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Abstract: The parasympathetic nervous system is critically involved in the regulation of tear se-
cretion by activating muscarinic acetylcholine receptors. Hence, various animal models targeting
parasympathetic signaling have been developed to induce dry eye disease (DED). However, the
muscarinic receptor subtype (M1–M5) mediating tear secretion remains to be determined. This study
was conducted to test the hypothesis that the M3 receptor subtype regulates tear secretion and to
evaluate the ocular surface phenotype of mice with targeted disruption of the M3 receptor (M3R−/−).
The experimental techniques included quantification of tear production, fluorescein staining of the
ocular surface, environmental scanning electron microscopy, assessment of proliferating cells in the
corneal epithelium and of goblet cells in the conjunctiva, quantification of mRNA for inflammatory
cytokines and prooxidant redox enzymes and quantification of reactive oxygen species. Tear vol-
ume was reduced in M3R−/− mice compared to age-matched controls at the age of 3 months and
15 months, respectively. This was associated with mild corneal epitheliopathy in the 15-month-old
but not in the 3-month-old M3R−/− mice. M3R−/− mice at the age of 15 months also displayed
changes in corneal epithelial cell texture, reduced conjunctival goblet cell density, oxidative stress
and elevated mRNA expression levels for inflammatory cytokines and prooxidant redox enzymes.
The findings suggest that the M3 receptor plays a pivotal role in tear production and its absence leads
to ocular surface changes typical for DED at advanced age.

Keywords: cornea; dry eye disease; M3; muscarinic receptor; tear secretion

1. Introduction

Dry eye disease (DED) is a common chronic condition that occurs when tears do
not provide adequate lubrication for the ocular surface, which is characterized by tear
film instability, increased tear osmolarity and ocular surface inflammation [1]. DED may
cause pain and ocular surface epitheliopathy with consecutive loss of quality of life and
vision [1,2]. DED can be classified into aqueous deficient disease due to lacrimal hypose-
cretion, and into aqueous sufficient disease due to Meibomian gland disease or altered tear
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spread [1]. Previous studies have shown that aqueous deficiency causes dysfunction and
loss of conjunctival goblet cells, while goblet cell number has been reported to remain in the
normal range in Meibomian gland disease [3]. There are numerous causes for aqueous de-
ficiency, such as aging, injury, anticholinergic medication, systemic inflammatory/immune
diseases, e.g., Sjögren’s syndrome, as well as diseases that affect neural innervation or
signaling [1,4–6]. To study the underlying disease mechanisms, an increasing number of
models for DED are being established reflecting the growing interest in the pathophysiol-
ogy of the disease [7–10]. The parasympathetic nervous system is involved in tear secretion
via the activation of muscarinic acetylcholine receptors in the lacrimal gland [11]. Hence,
various pharmacological techniques aimed at targeting parasympathetic pathways have
been developed to study DED in animal models. Most of these models are based on either
transdermal application, subcutaneous injection or implantation of devices enabling a con-
tinuous delivery of muscarinic receptor blockers, such as scopolamine or atropine [7,11,12].
The applied antagonists block more than one of the five muscarinic receptor subtypes
(M1–M5) resulting in various side-effects. The lack of highly selective pharmacological
ligands and antibodies for individual muscarinic receptor subtypes may be the reason
why the muscarinic receptor subtype mediating tear secretion has not been clearly deter-
mined so far [13–15]. Based on studies reporting that some patients with primary Sjögren’s
syndrome carry inhibitory autoantibodies against the M3 receptor subtype, this receptor
was suggested to be involved in mediating tear secretion [16,17]. However, this evidence
is only indirect. The goal of the present study was to examine the hypothesis that the
M3 muscarinic acetylcholine receptor subtype is involved in regulation of tear secretion.
For our studies, we used mice with targeted disruption of the M3 receptor (M3R−/−) to
circumvent the problem of limited subtype selectivity of pharmacological ligands. Another
objective of this study was to test whether M3 receptor deficiency is associated with ocular
surface alterations typical for DED due to aqueous deficiency.

