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Abstract—Sleep Apnea (SA) is a prevalent sleep disorder
with multifaceted etiologies that can have severe conse-
quences for patients. Diagnosing SA traditionally relies
on the in-laboratory polysomnogram (PSG), which records
various human physiological activities overnight. SA
diagnosis involves manual scoring by qualified physicians.
Traditional machine learning methods for SA detection
depend on hand-crafted features, making feature selection
pivotal for downstream classification tasks. In recent
years, deep learning has gained popularity in SA detection
due to its capability for automatic feature extraction and
superior classification accuracy. This study introduces a
Deep Attention Network with Multi-Temporal Information
Fusion (DAN-MTIF) for SA detection using single-lead
electrocardiogram (ECG) signals. This framework utilizes
three 1D convolutional neural network (CNN) blocks to
extract features from R-R intervals and R-peak amplitudes
using segments of varying lengths. Recognizing that
features derived from different temporal scales vary in their
contribution to classification, we integrate a multi-head
attention module with a self-attention mechanism to
learn the weights for each feature vector. Comprehensive
experiments and comparisons between two paradigms
of classical machine learning approaches and deep
learning approaches are conducted. Our experiment results
demonstrate that (1) compared with benchmark methods,
the proposed DAN-MTIF exhibits excellent performance
with 0.9106 accuracy, 0.9396 precision, 0.8470 sensitivity,
0.9588 specificity, and 0.8909 F1 score at per-segment
level; (2) DAN-MTIF can effectively extract features with
a higher degree of discrimination from ECG segments of
multiple timescales than those with a single time scale,
ensuring a better SA detection performance; (3) the overall
performance of deep learning methods is better than the
classical machine learning algorithms, highlighting the
superior performance of deep learning approaches for SA
detection.
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Impact Statement—To facilitate automatic detection of
Sleep Apnea (SA) events based on single-lead electro-
cardiogram (ECG) signals, we introduced a Deep Atten-
tion Network with Multi-Temporal Information Fusion (DAN-
MTIF) leveraging ECG signal of multiple temporal scales.
The proposed model exhibits superior performance com-
pared to classical machine learning algorithms and deep
learning approaches.

I. INTRODUCTION

S LEEP accounts for about one-third of people’s daily
lives [1], [2]. Sleep quality is closely related to physical and

mental health, but unfortunately, nearly 50 to 70 million adults
in the United States are afflicted with various sleep disorders [2].
Sleep Apnea (SA) is a common and serious sleep disorder
characterized by brief interruptions (10 seconds or more) of
breathing during sleep [3]. There are three main types of SA:
Obstructive Sleep Apnea (OSA), Central Sleep Apnea (CSA),
and Mixed Sleep Apnea (MSA) [3], [4]. The cause of OSA is
that muscles in the back of the throat are overly relaxed, blocking
or narrowing the airway so that breathing is obstructed. CSA, on
the other hand, is caused by the temporary inability of the brain
to send signals to muscles that control breathing. MSA refers to a
condition in which the patient experiences both OSA and CSA
at the same time. Patients with SA suffer both physically and
psychologically, as SA causes them to snore loudly during sleep,
wake up repeatedly at night, and feel tired or even exhausted
during daytime, etc [5]. Those in severe SA conditions even
have a much higher risk of cardiovascular disease, mental health
illnesses, and psychological distress [6], [7], [8]. The clinical
indicators for diagnosing SA vary [9]. Initially, Guilleminault
defined “sleep apnea syndrome” as more than 30 apnea events
per night [10]. Later, the “Apnea-Hypopnea Index (AHI)”, which
refers to the number of minutes containing apnea events per
hour, was adopted as a proper measurement. Most clinicians
regard an AHI below 5 as normal, and an AHI of 10 or more
as pathological [11]. Moreover, criteria used in current practice
are based not just on AHI but also encompass symptoms and
cardiovascular outcomes [9].

