ,1=
P

ŵið Þ. By integrating out the θi in this
way, however, we do not immediately obtain inferences
for the θi. In order to motivate methods for estimating
these random-effects we require alternative representa-
tions of the random-effects model.

2.2 | The bivariate representation

The hierarchical model Yi j θi �N θi,σ2i
� �

and θi�N(θ, τ2)
described in Section 2.1 is equivalent to

θi

Y i

� �
�N

θ

θ

� �
,
τ2 τ2

τ2 σ2i þ τ2

� �� �
ð2Þ

as can be seen by noting that the joint distribution
gives the correct marginal distributions θi � N(θ, τ2)
and Yi �N θ,σ2i þ τ2

� �
, and also the correct conditional

distribution Yi j θi �N θi,σ2i
� �

. The marginal distributions
are immediately obvious from the model in (2), and the
conditional distribution can be obtained using standard
formulae (e.g., result 4.6 in Johnson and Wichern27) for
deriving the conditional distributions from a multivariate
normal distribution. We call this the bivariate representa-
tion, because a bivariate normal is used to describe the
joint distribution of θi and Yi.

From elementary calculations using standard proper-
ties of the bivariate normal distribution, the conditional
distribution of θi|Yi from model (2) is

θi jYi;θ,τ2 �N Biθþ 1�Bið ÞYi,σ2i 1�Bið Þ� � ð3Þ

where Bi ¼ σ2i = σ2i þ τ2
� �

and we now place θ, τ2 after a
semicolon to emphasize the dependence of this
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conditional distribution on the model parameters. Equa-
tion (3) is also the conditional distribution of θi given
Y and the model parameters, where Y is the n� 1vector
containing the Yi. This is because all random variables
associated with the ith study are independent of those
associated with the jth study, i≠ j.

The parameters of the conditional normal distribu-
tions in Equation (3) are functions of θ and τ2, where
their dependence on τ2 is via Bi. To evaluate Equation (3)
we require the values of both unknown parameters. If we
replace these parameters with their estimates, then the
mean of the normal distribution in Equation (3) becomes

θ̂i ¼ B̂iθ̂þ 1� B̂i
� �

Yi ð4Þ

where B̂i ¼ σ2i = σ2i þ τ̂2
� �

and θ̂ is given in Equation (1).
We use the notation θ̂i in Equation (4), because this is
the empirical Bayes Estimator18,28 of θi. The estimate θi
is our proposed alternative to the conventional study spe-
cific estimate Yi, that allows information from all studies
to inform inferences about the study specific true effects
under the random-effects model. Note that Equation (4)
illustrates that the estimate of the study specific true
effect θ̂i becomes closer (i.e., shrinks more) to θ̂ as τ̂2

decreases. We have now established the first justification
for the point estimates of the study specific θi that provide
our focus. A related idea can be found in Rücker et al.'s29

Equation (2.6) where, in the context of limit meta-analysis,
study effects are shrunk towards a new study effect that are
(unlike here) also adjusted for small-study effects.

2.3 | The variance components
representation

We can also write the random-effects model in variance
components form.4,30,31 When using this representation,
we parameterize the estimated effect in the ith study as

Yi ¼ θþ γiþ ϵi ð5Þ

where γi � N(0, τ2) and ϵi �N 0,σ2i
� �

and all γi and ϵi are
independent. The true effect of the ith study is then

θi ¼ θþ γi: ð6Þ

The random-effect γi is therefore the amount that the
true effect in the ith study deviates from the overall aver-
age effect θ. We call this the variance components repre-
sentation because the quantities that model the variation
in the data are represented as two separate components
in Equation (5).

Robinson32 and Laird and Ware33 consider a more
general model and we use Robinson's32 notation for
describing this model. The more general model is

Y¼XβþZuþe

where β is a column vector of unknown parameters (fixed
effects), X and Z are known matrices and u and e are col-
umn vectors containing unobservable random variables
(random-effects). Robinson further assumes that E
[u] = E[e] = 0 and

Var
u

e

� �
¼ G 0

0 R

� �
τ2

where τ2 is a positive constant (Robinson32 uses σ2 for
this constant, but we have equated his σ2 with our τ2 to
avoid a clash of notation).

The random-effects model for meta-analysis is then
obtained by considering a special case of this more gen-
eral model. Taking X = 1 (the column vector of length
n where every entry is one), Z = G = I (the n � n iden-
tity matrix), we obtain the random-effects model for
meta-analysis where β = θ, u is the column vector of
length n containing the γi, and R = diag σ2i =τ

2
� �

(the
n� n diagonal matrix containing the ratios of the σ2i and
τ2). The common-effect model (τ2 = 0) for meta-analysis
is obtained by taking the limit τ2! 0+; the definition of
R = diag σ2i =τ

2
� �

ensures that all studies have the correct
within-study variance σ2i for all τ2, so that we obtain the
common-effect model in the limit τ2! 0+.

After making the simplifications in the previous para-
graph, in the web Supplementary materials we show that
the second equation in (1.2) of Robinson32 then gives the
BLUP for γi in terms of θ̂ and is estimated as

γ̂i ¼ 1�Bið Þ Yi� θ̂
� �

:

From model (6), we then obtain θ̂i ¼ θ̂þ γ̂i, where θ̂ is
given in Equation (1). Upon further replacing τ2 with its
estimate in the definition of Bi, this immediately results
in Equation (4).

We therefore conclude that (ignoring the uncertainty
in the σ2i and τ2) our estimate θ̂i of the study specific true
effect in the ith study, given in Equation (4), has a dual
interpretation: it is both the empirical Bayes estimate and
the BLUP. In making this second statement, it is perhaps
pertinent to state what is meant by the term 'BLUP'. The
BLUP is the 'B'est because var(θ̂i�θiÞ is as small as possi-
ble; 'L'inear because it is linear in the Yi; 'U'nbiased in
the sense that E(θ̂i�θiÞ¼ 0 ; and it is said to be a
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'P'rediction because it relates to an unobservable random-
effect. Under the normality assumptions made, we may
omit the 'L' for linear, because linear estimates are also the
best under these assumptions. An important conceptual
difference between these two interpretations is that the
empirical Bayes interpretation involves a form of Bayesian
reasoning whereas the BLUP does not. Moreover, empiri-
cal Bayes requires a normality assumption whereas such a
normality assumption is not needed for the BLUP.