2. Results
2.1. Tear Production and Ocular Surface Characteristics

Tear volume was markedly reduced in the M3R−/− mice compared to the wild-type
mice at the age of 3 months (0.3116 ± 0.05248 µL vs. 0.5420 ± 0.07092 µL; M3R−/− vs.
wild-type at 3 months). At the age of 15 months, no significant age-dependent changes
in tear fluid volume were observed in either genotype. However, the difference in tear
volume between the M3R−/− vs. the wild-type was slightly more pronounced at the
age of 15 months (0.2609 ± 0.04102 µL vs. 0.5697 ± 0.06821 µL; M3R−/− vs. wild-type
at 15 months) compared to the 3-month-old mice (n = 8 per genotype and age category,
* p < 0.05, ** p < 0.01, Figure 1).

Exposure of the ocular surface to fluorescein revealed virtually no stained spots in the
3-month-old M3R−/− (Figure 2A) and wild-type mice (Figure 2B). In contrast, the 15-month-
old M3R−/− mice had markedly more stained spots in the corneal surface compared to the
15-month-old wild-type mice and compared to the 3-month-old M3R−/− and wild-type
mice (Figure 2C–E). According to the Oxford Scheme grading system, this corresponded to
mild keratopathy (n = 8 per genotype and age category, * p < 0.05, ** p < 0.01).
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Figure 1. Determination of tear production in the wild-type and M3R−/− mice by using a round piece 
of absorbent paper. Tear production was reduced in M3R−/− mice at the age of 3 months (m) com-
pared to wild-type mice of the same age (A,B,E). At the age of 15 m, the difference in tear production 
between M3R−/− and wild-type mice was slightly more pronounced (C–E) (* p < 0.05, ** p < 0.01, n = 
8 per genotype and age category). Scale bar = 2 mm. 

Exposure of the ocular surface to fluorescein revealed virtually no stained spots in 
the 3-month-old M3R−/− (Figure 2A) and wild-type mice (Figure 2B). In contrast, the 15-
month-old M3R−/− mice had markedly more stained spots in the corneal surface compared 
to the 15-month-old wild-type mice and compared to the 3-month-old M3R−/− and wild-
type mice (Figure 2C–E). According to the Oxford Scheme grading system, this corre-
sponded to mild keratopathy (n = 8 per genotype and age category, * p < 0.05, ** p < 0.01). 

 

Figure 1. Determination of tear production in the wild-type and M3R−/− mice by using a round
piece of absorbent paper. Tear production was reduced in M3R−/− mice at the age of 3 months
(m) compared to wild-type mice of the same age (A,B,E). At the age of 15 m, the difference in tear
production between M3R−/− and wild-type mice was slightly more pronounced (C–E) (* p < 0.05,
** p < 0.01, n = 8 per genotype and age category). Scale bar = 2 mm.
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 Figure 2. Determination of ocular surface epitheliopathy by fluorescein staining in the 3-month-old
wild-type (A) and M3R−/− mice (B) and in the 15-month-old wild-type (C) and M3R−/− mice (D).
Epitheliopathy was assessed based on the Oxford Scheme grading system. M3R−/− mice at the age
of 15 months had mild but significant epitheliopathy (E) (* p < 0.05, ** p < 0.01, n = 8 per genotype
and age category). Scale bar = 1 mm.