As the prevalence of SA has risen substantially over the
past few decades, posing an increasing threat to public health
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and safety, it is essential to establish an efficient diagnostic
method for SA [12]. A widely accepted gold standard is the
polysomnogram (PSG), which involves the overnight recording
of different physiologic activities during sleep, for example,
brain waves, heart rhythm, eye movements, blood oxygen level,
and so on [13], [14]. Typically, the individual who underwent
PSG is required to stay overnight in a sleep laboratory monitored
by sleep technicians and physicians. Then, the physiological
recordings need to be manually annotated and interpreted to
ensure detailed and precise results, which limits PSG’s utility
outside of a laboratory setting [15]. Other factors limiting the
wide adoption of PSG include its extensive duration of recording
and substantial cost, and the patients are prone to feel uncom-
fortable due to multiple sensors attached to their skin [16]. In
contrast, the increasing utilization of auto-scoring home sleep
monitoring devices, characterized by their wearability and porta-
bility, has the potential to help mitigate the physician shortage in
hospitals while offering enhanced convenience and comfort to
patients [17], [18]. These electronics have either single or multi-
ple sensors, which can monitor one or more physiological signals
independently or in combination [19], [20]. The commonly mea-
sured signals include electroencephalogram (EEG), electrocar-
diogram (ECG), blood oxygen level, and respiration [21], [22].
Among all these physiological measurements, ECG achieves
the best signal-to-noise ratio with a signal strength of 1–2 mV,
and the acquisition of ECG is less technical when compared
to PSG [23]. In addition, various studies have indicated that
sleep distinctly influences ECG in various ways. For example,
a notable correlation has been observed between heart rate
variability (HRV) and SA events [24], [25]. Due to the above
advantages, the use of ECG for SA detection has been exten-
sively studied in recent years. A brief summary and introduction
of methods developed during the past decades is provided in
Section II.

In this paper, we propose a novel deep network incorporating
information at different timescales of SA events through fea-
ture fusion, which aims to make full use of the discriminative
information implicit in ECG measurements before and after
the occurrence of SA. The main contributions of this study are
outlined as follows:

1) The proposed deep attention network with multiple tem-
poral information fusion (DAN-MTIF) for SA detec-
tion extracts features from R-R intervals and R-peak
amplitudes of multiple timescales, enabling the uti-
lization of the information contained in adjacent ECG
segments.

2) A dilated convolution filter is used in the convolutional
filters, which allows the convolutional filters to extract
features from a wider range of the receptive field, allow-
ing better capturing of temporal dependencies without
increasing the depth of neural networks. In addition, the
multi-head attention module to assign proper weights for
features derived from different channels is incorporated,
enabling the adaptive integration of information at differ-
ent timescales.

3) Comprehensive evaluations of the proposed DAN-MTIF
framework and its comparison with benchmark methods,
including both ML models and DL models, are conducted.

The results suggest that DAN-MTIF outperforms the
benchmark methods, while deep learning models outper-
form the classical ML approaches

II. RELATED WORK

The proposed methods for SA events detection from sin-
gle channel ECG can be mainly divided into two categories
respectively, represented by classical machine learning (ML)
approaches and deep learning (DL) approaches [26].

ML approaches typically require extracting discriminative
features from the recorded ECG data as they are rich in res-
piratory information about the patients and inevitably contain
irrelevant information that cannot reflect whether a patient is
in SA condition during sleep [27], [28], [29]. To solve this
problem, principal component analysis (PCA) or other dimen-
sionality reduction algorithms are often employed to extract the
most discriminative features [30]. The obtained features after
dimensionality reduction are then used as the input and fed into
a classifier for SA detection [31]. During the past few decades,
various ML models have been applied to SA detection. For
example, Varon et al. presented a least-squares support vector
machine (LS-SVM) for the automatic detection of SA from
single-lead ECG, in which the standard deviation and the serial
correlation coefficients of the R-R interval time series are used as
two input features [32]. Rizal et al. performed SA classification
based on a support vector machine (SVM) using eleven HRV
features and achieved an accuracy of about 89.5% [33]. More-
over, Salari et al. employed a set of basic popular classifiers,
including logistic regression (LR), linear discriminant analysis
(LDA), and K-nearest neighbors (KNN), etc., for SA detection
and then conducted a comprehensive analysis of the model
performance [34].

Recently, with the popularity of artificial neural networks
(ANN), various DL frameworks have been developed for SA de-
tection, mainly including convolution neural networks (CNNs),
recurrent neural networks (RNNs), hybrids of CNN and RNN
architectures [35], [36]. The advantage of DL models over ML
models is the latter can automatically extract discriminative
features from ECG signals. For example, Wang et al. [37]
proposed a modified LeNet-5 CNN for SA detection with R-peak
amplitudes and R-R intervals derived from ECG signals as
input and achieved better or comparable results when compared
with traditional ML methods. Niroshana et al. [38] proposed an
image-based method to detect SA events, in which ECG seg-
ments were first converted into scalogram images and spectro-
gram images, then fed into a two-dimensional CNN (2D-CNN)
network. Furthermore, to utilize the temporal information of
ECG, a variety of RNN-based frameworks and hybrids of CNN
and RNN have been proposed during the past several years.
Faust et al. [39] presented an automatic SA detection method
based on a long short-term memory (LSTM) network with RR
intervals as input. Liang et al. [40] designed a deep network using
the combination of CNN and LSTM structures to detect OSA
events from R-R intervals. What’s more, Zarei et al. [41] also
presented a hybrid CNN-LSTM framework for OSA detection
from single-lead ECG signals, and the presented model sig-
nificantly outperforms existing state-of-the-art methods. Chen