2.4 | Recommendation

We propose presenting the θ̂i , for example on forest
plots,17 on the basis that they are both the empirical
Bayes estimates and the BLUPs given the normality
assumptions we have made. However, we propose pre-
senting these estimates together with corresponding
intervals in addition to, and never instead of, the Yi. We
suggest continuing to use the term 'confidence interval'
for the conventional intervals already shown on forest
plots with the Yi, and using the alternative term 'study
specific prediction interval' for those that accompany the
θ̂i . This follows the convention32 of using the term 'pre-
diction' when estimating random variables, but 'model
based confidence interval' is an alternative term that
some might prefer. A variance formula is needed to com-
pute these intervals, and we address this issue in the next
section.

3 | VARIANCE FORMULAE FOR
COMPUTING STUDY SPECIFIC
PREDICTION INTERVALS

We have now justified the proposed point estimates θ̂i in
two different ways. With a suitable variance formula,
study specific prediction intervals can be calculated to
accompany them. By continuing to ignore the uncer-
tainty in the estimated within and between-study vari-
ances, the θ̂i are normally distributed, so that quantiles
from the standard normal distribution can be used to
compute these prediction intervals.

We now describe three possible variance formulae,
and discuss their derivations and relative merits.

3.1 | Crude formula

The simplest possibility is to conceptualize θ̂i as the
empirical Bayes estimator, and use the variance from
Equation (3). This results in the crude formula

Var θ̂ijYi;θ,τ2
� �¼ σ2i 1�Bið Þ¼ σ2i τ

2= σ2i þ τ2
� � ð7Þ

where we further replace τ2 with its estimate τ̂2 to esti-
mate this variance in practice. This is the variance of θi,
given Yi, if we ignore all parameter uncertainty in both θ
and τ2. However, this parameter uncertainty is usually
considerable in practice, so this 'plugin' formula cannot
possibly be regarded as anything other than crude. Fur-
thermore if τ̂2 ¼ 0 , which is a common occurrence in
practice, then this formula with this point estimate gives
a variance of zero which is, at best, an undesirable prop-
erty. A further concern is that, because this variance fol-
lows from a Bayesian argument, the repeated sampling
properties of the resulting interval are not necessarily
clear in a frequentist analysis. Despite this, we present
this formula because it provides a useful 'stepping stone'
to the next one.

Note that by taking the reciprocal of Equation (7),
which requires τ2 > 0 to avoid division by zero, we can
see that the corresponding precision of θ̂i , given Yi and
the model parameters, is equal to the sum of the within-
study precision (1=σ2i ) and the between-study precision
(1/τ2). Working in terms of the precision is therefore less
opaque, but ultimately variance formulae are needed to
compute prediction intervals.

3.2 | Raudenbush formula

One way to improve the first variance formula above is to
take into account the uncertainty in θ (but ignore the
uncertainty in τ2, as we do when making inferences
about θ in conventional meta-analysis). To derive our
second variance formula, we will now employ fully
Bayesian reasoning,34 and so in this section we treat θ
and τ2 as random variables. However, we continue to
adopt the usual convention of treating the σ2i as fixed and
known constants.

In a fully Bayesian context, Equation (3) gives the
posterior mean and variance of θi given the data Yi, and
also θ and τ2. Hence, we now remove the semicolon from
Equation (3) and treat θ and τ2 as random variables.
Upon assuming a suitable posterior distribution for θ
(given τ2), we can derive the posterior variance of θi given
only the data and τ2, using the usual law of total vari-
ance, Var(Y) = EX[Var(Y |X)] + VarX[E(Y |X)].

An approximate posterior distribution for θ that will
be used in this calculation below is

θ j Y,τ2
� ��N μθ,1=

X
σ2i þ τ2
� ��1

� 	
ð8Þ

van AERT ET AL. 433



where μθ is the expectation of the posterior distribu-
tion of θ. This approximate posterior distribution for
θ in Equation (8) will be sufficiently accurate pro-
vided that a vague prior for θ is used and the sample
size is reasonably large, so that the precision of clas-
sical and Bayesian estimates of θ are similar. We
then have

Var θijY,τ2
� �¼Eθj Y,τ2ð Þ Var θijY,θ,τ2

� �
 �
þVarθj Y,τ2ð Þ E θijY,θ,τ2

� �
 �

so that from Equation (3), where this equation describes
θi|(Yi, θ, τ

2) as well as the equivalent θi|(Y, θ, τ
2) in the

fully Bayesian context,

Var θijY,τ2
� �¼Eθj Y,τ2ð Þ σ2i 1�Bið Þ
 �

þVarθj Y,τ2ð Þ Biθþ 1�Bið ÞYi½ �: ð9Þ

Noting that, given (Y, τ2), Bi, τ
2 and (crucially) Yi are

constants, from the definition of Bi and the approximate
posterior variance of θ in Equation (8), Equation (9)
becomes

Var θijY,τ2
� �¼ σ2i τ

2

σ2i þ τ2
þ 1
w

σ4i
σ2i þ τ2ð Þ2 ð10Þ

where w¼P
wi ¼

P
σ2i þ τ2
� ��1

. We ignore the uncer-
tainty in the estimated between-study variance, and so
replace τ2 with its estimate when computing the variance
in Equation (10). Note that 1/w in Equation (10) is the
variance of θ̂ in the random-effects model.

We name the formula in (10) the Raudenbush for-
mula, because it is a special case of the more general
result (A6 of Raudenbush and Bryk18). Comparing
the estimation equations for the variance in (10) and
(7), we can see that Equation (10) introduces an addi-
tional term with w in the denominator. We therefore
obtain Equation (7) from (10) in the limit as the
number of studies, and so w, tends towards infinity.
Furthermore, Equation (10) is simply 1/w when
τ2 = 0, so we obtain the variance from the common-
effect model (τ2 = 0) when the point estimate τ̂2 ¼ 0
is substituted into (10). From Equations (1) and (3), θ̂i is
the common effect estimate of θ when τ2 = 0. Hence,
inferences for θi are the same as those for θ when τ2 = 0
which is entirely appropriate under the common-effect
model. In summary, the variance in (10) is an intuitively
appealing variance to use. This formula is used by the R
package metafor35 to create study specific prediction

intervals in a meta-analysis upon replacing τ2 with its
estimate.