An ESEM analysis of the wild-type mouse cornea at the age of 15 months revealed a
relatively uniform surface appearance with polygonal cells of a shaggy texture and a high
density of long microvilli. Moreover, the borders between most cells were well-defined,
indicative of substantial cell to cell contact (Figure 3A,B). In the M3R−/− mouse cornea at
the age of 15 months, the epithelial cell surface appeared smooth due to fewer and shorter
microvilli, and the borders between cells were less defined. Moreover, delaminating
superficial epithelial cells were frequently visible in mutant mice (Figure 3C,D).
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Figure 3. ESEM analysis of the corneal epithelium. The corneal epithelium of the 15-month-old
wild-type mice (A) was composed of polygonal cells with a shaggy texture, a high density and length
of microvilli and well-defined cell borders (B). In the 15-month-old M3R−/− mice, the texture of the
cellular surface appeared smooth. Delaminating superficial epithelial cells were frequently seen (C).
Microvilli were much shorter in the 15-month-old M3R−/− mice compared to the age-matched
wild-type mice (D).

2.2. Corneal Epithelial Cell Proliferation and Conjunctival Goblet Cell Density

The percentage of Ki-67-positive cells was increased in the corneal epithelium of the
15-month-old M3R−/− mice (17.50 ± 2.179%) compared to the age-matched wild-type
mice (11.50 ± 1.268%) (* p < 0.05, Figure 4). Ki-67-positive cells were not seen in the corneal
stroma or endothelium.
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Figure 4. Cross-sections of the corneal epithelium from the 15-month (m)-old wild-type (A) and
M3R−/− mice (B) stained with an antibody directed against the proliferation marker Ki-67 (red)
and with DAPI (blue). The M3R−/− mice had a markedly higher rate of proliferating cells in the
epithelium (C). (* p < 0.05, n = 8 per genotype). Scale bar = 100 µm.
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The density of goblet cells in the goblet-cell-rich palpebral conjunctiva was markedly
lower in the 15-month-old M3R−/− mice (2.388 ± 0.3507 cells/100 µm) compared to the
wild-type mice (3.650 ± 0.3541 cells/100 µm) (n = 8 per genotype, * p < 0.05, Figure 5).
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Figure 5. PAS-stained cross-sections of the conjunctival epithelium from the wild-type (A) and
M3R−/− mice (B) at the age of 15 months (m). The M3R−/− mice had a markedly reduced density
of goblet cells in the palpebral conjunctiva (C) (* p < 0.05, n = 8 per genotype). B = bulbar conjunctiva;
P = palpebral conjunctiva; Scale bar = 100 µm.

2.3. Expression of Inflammatory and Prooxidant Redox Genes

In the corneal epithelium of the 15-month-old M3R−/− mice, the mRNA expression for
the inflammatory cytokines TNF-α and IFN-γ was increased compared to the age-matched
wild-type mouse epithelium. In addition, mRNA levels for the prooxidant redox enzymes
NOX1, NOX2 and NOX4 were markedly elevated. In the conjunctival epithelium of the
M3R−/− mice, TNF-α mRNA expression was also increased. Moreover, the mRNA levels
for IL-1β and for NOX1 and NOX2 were higher compared to the wild-type mice (n = 8 per
genotype, Figure 6).
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Figure 6. Messenger RNA expression for inflammatory cytokines and prooxidant redox enzymes in
the corneal (A) and conjunctival epithelium (B) of the 15-month-old mice. Data are presented as the
fold-change (mean ± SE) in M3R−/− versus wild-type mice (n = 8 per genotype, * p < 0.05).
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2.4. ROS Formation in the Corneal and Conjunctival Epithelium