794 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 5, 2024

Fig. 1. An illustrative example of preprocessing to denoise: (a) raw
ECG signal; (b) filtered ECG signal.

et al. [42] developed a lightweight multi-scaled neural network
called SE-MSCNN for SA detection based on single-lead ECG
signals and achieved significantly better performance compared
to state-of-the-art SA detection methods. Overall, extensive
published works demonstrate the potential of DL models in SA
detection based on ECG signals [35], [43].

III. MATERIAL AND METHOD

A. Data Preprocessing

In general, raw ECG recordings are vulnerable to noises
from multiple sources, such as baseline drift, motion artifacts,
and electromagnetic interference. These disruptions can be at-
tributed to patients’ movements and the data acquisition equip-
ment used in the recording process. In order to mitigate noise
contamination from ECG, we perform signal filtering using
a bandpass filter with a cutoff frequency of 3 Hz to 45 Hz.
The comparison between original and filtered ECG signals
is given in Fig. 1. It can be observed that the baseline drift
and other high-frequency disturbances are removed effectively
after band-pass filtering. Next, all the filtered overnight ECG
recordings are segmented into short segments of 1-minute length
to detect patients’ SA status with varying time stages during
sleep. Two ECG features, R-peak amplitudes and R-R intervals,
are employed as the model input for SA classification. The
Hamilton algorithm [44] is adopted to detect R-peaks, then
R-peak positions are further used to extract R-peak amplitudes
and compute R-R intervals. Since the heart rate of the subject
changes during sleep, the extracted R-peak amplitudes and R-R
intervals are of varied lengths. In order to make the derived
features meet the input requirements of the model, we fixed
the feature length corresponding to 1-, 3-, 5-min long segments
to 180, 540, 900 points, respectively. For features with fewer
points, the cubic interpolation technique is introduced to extend
length [37]. For features with more points, we cropped them
at the center to reduce length. The adjacent ECG segments at
different timescales are also used for SA detection. The exam-
ple of adjacent ECG segments and the corresponding R-peak
amplitudes and R-R intervals are shown in Fig. 2.

B. The Proposed Architecture

In this section, a unique SA detection framework (DAN-
MTIF) based on multi-scaled CNN and multi-head attention

Fig. 2. An illustration of example R-R intervals and R-peak amplitudes.

Fig. 3. The structure of the proposed framework.

mechanism is designed for automatic SA detection using single-
lead ECG signals. The architecture and configuration details of
the proposed DAN-MTIF model are illustrated in Fig. 3 and
Table I, which consists of three modules: multi-scaled CNN
module, multi-head attention module, and a fully connected
network as the SA classifier.

1) Multi-Temporal Scale CNN Module: As illustrated in
Fig. 3, the multi-scaled CNN module consists of three CNN
blocks (CNN-1, CNN-2, CNN-3), of which the inputs are the
derived R-R intervals and R-peak amplitudes with different
lengths (180, 540, 900 points) corresponding to ECG segments
with different timescales (1-, 3-, 5-min long). This unique design
enables the DAN-MTIF model to utilize the information from
both central and adjacent ECG segments simultaneously. More-
over, the dilated convolution kernel [45] was employed to expand
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TABLE I
DETAILED EXPLANATION OF EACH LAYER IN THE PROPOSED DAN-MTIF

Fig. 4. Illustration of the receptive field for the dilated convolution.

the receptive field of DAN-MTIF. The receptive field refers to
the area size of the original input corresponding to a single
element in the extracted feature map. Shallow CNNs tend to
have small receptive fields as the extracted features contain more
local information instead of global information. As the depth of
CNN increases, the proportion of global information contained
in the feature map increases accordingly, so that the receptive
field expands. As illustrated in Fig. 4, for a dilated convolution
layer, there are empty “spaces” between kernel elements, which
allows the convolutional kernel to directly extract information
from a wider range without increasing the number of parameters.
In this way, the receptive field can be expanded exponentially
without increasing network depth, thus avoiding the increase of
model parameters. The dilation rate l is defined to indicate how
much the kernel can be expanded. The normal convolution can
be seen as a dilated convolution with l = 1.