3.2.1 | An alternative justification for
the Raudenbush formula

We can also derive Equation (10) as the variance of
θ̂i�θi
� �

without requiring Bayesian reasoning. To do so,
we now interpret θ̂i as the BLUP, and calculate prediction
intervals for θi using the pivot

θ̂i�θi
� ��N 0,Við Þ ð11Þ

where Vi is to be calculated. When computing Vi, the
uncertainty in τ2 is ignored and this parameter is treated
as fixed and known.

Then

Vi ¼Var θ̂i�θi
� �¼Var θ̂i

� �þVar θið Þ�2Cov θ̂i,θi
� �

:

ð12Þ

In the web Supplementary materials we show that

Var θ̂i
� �¼ τ4

σ2i þ τ2
þ 1
w

σ2i σ2i þ2τ2
� �
σ2i þ τ2ð Þ2 , ð13Þ

Var θið Þ¼ τ2 ð14Þ

and

�2Cov θ̂i,θi
� �¼� 2

w
σ2i τ

2

σ2i þ τ2ð Þ2�
2τ4

σ2i þ τ2
: ð15Þ

Substituting Equations (13), (14), and (15) into Equa-
tion (12), and a little algebra yields the same variance as
in Equation (10). We therefore now have a second justifi-
cation for using this variance formula to compute predic-
tion intervals for θi. The first justification is likely to
appeal most to those who prefer to interpret θ̂i as the
empirical Bayes estimate and the second to those who
prefer to interpret it as the BLUP.

One salient point is that, by virtue of θ̂i being the
BLUP, Var(θ̂i�θiÞ is less than Var(Yi�θiÞ¼ σ2i . This is
most easily seen by considering the ratio of Equation (10)
and σ2i . If there is one study then 1=w¼ σ2i þ τ2 and this
ratio is one. However if there are two or more studies
then 1=w< σ2i þ τ2 , and hence the ratio is also less than
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one, so that Equation (10) is less than σ2i as required. It is
in this sense that θ̂i is the 'better' estimate of θi under the
random-effects model.

3.3 | Quan et al. formula

Quan et al.24 develop methodology in the context of mul-
ticenter trials but their approach is essentially a conven-
tional random-effects meta-analysis. Here each center
provides an effect size estimate of a raw mean difference
Yi and the random-effects model for meta-analysis is
applied to the resulting estimates; Quan et al.24 estimate
the within-study variances as σ2i ¼ 2σ2=Ni where σ

2 is the
individual level variance and Ni is the number of patients
in each of two treatments arms in the ith study. Quan
et al.24 use the DerSimonian and Laird estimator of τ2

and also present the empirical Bayes estimate in their
Equation (10). Note that Quan et al.24 used the raw mean
difference as effect size measure, and therefore their σ2i
has this particular form. However, their result may be
used more generally where σ2i is the within-study vari-
ance of any other effect size measure.

Quan et al.24 correctly state that (taking τ̂2 to be τ2) θ̂i is
unbiased for θ so that E θ̂i


 �¼ θ. They also correctly state
the variance of θ̂i as being given by Equation (13) where
σ2i ¼ 2σ2=Ni . However, we would like to take this oppor-
tunity to alert readers to an important subtlety. If this
variance is used, then the pivot for making inferences is

θ̂i�θ
� ��N 0,Var θ̂i

� �� �
: ð16Þ

Note that this is different from the pivot used in pivot
(11) that makes inferences for θi; pivot (16) instead makes
inferences for θ. Hence, using Equation (13) as the variance
of θ̂i is ill-advised and suboptimal. We suggest that infer-
ences for θ would be better served using θ̂ rather than θ̂i.

3.3.1 | Further consequences of the
Quan et al. formula

To better understand the consequences of using the Quan
et al. formula in Equation (13), let us simplify matters
and assume that the number of studies is large, and so
w is large. In this situation, the second term of Equa-
tion (10) is negligible in relation to the first and (10), and
so the Raudenbush formula is approximately

Var θijy,τ2
� �¼Vi ≈

σ2i τ
2

σ2i þ τ2
: ð17Þ

Furthermore in this situation Var θ̂i
� �

is approximately

Var θ̂i
� �

≈
τ4

σ2i þ τ2
: ð18Þ

Comparing Equations (17) and (18), we can see that
the Raudenbush and Quan et al. formulae are asymptoti-
cally identical if τ2 ¼ σ2i , which means that the within-
study and between-study variances are the same. Hence,
these formulae can be expected to give similar numerical
answers in many applications. More generally, the impli-
cations of using the Raudenbush and Quan et al. formu-
lae in large samples can be deduced from Equations (17)
and (18).

It is straightforward to show that Equation (17) is
increasing in σ2i . Hence, small studies (large σ2i ) provide
large values of (17) and so wide intervals for θi when
using this variance. This makes intuitive sense: small
studies provide less information, and these result in less
informative inference for θi. It is also straightforward to
show that Equation (18) is decreasing in σ2i . Hence, small
studies provide small values of Equation (18), and these
result in narrow intervals. This may seem counterintui-
tive, but recall that the Quan et al. formula is suitable for
calculating intervals for θ while being suboptimal for cal-
culating intervals for θi.

3.4 | Recommendation

We recommend using Raudenbush formula in Equa-
tion (10) when computing prediction intervals for the
study specific true effects θi. It is clearly an improvement
on the crude formula and, unlike the Quan et al. formula,
is entirely suited to this purpose. We interpret this for-
mula as giving an approximate posterior variance of θ̂i
when interpreting this as the empirical Bayes estimate,
and as an approximate variance of the estimation error
θ̂i�θi
� �

when interpreting θ̂i as the BLUP.

4 | EXAMPLES

In this section, we calculate the empirical Bayes esti-
mates and corresponding study specific 95% prediction
intervals for primary studies in two example meta-ana-
lyses. We graphically present the results by adding the
empirical Bayes estimates and prediction intervals to for-
est plots.17 The examples were selected to represent
meta-analyses with small and large between-study vari-
ances. R36 and the R package metafor35 were used for
conducting the meta-analyses and creating the forest
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plots. R code of these analyses are available via https://
osf.io/sz6ka/.

Our hope is that these two contrasting examples will
illustrate the practical utility of the methods that provide
our focus, and they will serve to encourage the reader to
apply them to their own examples.