DHE and MDA staining revealed increased fluorescence intensity in both corneal and
conjunctival epithelium of the 15-month-old M3R−/− mice compared to the age-matched
wild-type mice, which is indicative of elevated ROS levels (n = 8 per genotype; Figure 7).
The differences in fluorescence intensity between the M3R−/− and wild-type mice were
more pronounced in the conjunctival epithelium.
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Figure 7. DHE stainings of corneal cross-sections from the 15-month-old wild-type (A) and age-matched M3R−/− mice (B).
Staining intensity was increased in the corneal epithelium from the M3R−/− mice (C). DHE stainings were also conducted in
the conjunctiva from the 15-month-old wild-type (D) and age-matched M3R−/− mice (E). The intensity of the DHE fluores-
cence was also markedly increased in the conjunctival epithelium from the M3R−/− mice (F). Moreover, immunostainings
were performed in corneal cross-sections from the 15-month-old wild-type (G) and M3R−/− mice (H) using an antibody
directed against MDA. The staining intensity for MDA was also increased in the corneal epithelium of the M3R−/− mice (I).
MDA stainings in conjunctival cross-sections from the wild-type (J) and M3R−/− mice (K) revealed much more intense
staining in the M3R−/− mice (L). Values are presented as mean ± SE (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001,
n = 8 per genotype). Scale bar = 50 µm.

3. Discussion

There are several major new findings emerging from the present study. First, tear
production was markedly reduced in the M3R−/− mice already at the age of three months,
suggesting that the M3 receptor participates in regulation of tear secretion. Second, the 15-
month-old, but not the 3-month-old, M3R−/−mice developed ocular surface epitheliopathy.
These changes were mild but had characteristics of DED, such as loss of microvilli and
epithelial cell desquamation and were associated with an increased proliferation rate of
corneal epithelial cells and a reduced amount of goblet cells in the conjunctival epithelium.
Third, the 15-month-old M3R−/− mice displayed elevated mRNA levels for inflammatory
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cytokines and prooxidant redox genes in both the corneal and conjunctival epithelium.
Likewise, the ROS levels were elevated in corneal and conjunctival epithelium of the
M3R−/− mice at the age of 15 months. Altogether, these findings indicate that the M3R−/−

mice are characterized by tear deficiency at young age already but develop morphological
changes associated with DED at advanced age.

Because parasympathetic nerves contribute to tear secretion from the lacrimal gland,
several animal models have been established for studies of DED that are based on pharma-
cological, mechanical or genetic inactivation of parasympathetic signaling [11,18]. Most
of these animal models are either invasive or require repeated administration of drugs,
which makes the models rather challenging especially for longitudinal studies of DED.
In the established animal models, drugs have been used that block all five muscarinic
receptor subtypes, hence, their systemic administration may induce side-effects in various
organs [19]. The use of recently developed selective ligands for individual muscarinic
receptors may reduce the systemic side effects [14,20], but is not likely to reduce the inva-
siveness and challenges of repeated drug administration. The use of genetically modified
mice lacking individual muscarinic receptor subtypes may circumvent these problems.
The findings of the present study suggest that a major portion of the parasympathetic
input to the lacrimal gland is mediated by the M3 receptor. Since the M3R−/− mice are
viable, fertile and have a normal life expectancy, they may constitute an attractive model
for longitudinal studies of DED [21,22]. Notably, tear secretion did not markedly change in
the M3R−/− and wild-type mice with advancing age. Previous studies reported either an
increase or no change in C57BL/6 mouse tear volume with advancing age [23,24].

Our findings also demonstrate that the M3R−/− mice develop structural changes in
the corneal epithelium, such as epithelial defects and a reduction of superficial corneal
epithelial microvilli with advancing age. Since microvilli of the superficial epithelium
are important for tear film anchorage, their reduction may result in tear film instability.
Moreover, the rate of proliferating cells was increased in the corneal epithelium of the
15-month-old M3R−/− mice, a typical observation in DED, which may be regarded as a
compensatory reaction against dry eye-induced epithelial damage [25,26].