In this study, the three blocks in the multi-temporal scale CNN
module share the same structure, and each block contains 8
1D-CNN layers with 64 output channels. The dilation rate l is set
to 2, and the kernel sizes are respectively set to 3× 1, 7× 1, and
11× 1, corresponding to three timescales. The feature vectors
extracted from a single channel in three CNN blocks were
first concatenated into a long vector x containing information
from multiple timescales, then the concatenated feature vectors
corresponding to different output channels were stacked together
producing an output X with a size of d× c, where d is the
dimension of the concatenated feature vector x, and c is the
number of channels in each CNN block.

2) Multi-Head Attention Module: Since the concatenated
feature vectors contain information from multiple sources,
which are of varied contributions to the classification results,
a multi-head attention module with a self-attention mechanism
is employed to assign a proper weight for each feature vector.

With the concatenated feature X as input, the attention score
based on self-attention can be computed as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

where Q ∈ Rd×dk ,K ∈ Rd×dk , V ∈ Rd×dv are three matrices
known as the Query, Key and Value, which can be obtained
respectively by multiplying X ∈ Rd×c with three learnable
nonlinear matrices WQ ∈ Rc×dk , WK ∈ Rc×dk , and WV ∈
Rc×dv . dk is the dimension of the key vector in K, and dv is
the dimension of the value vector in V .

In the multi-head attention module, the Query, Key, Value
matrices derived from the concatenated feature X get logically
split across multiple heads, which enables the structure to cap-
ture richer interpretations from X . The attention score can be
computed as follows:

headi = Attention(Qi,Ki, Vi), i = 1, 2, . . ., h. (2)

MultiHead = Concat(head1, . . ., headh)W
O (3)

where h is the number of heads, Qi ∈ Rd× dk
h ,Ki ∈

Rd× dk
h , Vi ∈ Rd× dv

h can be obtained respectively by multiply-

ing X ∈ Rd×c with projection matrices WQ
i ∈ Rc× dk

h , WK
i ∈

Rc× dk
h , and WV

i ∈ Rc× dv
h . WO ∈ Rdv×dout is the output ma-

trix, and dout is the dimension of the outputs. By introducing
multi-head attention, the model is enabled to simultaneously
focus on different parts of the input and potentially capture
various types of dependencies and relationships within the data.

By applying the generated attention score to the extracted
feature X , the proposed DAN-MTIF framework is enabled to
adaptively make full use of information from ECG segments
at different timescales. Finally, the features obtained from the
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multi-head attention module are fed into a global average pool-
ing layer and followed by a fully connected (FC) module for SA
classification.

IV. EXPERIMENTS AND RESULTS

In this section, we conducted experiments to validate the ef-
fectiveness of the proposed DAN-MTIF model for SA detection.

A. Dataset and Evaluation Metrics

The ECG data used in this study is from the PhysioNet
Apnea-ECG database provided by Philipps University [46]. This
database contains 70 single-lead ECG recordings collected from
35 individuals with a sampling frequency of 100 Hz. The time
duration of each ECG recording varies between 401 min to
578 min and each recording was broken down into a set of
1-min long ECG segments. Each ECG segment was annotated
as A (Apnea) or N (Normal) by a human expert, indicating
whether apnea occurred at that time. In this dataset, the pro-
portions of normal and apnea segments are 62% (N) and 38%
(A), respectively. These ECG recordings were further classified
into three classes: Class A (Apnea), Class B (Borderline), and
Class C (Control). The number of recordings in each category
is 40, 10, and 20, respectively. Since the ECG recordings in
Class B meet part rather than all of the SA criteria used in
current practice, which means it is difficult to classify them
unambiguously, following other researchers who studied this
dataset, only recordings from Class A and Class C were em-
ployed for SA detection. These recordings were then divided
into a learning dataset and a testing dataset each containing 20
class A recordings and 10 class C recordings. 70% of the ECG
segments in the learning set were used for model training and
30% for model validation. Further, all the ECG segments in the
testing set were applied for model testing.