4.1 | Characteristics of the examples

4.1.1 | Example one: very little between-
study heterogeneity

The first example is a meta-analysis by Ho and Lee37 on
the efficacy of eye movement desensitization (EMDR)
and reprocessing versus exposure based cognitive behav-
iour therapy (CBT) to treat post-traumatic stress disorder
(PTSD). This meta-analysis contains 10 Hedges'
g standardized mean differences and a positive effect size
indicates that EMDR was more efficacious than CBT.
Fitting the random-effects model to these data with the
restricted maximum likelihood (REML) estimator for

the between-study variance yielded θ̂¼ 0:249 (95% CI
[�0.003;0.502]), τ̂2 ¼ 0:004 , and ratio of the between-
study variance to total variance equal to I2 = 2.2%.38

4.1.2 | Example two: substantial
between-study heterogeneity

The second example is a meta-analysis on the difference in
iron blood levels between patients with Alzheimer's disease
and elderly controls.39 This meta-analysis consists of five
Hedges' g standardized mean differences where larger effect
sizes indicate higher iron levels for patients with Alzheimer's
disease. Results of fitting the random-effects model to these
data were θ̂¼�0:177 (95% CI [�0.486;0.132]), τ̂2 ¼ 0:063,
and I2 = 51.6%.

4.2 | Results

Figures 1 and 2 show the forest plots of the meta-analysis
on the efficacy of the PTSD treatments and the difference

FIGURE 1 Forest plot

including empirical Bayes

estimates (circles) and study

specific 95% prediction intervals

based on the Raudenbush

formula in Equation (10)

(dashed lines) for the meta-

analysis by Ho and Lee37 on the

efficacy of eye movement

desensitization and reprocessing

versus exposure based cognitive

behaviour therapy to treat post-

traumatic stress disorder. RE

Model refers to random-effects

model
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in iron blood levels between patients with Alzheimer's dis-
ease and elderly controls, respectively. The results of fitting
the random-effects model are illustrated by the diamond at
the bottom of the plots. The diamond's midpoint refers to θ̂
and its width indicates the lower and upper bound of the
95% confidence interval. The dashed lines connected to
the diamond illustrate the prediction interval for the true
effect in a new study that is computed with θ̂�
tn�2;0:975

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=

P
ŵiþ τ̂2

q
where tn� 2;0.975 is the 0.975 qua-

ntile of the Student's t-distribution with n� 2 degrees of
freedom.5,6 The observed effect sizes of the primary studies
(i.e., Yi) and the corresponding 95% confidence intervals are
displayed by squares and solid black lines, respectively.
Empirical Bayes estimates (i.e., θ̂i) are presented by circles
and the study specific 95% prediction intervals based on
the Raudenbush formula in (10) are illustrated by dashed
lines. The sizes of the squares and circles reflect the preci-
sion of a primary study with larger squares and circles
referring to primary studies that are more precise.

4.3 | Comparing the results for the two
examples

The nature of the shrinkage behaviour of empirical Bayes
estimates is illustrated by our two contrasting examples.

The empirical Bayes estimates in Figure 1, for our first
example with very little between-study heterogeneity are
substantially shrunken to θ̂ . This is a direct consequence
of Equation (4) when τ̂2 is small. This example illustrates
the considerable impact that additional information, that
is available under the random-effects model but not con-
ventionally used, can have on the estimates of the study
specific effects under these circumstances. Much more
accurate predictions of the study specific true effects are
also possible when using prediction, rather than the con-
fidence, intervals.

Two other interesting observations can also be made
based on Figure 1. First, the empirical Bayes estimates of
the first two studies (i.e., Devilly & Spence and Taylor
et al.) are of different sign to the observed effect size esti-
mates due to the shrinkage, which might be seen as con-
troversial. Second, the prediction interval for the true
effect in a new study at the bottom of Figure 1 is notice-
ably wider than all study specific prediction intervals and
the confidence interval for the pooled effect under the
random-effects model. This is despite the fact that the -
between-study variance is very close to zero (τ̂2 = 0.004).
All three types of intervals might be expected to coincide
if τ̂2 = 0 (see the discussion in the last paragraph of sec-
tion 3.2). However, the prediction interval for the true
effect in a new study is noticeably wider for two reasons:

FIGURE 2 Forest plot

including empirical Bayes

estimates (circles) and study

specific 95% prediction intervals
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(1) τ̂2 is slightly positive, and (2) we adopted the conven-
tion of using the Student's t-distribution with n� 2
degrees of freedom when computing it.5,6

Shrinkage of the empirical Bayes estimates is also pre-
sent in the second example, with substantial between-
study heterogeneity, shown in Figure 2. However, the
shrinkage is substantially smaller and the width of
the study specific prediction intervals are comparable to
the corresponding confidence intervals. This difference in
shrinkage behaviour in these two examples can be
explained by the smaller heterogeneity in the first com-
pared to the second example (I2 = 2.2% vs. 51.6%). This is
because as τ2!∞, Equation (4) tends towards Yi and
(for example, using L'Hopital's rule) Equation (10) tends
towards σ2i (the second term in Equation 4 tends to zero
as τ2!∞). Hence there is less information gain by using
empirical Bayes estimates and study specific prediction
intervals in heterogeneous datasets, but our examples
illustrate what is possible in this regard for real examples.

These examples illustrate the usefulness of embellishing
forest plots with prediction intervals. We, however, recom-
mend meta-analysts to always present confidence and predic-
tion intervals for the study-specific effects as well as for the
average effect as these all add insight to the meta-analysis.

5 | ORIGINAL RESEARCH:
SIMULATION STUDY

Most of this tutorial is devoted to distilling the statistical the-
ory, illustrating its use, and making recommendations for
best practice. However in this section we will enhance this
tutorial by conducting a simulation study. This is important
because the random-effects model requires strong assump-
tions that are usually not tenable in practice. For example,
uncertainty in the estimation of τ2 is usually ignored and the
sampling distribution of a study's effect size is assumed to
follow a normal distribution. We assess the robustness of
study specific 95% prediction intervals to violations of these
assumptions in two simulation studies. Study specific 95%
prediction intervals were computed using the required vari-
ance formula and the critical value of 1.96 from the standard
normal distribution. We mainly used the Raudenbush for-
mula in (10) for computing the study specific prediction
intervals, but also used the Quan formula in Equation (13)
to show its impact. An overview of the conditions included
in the simulation studies is presented in Table 1.