We also found that the number of goblet cells was reduced in the conjunctival ep-
ithelium from 15-month-old M3R−/− mice. Previous studies in humans reported that
aqueous deficiency causes dysfunction and loss of conjunctival goblet cells, while goblet
cell number has been reported to remain within the normal range in Meibomian gland
disease [3]. Likewise, desiccating stress was shown to induce conjunctival goblet cell loss
in animal models [27,28], which is in part mediated by IFN-γ and CD4+ T cells [29–31].
Messenger RNA levels for some pro-inflammatory cytokines, such as IFN-γ, IL-1β and
TNF-α, were increased in the corneal and/or conjunctival epithelium of the 15-month-old
M3R−/− mice, indicative of ocular surface inflammation. However, other cytokines usually
involved in DED, such as IL-6 or IL-8, were not elevated, which may suggest that ocular
surface inflammation was only mild. Cytokines, such as TNF-α and IL-1β, were shown to
activate matrix metalloproteinase 9 (MMP-9) expression and activity on the ocular surface
in DED [32].

MMP-9 is a proteolytic enzyme that acts on extracellular matrix and cell surface
adhesion molecules [33]. An increased concentration and activity of MMP-9 has been
observed in the tear fluid of dry eye patients and experimental DED animal models [34–38].
Potential sources of MMP-9 include immune cells in the ocular surface and activated
corneal and conjunctival epithelial cells [39,40]. Studies in genetically modified mice
revealed that increased MMP-9 activity substantially contributes to the disruption of the
corneal epithelial barrier in DED [39]. In previously reported mouse models of DED
created by administration of anticholinergic agents, the mRNA levels for MMP-9 were
markedly increased in the corneal and/or conjunctival epithelium [36,40]. Notably, the
MMP-9 mRNA expression was not elevated in the cornea and conjunctiva of the M3R−/−

mice. This finding may further support the notion that DED was only mild in the M3R−/−

mice because MMP-9 activity, mRNA and protein levels were shown to correlate with the
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severity of DED [38,41]. However, since we did not determine MMP-9 concentration and
activity in the tear fluid, we cannot rule out the possibility MMP-9 concentration and/or
activity was increased in the M3R−/− mice. Previous studies in human corneal epithelial
cells (HCECs) and in in vivo DED models suggested that oxidative stress is involved in
the pathogenesis of DED [42–45]. We found that the levels of reactive oxygen species
(ROS) were elevated in the corneal and conjunctival epithelium. Moreover, we found
that mRNA expression for the prooxidant nicotinamide adenine dinucleotide phosphate
oxidase (NOX) isoforms NOX1, NOX2 and NOX4 was elevated in the corneal epithelium
and for the isoforms, NOX1 and NOX2, in the conjunctival epithelium, suggesting that
NOX may contribute to oxidative stress in the ocular surface epithelium in DED. The role
of individual NOX isoforms in the pathogenesis of DED should be pursued further, since
they may constitute potential therapeutic targets.

In summary, the lack of the M3 muscarinic acetylcholine receptor results in reduced
tear secretion already at young age, but corneal epitheliopathy develops with advancing
age. The changes of the ocular surface observed in the aged M3R−/− mice were typical for
DED. However, the observed corneal epitheliopathy was only mild in the aged M3R−/−

mice, suggesting that the morphological changes due to reduced tear secretion were
relatively subtle. The fact that mRNA for relatively few inflammatory cytokines was
elevated in the corneal and conjunctival epithelium also supports the notion that DED
was relatively mild in the M3R−/− mice. Mild corneal changes have also been reported
in mice subjected to lacrimal gland excision [7], suggesting that the residual tear supply
was sufficient to prevent pronounced signs of ocular surface disease. Therefore, such
models are often combined with environmental stress factors, such as desiccation by using
an air blower [7]. Based on our findings, the M3R−/− mice appear to be an attractive,
non-invasive alternative to existing dry eye models, which would facilitate longitudinal
studies of DED. From a clinical point of view, selective activation of the M3 receptor might
become therapeutically useful to promote tear secretion with less side effects compared to
non-subtype-selective muscarinic receptor ligands.