For classical ML models, the HRV features [47], including
time domain features, frequency domain features, and nonlinear
features, are employed for model learning. In this study, the
HRV features were extracted using the hrvanalysis package [48],
[49], [50], which provides methods to remove outliers and
ectopic beats from R-R intervals to get normal to normal inter-
vals (NN-intervals). Then, the HRV features can be calculated
from the filtered NN intervals. To drop redundant features, the
random forest (RF) [51] and the extreme gradient boosting
(XGBoost) [52] are adopted to calculate the permutation feature
importance. The permutations are conducted five times for each
model, and the mean values are used for the final ranking (Fig. 5).
According to the ranking results, the first 25 features are used
for ML model learning, and the grid search technique is adopted
for hyperparameter tuning.

The benchmark algorithms used for comparison include
(i) classical ML models: LR [53], LDA [54], KNN [55],
SVM [56], LS-SVM [57], RF [51], gradient-boosting decision
tree (GBDT) [58], XGBoost [52] and (ii) DL models: LeNet-
5 [59], ZFNet [60], AlexNet [61], GRU [62], LSTM [63],
BiLSTM [64], CNN-LSTM [26], SE-MSCNN [42]. For LR,
we use the regularization strength to be 10. For KNN, we use
the Manhattan distance, and the number of neighbors K is set
to 70. For SVM, the RBF kernel with a kernel coefficient of

Fig. 5. The HRV feature ranking for SA detection.

0.1 is adopted for nonlinear mapping, and the regularization
strength of 10 is used. For LS-SVM, an RBF kernel with a
kernel coefficient of 0.1 is adopted for nonlinear mapping and
the regularization strength of 0.1 is used. For RF, the number
of trees is set to 100, with the maximum depth being 8. The
function of measuring the quality of a split is the Gini impurity.
For GBDT, the maximum depth of the individual DT is set to
2, and the learning rate used to shrink the contribution of each
tree is set to 0.1. The number of boosting stages to perform is
100. For XGBoost, the maximum depth of a tree is set to 2, the
number of trees in the ensemble is set to 90, and the learning
rate is set to 0.1.

The detailed configuration of the deep learning benchmark
methods is given below:

1) LeNet-5: The LeNet-5 is comprised of 32 kernels of size
5× 1 stacked to a 3× 1 max-pooling, followed by a
convolution layer with 64 kernels of size 5× 1, followed
by a 3× 1 max-pooling and a Dropout layer with a rate
of 0.2. Data were then flattened and fed to two fully
connected layers with 32 and 2 nodes.

2) ZFNet: The ZF-Net is comprised of 96 kernels of size
7× 1 stacked to a 3× 1max-pooling followed by a batch
normalization in the first layer, a convolution layer with
256 kernels of size5× 1 followed by a3× 1max-pooling
and batch normalization in the second layer, and three
convolution layers with 512 kernels of size 3× 1, 1024
kernels of size 3× 1, and 512 kernels of size 3× 1
stacked together followed by a 3× 1 max-pooling in the
third layer. Data were then flattened and fed to two fully
connected layers with 418 and 2 nodes.

3) AlexNet: The developed AlexNet comprised of a convolu-
tion layer with 96 kernels of size 11× 1 stacked to a batch
normalization layer followed by a 3× 1 max-pooling
operation in the first layer, a convolution layer with 256
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kernels of size 5× 1 stacked to a batch normalization
layer followed by a 3× 1 max-pooling operation in the
second layer, and two convolution layers with 384 kernels
of size 3× 1, and a convolution layer with 256 kernels
of size 3× 1 each stacked to a batch normalization layer
followed by a 3× 1 max-pooling in the third layer. Data
were then flattened and fed to two fully connected layers
with 209 and 2 nodes.

4) LSTM: LSTM is a novel RNN architecture designed to
avoid long-term dependencies with 2 “cell states” and
three “gates”. In this study, the developed LSTM model
comprised two hidden layers with 90 and 22 LSTM units.
The outputs of the LSTM block were then flattened and
fed to two fully connected layers with 256 and 2 nodes.

5) BiLSTM: BiLSTM is an extension of LSTM with two lay-
ers of LSTM units processing information from opposite
directions. In this study, the developed BiLSTM model
comprised two bidirectional hidden layers with 90 and
22 LSTM units in each layer. The outputs of the BiLSTM
block were then flattened and fed to two fully connected
layers with 256 and 2 nodes.

6) GRU: GRU is a variant of LSTM with fewer gates and
fewer parameters. In this study, the developed GRU model
comprised two hidden layers with 90 and 22 GRU units.
The outputs of the GRU block were then flattened and fed
to two fully connected layers with 256 and 2 nodes.