5.1 | Methodology for simulating data

We performed two types of simulation studies. In the first
we assume that the random-effects model is true, but

allow for the fact that τ2 is unknown. In the second we
simulate comparative binary outcome data and use nor-
mal approximations so that the random-effects model is
merely an approximation. Our expectation was that our
methods would perform better in the first simulation
study than the second.

Both simulation studies were programmed in R36 and
the R package metafor35 was used for computing the
empirical Bayes estimates and their study specific 95%
prediction intervals. Results of both simulation studies
were based on 10,000 replications per condition. R code
of the simulation studies is available at https://osf.io/
4uq93/ and all results of the simulation studies are in the
web Supplementary materials.

5.1.1 | Simulation study 1: normally
distributed outcome data

For each simulated meta-analysis, data were generated
by first sampling i = 1, ..., n true effect sizes from a nor-
mal distribution, θi � N(μ, τ2). A sampling variance σ2i
was drawn from a uniform distribution with 0.05 and
1 as lower and upper bound, respectively. This is merely
intended as a simple and transparent way to draw sam-
pling variances; uniform distributions have previously
been used for this purpose.40 Subsequently, the observed
effect sizes Yi were sampled from N θi,σ2i

� �
.

The average effect size in the population was fixed to
μ = 0, because for normally distributed outcome data this
parameter only changes the location of the observed
effect size estimates without otherwise affecting the sta-
tistical properties of the study specific 95% prediction

TABLE 1 Overview of conditions in the two simulation

studies. μ is the average true effect, n is the number of studies in a

meta-analysis, I2 is the I2-statistic to quantify the between-study

heterogeneity, σ2i is the true sampling variance of the ith study, πci is

the true probability of the outcome of interest in the control group

of the ith study, nci and nei are the sample sizes in the control and

experimental group of the ith study. 10,000 simulated datasets were

produced under each condition

Simulation study

Normally distributed Binary

μ 0 0

n 5; 20; 80 5; 20; 80

I2 0; 0.1; 0.25; 0.5; 0.75; 0.9 0; 0.1; 0.25; 0.5; 0.75; 0.9

σ2i unif(0.05, 1) –

πci – 0.1; 0.5

nci ¼ne
i – 50; 200
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intervals. Three levels for the number of effect sizes in a
meta-analysis were selected, n = 5, 20 and 80. These
levels resemble the number of effect sizes of meta-
analyses published in the Cochrane Database of System-
atic Reviews, because the median number of effect sizes
in these meta-analyses is three and the 99th percentile is
28 effect sizes.41,42 The condition with 80 effect sizes in a
meta-analysis was added to assess the statistical proper-
ties for a large number of effect sizes. Values for τ2 were
selected to correspond to I2-statistics equal to 0, 0.1, 0.25,
0.5, 0.75 and 0.9, where I2 = τ2/(s2 + τ2) and s2 is the 'typ-
ical' within-study variance. In order to be able to compute
these τ2 values from the required I2, we computed
s2 = 0.317 to 3 decimal places, given that the σ2i are sam-
pled from a uniform distribution with 0.05 as lower
bound and 1 as upper bound, using the approach
described by Jackson and Bowden.43

With three different numbers of studies n = 5, 20, 80,
and six different values of I2 = 0, 0.25, 0.5, 0.75, 0.9
corresponding to τ̂2 ¼ 0,0:035,0:106,0:317,0:951,2:854 ,
this simulation study examines 18 different conditions.

5.1.2 | Simulation study 2: comparative
binary outcome data

For each i = 1, ..., n primary study in a meta-analysis, we
first sampled a true effect size θi from a normal distribu-
tion with mean μ and variance τ2 as in the first simula-
tion study. Based on this θi, we created for each ith
primary study a 2 � 2 frequency table by first generating
the number of cases with the outcome of interest in the
control group, xci �B nc

i ,π
c
i

� �
where B refers to the bino-

mial distribution, nci to the sample size in the control
group, and πci to the true probability of the outcome of
interest in the control group. The true probability of the
outcome of interest in the experimental group is a func-
tion of θi and πci and was computed with πei ¼ πci �
exp θið Þ= 1�πci þπci � exp θið Þ
 �

. The number of cases with
the outcome of interest in the experimental group (xei )
was then sampled from B nei ,π

e
i

� �
where nei is the total

number of cases in the experimental group. Before we
computed the log odds ratio and its sampling variance,
we added 0.5 to all cells of the 2� 2 frequency table to
decrease bias in the estimator of the log odds ratio and
enable the computation of the sampling variance in
case of zero cells.44 The log odds ratio was com-
puted with

Yi ¼ log
xei

ne
i � xei

=
xci

nci � xci

� �

and its corresponding sampling variance with

σ̂2i ¼
1
xei
þ 1
nei � xei

þ 1
xci
þ 1
nci �xci

: ð19Þ

The average log odds ratio in the population was fixed
to μ = 0, as in the first simulation study. Unlike in the
first simulation study, the choice of μ is not immaterial
anymore, but we expected this to have a relatively minor
impact and so instead varied other factors that we
deemed as more important. This is to keep the number of
conditions examined manageable. The true probability
of the outcome of interest in the control group was set
equal to either πci ¼ 0:1 or 0.5 in all studies. The number
of patients in the control group and treatment group was
set to either nci ¼ nei ¼ 50 or 200. As in the first simulation
study, the number of effect sizes in the meta-analysis was
set equal to n = 5, 20 or 80.

Similar to the first simulation study, values for τ2

were selected to represent I2-statistics of 0, 0.1, 0.25, 0.5,
0.75, 0.9. However, the typical within-study sampling var-
iance, s2, in the identity I2 = τ2/(s2 + τ2), cannot be com-
puted in the same way as in simulation study 1, because
we no longer have a distribution of within-study vari-
ances immediately available to us. We therefore com-
puted approximate typical within-study variances using
the standard formula for a log odds, s2 ¼
1= nc

iπ
c
i 1�πci
� �� �þ1= neiπ

e
i 1�πei
� �� �

, where we further
approximated (because we set μ = 0) πei ¼ πci . This
approach is especially simple and transparent, but gives
very similar typical within-study variances to a simula-
tion based approach that was also considered. In this
alternative approach, studies were simulated assuming
πei ¼ πci , within-study variances were computed using
Equation (19) and then the typical within-study variance
was computed using Equation (9) of Higgins and
Thompson.38

With three different numbers of studies n = 5,
20, 80, six different values of I2 = 0, 0.1, 0.25, 0.5, 0.75,
0.9, and four combinations of nci ¼ne

i ¼ 50 or 200 and
πci ¼ 0:1 or 0.5, this simulation study examines 72 different
conditions.