7) CNN-LSTM: CNN-LSTM is a hybrid model comprised of
a convolution layer with 32 kernels of size 5× 1 followed
by a 3× 1 max-pooling operation in the first layer, a
convolution layer with 64 kernels of size 5× 1 followed
by a 3× 1 max-pooling operation in the second layer,
and an LSTM layer with 16 units in the third layer. The
outputs of the LSTM layer were then flattened and fed to
two fully connected layers with 64 and 2 nodes.

8) SE-MSCNN: SE-MSCNN is a multi-scaled fusion net-
work comprised of 3 CNN modules, and each module
includes two convolution layers with 16 and 24 kernels
of size 11× 1 in the first and second layer followed
by a 3× 1 max-pooling operation in the third layer. In
the first and second CNN modules, the fourth layer is a
convolution layer with 32 kernels of size 11× 1, and in
the third CNN module, the fourth layer is a convolution
layer with 32 kernels of size 1× 1. The extracted feature
vectors from three CNN modules were stacked together
and further used to produce proper weights through a
channel-wise attention module. The weighted features
were then fed to two fully connected layers with 96 and
2 nodes.

For DL models, the cross-entropy loss is chosen as the loss
function, and the Adam optimizer is used for model optimiza-
tion. The number of epochs is set to 100, the batch size is set to
32, and the learning rate is set to 0.001, which will be reduced
by a factor of 0.2 if there is no improvement in the model after 2
epochs. All the experiments were conducted on a Windows PC
with an i9 CPU and 64 GB memory, and NVIDIA V100 with
32 GB memory was used to train DL models. The metrics used to
quantitatively evaluate the performance of each algorithm for SA
detection include accuracy (Acc), precision (Prec), sensitivity

(Sens), specificity (Spec), and F1, which are defined as below:

Acc =
TP + TN

TP + TN + FP + FN
(4)

Prec =
TP

TP + FP
(5)

Sens =
TP

TP + FN
(6)

Spec =
TN

FP + TN
(7)

F1 =
2× TP

2× TP + FP + FN
(8)

where TP is the number of times that the model correctly
predicts the positive class, TN is the number of times that the
model correctly predicts the negative class, FP is the number of
times that the model incorrectly predicts the positive class and
FN is the number of times that the model incorrectly predicts
the negative class.

Here, the ECG segment/recording corresponding to the SA
state is classified into the positive class, and the ECG seg-
ment/recording corresponding to the normal state is classified
into the negative class. Better performance for SA detection is
expected if these metrics are close to 1.

In this study, the indicator used to judge whether an individual
is under the SA condition is AHI:

AHI =
60

T
×N (9)

where T is the number of 1-min long ECG segments, N is
the number of ECG segments which is under SA condition.
AHI refers to the average number of 1-min long SA segments
per hour. If AHI is greater than or equal to 5, the individual
was regarded as under SA condition; otherwise, under normal
condition.

B. Classification Performance

The performance comparison between the proposed DAN-
MTIF and benchmark algorithms in per-segment SA detection
is summarized in Table II and Fig. 6. The correlation between
the AHI detected by all algorithms and the real AHI of ECG
recordings in the test set are given in Fig. 7. The confusion
matrices corresponding to DAN-MTIF on per-segment and per-
recording SA detection are shown in Fig. 8. It can be seen from
the results that:

� The best performance of classical ML models is achieved
by LS-SVM with 0.8332 accuracy, 0.7964 precision,
0.8236 sensitivity, 0.8405 specificity, and 0.8098 F1 at
per-segment level. This indicates that the selected HRV
features are not representative enough to accurately dis-
tinguish normal and apnea ECG segments.

� DL models significantly outperform classical ML models
in SA detection. The proposed DAN-MTIF exhibits the
best performance among all models with 0.9106 accuracy,
0.9396 precision, 0.8470 sensitivity, 0.9588 specificity,
and 0.8909 F1 at per-segment level. Moreover, according
to the confusion matrices, DAN-MTIF achieved 100% in
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TABLE II
PERFORMANCE COMPARISON OF ML MODELS AND DL MODELS AT

PER-SEGMENT LEVEL

Fig. 6. The ROC curves with different SA detection methods at per-
segment level.

Fig. 7. The correlation coefficients of AHI with different SA detection
methods at per-recording level.

Fig. 8. Confusion matrix for proposed DAN-MTIF: (a) per-segment;
(b) per-recording.

Fig. 9. T-SNE plots for learned features from DL models.

per-recording SA detection, which suggests that DAN-
MTIF can effectively extract highly discriminative fea-
tures from ECG signals.

� As illustrated in Fig. 7, RNN-based models (GRU, LSTM,
BiLSTM) showed decreased AHI correlation coefficients
when compared to CNN-based models (LeNet-5, ZFNet,
AlexNet), while incorporating CNN with LSTM (CNN-
LSTM) showed significant improvement in AHI correla-
tion. This further demonstrates the superiority of CNN
structure in feature extraction.

To assess the ability of DL models in extracting distinctive
features for further SA detection, the t-distributed stochastic
neighbor embedding (t-SNE) [65], which is a powerful nonlinear
dimensionality reduction technique, is introduced to visualize
embeddings learned from ECG segments by projecting high-
dimensional embeddings into a low-dimensional (2D) space
(Fig. 9). Each data point in t-SNE plots corresponds to an
individual embedding entry, and different colors indicate distinct
labels of the original ECG segment (A: red, N: black). The over-
lapping range of data points in two different colors indicates the
clustering difficulty of features in the high-dimensional space.

� For instance, the t-SNE plots for LeNet-5 show consider-
able overlap among data points, implying the features it
learned are not easily distinguishable.

� Interpolating an LSTM layer into LeNet-5 (CNN-LSTM)
enables the model to capture temporal information from
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TABLE III
PERFORMANCE COMPARISON OF DL MODELS AT PER-SEGMENT LEVEL WITH AN INCREASING PROPORTION OF TRAINING SET

Fig. 10. The accuracy comparison of DL models at per-segment level
with an increasing proportion of training set.

ECG. The extracted features display a trend towards form-
ing two clusters, yet a distinct boundary to differentiate the
two clusters is lacking.

� By contrast, SE-MSCNN and the proposed DAN-MTIF
utilized the attention mechanism to assign proper weights
for embeddings extracted from ECG segments at different
timescales, resulting in a relatively clear border between
the two clusters.

These findings align with the evaluation results in Table II, fur-
ther verifying the superior performance of the proposed method.

C. Performance Stability Validation

Since the performance of DL models is clearly superior to
ML models, in order to further evaluate the stability of the
proposed DAN-MTIF and benchmark DL models (LeNet-5,
ZFNet, AlexNet, GRU, LSTM, BiLSTM, CNN-LSTM, and
SE-MSCNN), we compared the model performance under a
varied training dataset size. The proportion of the training set
was set to 0.5, 0.6, 0.7, 0.8, and 0.9, respectively, resulting in a
reduction in the size of the validation set. Then, the DAN-MTIF
and benchmark DL models were trained separately in different
cases. To test the robustness of performance, we repeatedly
trained each model 5 times, and all the classification results are
summarized in Table III and Fig. 10.

TABLE IV
DESIGN OF ABLATION EXPERIMENTS

It can be seen from these results that:
� The performance of the proposed DAN-MTIF consistently

outperforms benchmark DL models, regardless of the
size of the training set, which demonstrates the superior
stability and robustness of DAN-MTIF.

� Most models show the best performance when the training
proportion is 0.7 and show a small drop in accuracy as the
training proportion continues to increase, which indicates
the potential overfitting of the model.

D. Ablation Study

In order to verify the effectiveness of each component in
DAN-MTIF, we performed a set of ablation experiments. The
experimental settings are shown in Table IV. To validate the
stability of the performance, we repeatedly conducted each
experiment five times, and all SA detection results as well as the
computational time of the model are summarized in Figs. 11-12
and Table V.

It can be concluded from these results that:
� By the comparison within M1 to M4, M5 to M8, M9 to

M12, and M13 to M16, we can see that expanding the
time scale of ECG segments from 1-min long to 3-min
long significantly improved the SA detection accuracy of
the model, and expanding the time scale to 5-min long
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TABLE V
PERFORMANCE COMPARISON IN PER-SEGMENT SA DETECTION IN ABLATION STUDY

Fig. 11. The ROC curves with SA detection methods in ablation study.

Fig. 12. The accuracy comparison of per-segment SA detection ac-
cording to the ablation study.

resulting in a less obvious improvement in accuracy, which
suggesting the temporal information from adjacent ECG
segments in a proper time range indeed contributes to SA
detection.

� By comparing M9 to M16 vs M1 to M8, we can observe
the application of the multi-head attention module can

improve model performance when the time scale of ECG
segments is 1-min long, but can lead to a decrease in
the model performance when the time scale of the ECG
segments is of other temporal scales.