5.2 | Assessing the performance of study
specific prediction intervals

Study specific 95% prediction intervals were computed
using the Raudenbush formula in Equation (10). Some
results were also produced using the Quan et al. formula
in Equation (13) to assess the impact of using it. The true
τ2 was initially used in both variance formulae to exam-
ine whether the coverage probabilities of the prediction
intervals were equal to the nominal coverage rate, as
expected according to theory in simulation study
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FIGURE 3 Coverage probability of study specific 95% prediction interval for normally distributed outcome data (left column) and

binary outcome data (right column) as function of heterogeneity in true effect size (x-axis). The Raudenbush formula in Equation (10) was

used for estimating the variance of the empirical Bayes estimates. Circles denote coverage probability when the true τ2 was used for

computing the 95% prediction interval and triangles, plus signs, and crosses denote that τ2 was estimated using the DerSimonian and Laird,2

Paule-Mandel,45 and restricted maximum likelihood (REML)18 estimator. The rows present coverage probabilities in meta-analyses based on

n = 5, 20, and 80 studies
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1. However our primary interest is in the statistical
properties of the study specific prediction intervals if τ2

was estimated. We included the widely used Der-
Simonian and Laird2 estimator as well as the currently
recommended7,8 REML18 and Paule-Mandel45 estima-
tors for estimating τ2. Note that the Paule-Mandel
estimator is equivalent to an estimator for τ2 that has
been developed in the context of empirical Bayes
estimation.46–48

The main outcome of interest in both simulation
studies was the coverage probability of the study spe-
cific 95% prediction intervals. For each generated meta-
analysis, we assessed whether each θi fell within the
bounds of its prediction interval and computed the
average coverage probability based on all studies in a
meta-analysis. These average coverage probabilities per
meta-analysis were then averaged over all simulated
datasets.

5.2.1 | Additional assessments

The coverage probabilities of the study specific prediction
intervals were also computed for only the largest θi in a
meta-analysis (in case of τ2 = 0 coverage probability of
the first θi was assessed). This was to assess their perfor-
mance for the most outlying trial. For the first simulation
study, we also computed the coverage probability of the
study with the largest σ2i , that is, the 'smallest' study.
The performance for the smallest study was examined as
it was thought that prediction intervals might then per-
form poorly, because small studies' results are shrunk the
most to the pooled effect. Another outcome of interest in
both simulation studies was the average width of the
study specific prediction intervals.

Study specific prediction intervals were also com-
puted in combination with the Knapp–Hartung adjust-
ment49–52 if an estimate of τ2 was used. The Knapp–
Hartung adjustment takes uncertainty in estimates of the
variance components into account by scaling the vari-
ance of θ̂ (i.e., 1/w) and by using the t-distribution with
n� 1 degrees of freedom as pivot.53 The Raudenbush for-
mula in Equation (10) also contains that variance of θ̂ ,
1/w, and this quantity is scaled when computing study
specific prediction intervals in combination with the
Knapp–Hartung adjustment. Simulation studies54–56 have
shown that the Knapp–Hartung adjustment yields more
accurate coverage probabilities of 95% confidence inter-
vals than conventional random-effects meta-analysis.
However, it is unknown whether prediction intervals
become more accurate if the adjustment is used. The
results for all of these additional assessments are con-
tained in the web Supplementary materials.

5.3 | Properties of prediction intervals
using the recommended Raudenbush
variance formula

Figure 3 shows the coverage probabilities where coverage
probabilities using the true τ2 are denoted by circles. Tri-
angles, plus signs, and crosses denote coverage probabili-
ties when τ2 was estimated using DerSimonian and
Laird, Paule-Mandel, and restricted maximum likelihood,
respectively. In the first simulation study, with normally
distributed outcome data (left column), coverage proba-
bilities were equal to the nominal coverage rate if the
true τ2 was used. This was as expected, because there is
no uncertainty in estimation of τ2 and all the assump-
tions made when deriving the prediction intervals are
true. If τ2 was estimated, as will be the case in practice,
the coverage probability based on all three estimators
was highly comparable. It was slightly above the nominal
coverage rate if I2 = 0% and was too low if I2 > 0%.

We present the coverage probabilities of study specific
95% prediction intervals for the conditions ni = 50 and
πCi ¼ 0:1 for the second simulation study (binary outcome
data) in the right hand column of Figure 3. These condi-
tions were selected because this was the worst-case sce-
nario (smallest studies and event probabilities) where
coverage probabilities deviated the most from the nomi-
nal coverage rate. The results for the other three combi-
nations of ni and πCi are shown in the web
Supplementary materials. The general pattern of results
are similar in the two columns of Figure 3, but the devia-
tions from the nominal coverage probability of 95% is
greatest for the second simulation study, as expected.
Study specific prediction intervals based on the REML
estimator for the between-study variance deviated the
most from the nominal coverage probability, because it
was most negatively biased resulting in, on average, the
narrowest intervals. As also expected, deviations from the
nominal coverage rate decreased when nci ¼ne

i ¼ 200
compared to 50 in the second simulation study, and also
when the event was more common, πci ¼ 0:5 (see web
Supplementary materials). These observations can be
explained because the normal approximations made by
the random-effects model are then more accurate.

5.3.1 | A defect in the study specific
prediction intervals

Two recent studies57,58 examined the coverage probability
of prediction intervals for the true effect in a new study.
Both studies observe low coverage probabilities if τ2 is
small but non-negligible. We observe the same defect for
study specific prediction intervals when τ2 is estimated
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(Figure 3). This suggests that we need to treat the predic-
tion intervals for our first example in Figure 1 with cau-
tion, because here τ̂2 was small but non-negligible raising
concerns that their actual coverage probability might sub-
stantially deviate from the nominal coverage rate of 95%.