� By the comparison of M5 to M8 vs M1 to M4, and M13 to
M16 vs M9 to M12, we can see the dilated rate of l has a
certain influence on the model performance when the time
scale of ECG segments is 1-min long. We can also notice
that there is a variance in accuracy for M10, M11, and M12
where l is set to 1 and adjacent segments are employed as
the model input. This configuration enables the model to
learn more details on the local features from ECG, which
may contribute to overfitting. However, when we change
the dilated rate l to 2, a substantial increase in accuracy
can be observed for M14, M15, M16. This is because a
larger dilated rate allows the model to capture more global
information, which can help prevent overfitting.

� The model with a dilated rate l = 2 and multi-head at-
tention shows the highest accuracy under different ECG
timescales. The combination use of three ECG segments
(1-, 3-, 5-min long) segments suggests a similar or even
slightly deteriorated performance when compared with the
case that only 5-min long ECG segments are used. What’s
more, an obvious increase in the computational time can
be observed as the 1D-CNN blocks in the model increased
from one to three.

Overall, the results of ablation experiments demonstrate the
advantages of multi-temporal information fusion and the multi-
head attention mechanism in deep learning models for apnea
event detection. However, further simplifying the proposed
model remains a challenge, because a simpler model architecture
will lead to shorter computational time and lower power con-
sumption, which is a key factor for the application of the model
in wearable devices. Although the proposed model exhibits
performance improvement over benchmark models such as SE-
MSCNN, it has no advantage over SE-MSCNN when consid-
ering structural complexity as the SE-MSCNN is a lightweight
model. Given this, identifying a strategy to simplify the model
architecture without adversely affecting its performance will be
an essential focus of our future research.
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E. Cross Validation

To evaluate the generalizability of the proposed DAN-
MTIF, we further conducted SA detection with the MIT-BIH
polysomnographic database [66]. This database contains 18
multiple physiologic recordings from 16 male subjects during
sleep. All recordings were acquired in Boston’s Beth Israel Hos-
pital Sleep Laboratory for evaluation of chronic OSA syndrome
with a sampling frequency of 250 Hz, and the duration of each
recording is between 2 and 7 hours. The single-lead ECG signals
were annotated every 30 seconds by clinical experts, and based
on that 16 recordings have an AHI value above 5, while only
2 recordings have an AHI value of 5 or less. To align with
the labeling rule in the Apnea-ECG database, we first removed
segments annotated as “awake” and “hypopnea”, then catego-
rized the remaining segments into “normal” and “apnea”. Next,
we combined every two 30-second-long segments into a single
segment, labeling it as normal (N) only if both sub-segments
were identified as normal; otherwise, apnea (A). Finally, a total
of 55 hours of ECG segments (N: 43%, A: 57%) derived from
18 recordings were used for SA detection with the proposed
DAN-MTIF.

The evaluation results at per-segment level are 0.7125 ac-
curacy, 0.7401 precision, 0.7599 sensitivity, 0.6503 specificity,
and 0.7499 F1. The evaluation results at per-recording level are
0.9375 accuracy, 0.9333 precision, 1.0 sensitivity, 0.5 specificity,
and 0.9655 F1. It is evident from the results that there is a gap
between the performance at two different levels, indicating the
model tends to identify normal segments as apnea segments.
This could be attributed to a range of factors: (i) the variance of
data acquisition equipment and environment in different labora-
tories; (ii) the limited diversity and quantity of ECG recordings
in the training set; (iii) the design of the model itself makes it less
generalizable and requires further improvement in the future.

V. CONCLUSION

In this study, a multiple temporal scale CNN framework with
the multi-head attention mechanism (DAN-MTIF) is proposed
for SA detection based on single-lead ECG signals. A unique
module with three 1D-CNN blocks is designed to extract features
from R-R intervals and R-peak amplitudes at different timescales
(1-, 3-, 5-min long). The dilated convolutional kernel is em-
ployed to expand the receptive field while avoiding deepening
the network structure. The features extracted from multiple
channels are then concatenated together, and a multi-head at-
tention module with a self-attention mechanism is introduced
to adaptively generate proper weights for the concatenated
features. Extensive experiments on the Apnea-ECG database
demonstrate that (1) DAN-MTIF exhibits excellent performance
with the highest accuracy for SA detection when compared to
benchmark methods; (2) DAN-MTIF can effectively extract fea-
tures with a higher degree of discrimination from ECG segments
of multiple timescales compared to those of a single timescale.
The results of ablation experiments suggest directions for further
work, and future research will focus on (1) simplifying the model
architecture without adversely affecting its performance; (2)
improving the generalizability of the model to adapt to external
datasets.
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