To understand why these defects occur, imagine a
meta-analysis where τ2 is small compared to σ2i (but non-
negligible) and (to simplify matters) the number of stud-
ies is large. In such a meta-analysis, the magnitude of the
variance in Equation (10) is mainly determined by
the first term, because 1/w in the second term is small.
By dividing the numerator and the denominator of the
first term by σ2i , we can see that this variance is approxi-
mately equal to τ2. The assumed variance used in the cal-
culation of the prediction interval for the true effect of a
new study is 1/w+ τ2, and this is also approximately
equal to τ2. This shows that the variance used in the com-
putation of both types of prediction intervals is approxi-
mately τ2 in this type of situation. The uncertainty in this
parameter is ignored, which largely explains the under
coverage of both types of prediction intervals. Further-
more, τ2 is often estimated as zero for small but non-
negligible τ2 and this results in too narrow intervals for
both types of prediction intervals. Small τ2 and large
n therefore appeared to be a 'perfect storm' for both types
of prediction intervals to perform poorly. For larger
values of τ2, the performance of the prediction intervals
improved as n increased, as one might expect. The only

scenario in our simulation study where the prediction
intervals yielded over coverage were for the conditions
where τ2 = 0, again as one might expect.

5.3.2 | Additional assessments

See the web Supplementary materials for all results con-
cerning the additional assessments. We did not interpret
the average width of the study specific prediction inter-
vals, because a prerequisite for interpreting the width is
that the coverage probability is close to the nominal cov-
erage rate, which was not the case. The coverage proba-
bility of study specific prediction intervals were generally
slightly closer to the nominal coverage rate if the Knapp–
Hartung adjustment was used, where this improvement
was particularly notable for n = 5. More notable under
coverage of study specific prediction intervals was
observed for the prediction intervals with the largest θi.
This is an important observation, indicating that the
study specific prediction intervals that we computed do
not perform well if we condition on estimating the largest
θi. However, this appeared to be a less serious issue in sit-
uations where the between-study variance was either
very small or considerable. These observations can be
explained because if τ2 was small then there was very lit-
tle variation in the θi, and if τ2 was large then there was
very little shrinkage so that study specific prediction

FIGURE 4 Coverage probability of the study specific 95% prediction interval for normally distributed outcome data (left panel) and

binary outcome data (right panel) as function of heterogeneity in true effect size (x-axis). The Quan et al. formula was used for estimating

the variance of the empirical Bayes estimates. Circles denote coverage probability when the true τ2 was used for computing the 95%

prediction interval and triangles, plus signs, and crosses denote that τ2 was estimated using the DerSimonian and Laird,2 Paule-Mandel,45

and restricted maximum likelihood (REML)18 estimator. Both figures show the results of n = 20 studies in a meta-analysis
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intervals were similar to conventional confidence inter-
vals. The coverage probabilities of prediction intervals for
the study with the smallest study in a meta-analysis were
comparable to the average coverage probability of the
prediction intervals of all studies in a meta-analysis.

5.4 | Properties of prediction intervals
using the Quan et al. variance formula

As explained in Section 5.2, some results were produced
using the Quan et al. variance formula. For the first simu-
lation study, with normally distributed outcome data,
results for n = 20 were produced. For the second simula-
tion study, with binary outcome data, results for n = 20,
nci ¼nei ¼ 50, and πci ¼ 0:1 were produced. Figure 4 shows
the resulting coverage probabilities of 95% prediction
intervals, for θi, using the Quan et al. formula. As
expected from the discussion in Section 3.3.1, the Quan
et al. variance formula provided coverage probabilities
that were too large when τ2 was large, and coverage prob-
abilities that were too small when τ2 was small. This
under coverage when τ2 was small increased as a func-
tion of n (see web Supplementary materials). From Equa-
tions (17) and (18), one might expect the Quan et al.
formula to produce the correct coverage probability when
I2 = 0.5, the random-effects model is true and the true
value of τ2 is used. This was approximately the case in
the left hand side of Figure 4. However, the majority of
simulated within-study variances, that were uniformly
distributed in the interval 0.05 to 1, were greater than the
typical within-study variance of 0.317. Hence, τ2 was then
less than the majority of simulated within-study vari-
ances when I2 = 0.5; from Equations (17) and (18) we
then expect some under coverage, as was the case in
Figure 4.

5.5 | Overall conclusions

In general, 95% study specific prediction intervals using
the Raudenbush variance formula have performed well.
However, they have the defect that they provide under
coverage in situations where τ2 is small but non-negligi-
ble. This is mainly caused by estimation of τ2, because
coverage probabilities are close to the nominal coverage
rate if the true τ2 rather than an estimate is used for cre-
ating the study specific prediction intervals. As expected,
study specific prediction intervals perform worse in situa-
tions where the normal approximations made by the
random-effects model are less accurate. The Quan et al.
formula does not reliably provide the correct coverage

probability for θi, even in situations where the random-
effects model was true and τ2 was known.

6 | DISCUSSION

Estimates of study specific effects are often of interest.
For example, a particular study may be conducted in a
population of particular interest. We recommend using
the empirical Bayes estimates, or equivalently the BLUPs,
with study specific prediction intervals, to make the nec-
essary statistical inferences. We suggest using these quan-
tities in addition to the usual study specific estimates and
to confidence intervals shown on forest plots. In hind-
sight, it may even seem strange to suggest presenting pre-
diction intervals for the true effect in a new study in
forest plots, as sometimes advocated,6,59 but not
suggesting to also include study specific prediction
intervals.5,6,30

Our tutorial contributes to the existing literature in
three ways. First, we have coalesced and elucidated the
literature on empirical Bayes estimates, BLUPs, and
study specific prediction intervals, and have examined
three different variance formulae for computing these
prediction intervals. This revealed that the Quan et al.
formula makes inferences for the average effect, rather
than study specific effects. Hence, we recommend
researchers who want to compute study specific predic-
tion intervals to use the Raudenbush rather than the
Quan et al. formula, because the latter is based on an
inappropriate pivot. The second contribution is illustrat-
ing how forest plots can be embellished by adding empir-
ical Bayes estimates or BLUPs together with their
corresponding prediction intervals. We have illustrated
this by creating forest plots for meta-analyses on the effi-
cacy of treatments for PTSD and iron blood levels of
patients with Alzheimer's disease. Embellishing forest
plots with empirical Bayes estimators or BLUPs with pre-
diction intervals has been suggested before,21–23 but this
type of plot is not yet routinely used. One concrete rec-
ommendation is to routinely embellish forest plots and
we have developed user friendly R code (https://osf.io/
sz6ka/) to facilitate this. Our third main contribution is
that we have studied the statistical properties of study
specific prediction intervals in two simulation studies.
These simulation studies have revealed a defect where
the coverage probability of study specific prediction inter-
vals is low if the between-study variance is small but
non-negligible. These results agree with previous simula-
tion studies for the prediction interval for the true effect
in a new study.57,58 We recommend researchers to be
cautious when interpreting both types of prediction
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intervals when there may be a small amount of between-
study heterogeneity, as is commonly the case.

Further simulation and empirical work would be worth-
while. Simulation studies could explore a wider range of set-
tings and simulation outcomes. For example, future
simulation studies might examine the properties of study
specific prediction intervals for other effect size measures
than the log odds ratio that we have examined or assess the
family-wise error rate of multiple study specific prediction
intervals. Another possibility is to explore the value of the
proposed methodology to better accommodate any apparent
outliers, by shrinking outlying results towards the pooled
effect. A variety of alternative methods for handling outliers
in meta-analysis have been proposed.60,61 However, in our
simulation study, we found that the coverage probability is
below the nominal level for the study with the largest true
effect. Furthermore, our methodology does not alter the
inferences for the average effect. We do not therefore suggest
that this is a primary purpose of our methods, rather this is
another possible motivation for using them. Other options
for future research are examining the properties of study spe-
cific prediction intervals in arm based models and studying
the best approach for testing whether two estimates of study
specific true effects are different from each other.

Empirical Bayes estimates or BLUPs and corresponding
study specific prediction intervals can be used in conjunc-
tion with all available estimators for the between-study var-
iance in true effect size. The Paule-Mandel estimator might
appear to be the most logical estimator to use, because it
has been shown to be equivalent to an estimator developed
in the context of empirical Bayes estimation.47,48 However,
the between-study variance is assumed to be known in the
theory of empirical Bayes estimation, so there is no restric-
tion on computing these estimates in combination with the
Paule-Mandel estimator. Hence, researchers are advised to
create empirical Bayes estimates or BLUPs and study spe-
cific prediction intervals using an estimator for the
between-study variance that is expected to perform well for
their meta-analysis.

We have focused on the univariate random-effects
model for meta-analysis in this tutorial. It is, however,
common practice to include study characteristics as mod-
erator variables in a so-called meta-regression
model.30,62,63 Such a meta-regression model can be used
to explain between-study heterogeneity. The general
model of Robinson32 can be used for obtaining the empir-
ical Bayes estimates or BLUPs for the meta-regression
model. These estimates are then the estimates of a study
specific true effect at the study's value of the moderator
variable and can also be accompanied by study specific
prediction intervals. By using the general model of
Robinson,32 empirical Bayes estimates or BLUPs (and
corresponding prediction intervals) can also be obtained

for a multivariate meta-analysis model where multiple
dependent effect sizes are extracted from the same study.

We have presented the empirical Bayes estimates or
BLUPs and corresponding study specific prediction inter-
vals in the context of the random-effects meta-analysis
model. However, our results readily extend to multicen-
ter clinical trials where the effectiveness of a drug or
treatment is tested in multiple medical centers. Goals of
multicenter clinical trials exactly coincide with the goals
of a random-effects meta-analysis and include estimating
the effectiveness of a drug or treatment and quantifying
heterogeneity in effectiveness across medical cen-
ters.24,64,65 Although shrinkage might be more controver-
sial in multicenter clinical trials than in meta-analysis,
empirical Bayes estimates or BLUPs are also relevant in
this context to obtain center specific effect size estimates
that can be accompanied by a prediction interval.

The random-effects model for meta-analysis, and
study specific prediction intervals in particular, make use
of normality assumptions16 of which assuming known
within-study sampling variances is probably the strongest
assumption. Our simulation studies revealed that viola-
tions of these assumptions adversely affected the perfor-
mance of study specific prediction intervals. This calls for
models that make less use of normality assumptions.12,66

The best way to compute study specific prediction inter-
vals when using generalized linear mixed models is an
open question.

Study specific prediction intervals, and prediction
intervals for the true effect in a new trial, also follow nat-
urally from a fully Bayesian approach.19,20 Bayesian
methods also have the advantage of accommodating the
uncertainty in τ2. Further work that assesses the sensitiv-
ity of prediction intervals to the assumed prior distribu-
tion of τ2 would be worthwhile.

To summarize, we suggest using the formula of
Raudenbush and Bryk18 for computing study specific pre-
diction intervals and routinely embellishing forest plots
with empirical Bayes estimates and study specific predic-
tion intervals. However, we also advise caution when
interpreting the results, because we have found that pre-
diction intervals do not perform perfectly. We hope that
our tutorial serves to clarify and exemplify the methods
we advocate, and also that it may promote them to the
point where they might be routinely used.

Highlights

What is already known: The pooled estimate of the aver-
age effect is of primary interest when fitting the random-
effects model for meta-analysis. However, estimates of
study specific effects are also often of interest. Empirical

444 van AERT ET AL.



Bayes estimates or Best Linear Unbiased Predictions
(BLUPs) of the study specific true effects are sometimes
claimed to provide a better indication of a study's true
effect than the more familiar study specific estimates con-
ventionally displayed on forest plots. These estimated
study specific true effects can be accompanied by predic-
tion intervals.

What is new: We coalesce and elucidate the diffuse
literature on empirical Bayes estimates and BLUPs, and
show that these are the same under the random-effects
model. We reflect on the existing variance formulae for
computing study specific prediction intervals. We per-
form simulation studies to evaluate the statistical proper-
ties of study specific prediction intervals based on
different variance formulae. Our simulation studies
reveal an important defect of study specific prediction
intervals if between-study variance is small, but not negli-
gible. We present our paper as the first accessible, but
statistically rigorous, account of these methods for the
meta-analysis community.

Potential impact for RSM readers outside the authors'
field: The statistical methods that we advocate are slightly
more sophisticated than those commonly used and our
hope is that our work will make them accessible to a
wider audience. Researchers are advised to be cautious
when interpreting study specific prediction intervals
because they do not perform perfectly. Despite this, we
corroborate others by recommending the embellishment
of forest plots with study specific prediction intervals.
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