4. Materials and Methods
4.1. Animals

The study was approved by the Animal Care Committee of Rhineland-Palatinate,
Germany (approval number: AZ 23 177-07/G 13-1-057), and all animals were treated in
accordance with the EU Directive 2010/63/EU for animal experiments. The M3 receptor
knockout mice (M3R−/−) and respective wild-type controls of the C57BL/6NTac back-
ground were used for the study. The generation of M3R−/− mice has been described
previously [21]. The M3R−/− mice were backcrossed with C57BL/6NTac mice for 10 gen-
erations to obtain N10 congenic mice. Polymerase chain reaction (PCR) of DNA isolated
from tail biopsies was used to identify the genotype of each animal. The M3R−/− mice
are complete knockouts with no remaining M3 receptor activity. The mice were housed
under pathogen-free conditions with a 12 h light/dark cycle, a temperature of 22 ± 2 ◦C,
a humidity of 55 ± 10% and with free access to food and tap water. In all experiments,
male mice at the ages of 3 and 15 months were used. The calculated number of animals per
group was 8 assuming an effect size of d = 1.8 for tear secretion (power = 90%, α = 0.05).

4.2. Quantification of Tear Production

After animals had been anesthetized by ketamine/xylazine, tear production was
determined by using a round piece of absorbent paper of 6 mm diameter, which was
folded in the middle, taken with a pair of tweezers and immersed into the tear meniscus
on the lower conjunctival fornix for 20 sec (left and right eye). Next, the paper was
photographed under a microscope and the moistened area determined with Image J (NIH,
http://rsb.info.nih.gov/ij/ (accessed on 11 March 2019)). The measured uptake of tear
fluid in mm2 was compared to a standard curve prepared using absorbent paper to uptake
known volumes of a stock basic solution (0.9% NaCl) (Figure 8).

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
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4.3. Characterization of the Corneal Surface

To assess the occurrence of ocular surface epitheliopathy, the eyes of anesthetized
mice (ketamine/xylazine) were stained by placing 2 µL of 1% sodium fluorescein onto
the ocular surface. After 3 min, photographs were taken under cobalt blue light using a
stereomicroscope. Punctate staining was evaluated by a blinded evaluator (J.K.Z.) using
the Oxford Scheme grading system, and a grade of 0 to 4 was assigned as described
previously [46,47].

4.4. Environmental Scanning Electron Microscopy

To characterize corneal epithelial cell structure in more detail, we conducted studies
by environmental scanning electron microscopy (ESEM, ESEM XL-30, Philips, Eindhoven,
The Netherlands) as previously reported [48]. For this analysis, isolated corneas were trans-
ferred into 2% (v/v) aqueous glutaraldehyde fixative, fixated in osmium oxide, processed
through acetone dehydration steps and finally critical point dried at 43 ◦C.

4.5. Quantification of Proliferating Corneal Epithelial Cells and Conjunctival Goblet Cells

The whole eyeball together with the eyelids and conjunctiva was embedded in Tissue-
Tek® O.C.T.™ compound (Sakura Finetek Germany GmbH, Staufen, Germany) and snap
frozen in liquid nitrogen. Actively proliferating cells in the corneal epithelium were identi-
fied by immunofluorescence on central sagittal eye globe cryosections (10 µm) using an
antibody directed against the Ki-67 protein, a cell proliferation marker expressed during
active phases of the cell cycle [49]. Tissue sections were fixed in 4% paraformaldehyde
for 20 min and washed in phosphate-buffered saline (PBS) twice for 5 min. Subsequently,
the tissue sections were blocked with 1% bovine serum albumin for 30 min. The primary
antibody (Ki-67 monoclonal antibody from rabbit, MA5-14520, Thermo Fisher Scientific
GmbH, Dreieich, Germany) was diluted (1:300 in PBS), placed on the sections and incu-
bated overnight at 4 ◦C. Next, the slices were washed three times in PBS for 5 min and the
secondary antibody (goat anti-rabbit IgG H&L, TRITC-conjugated, catalog number: ab6718,
Abcam, Cambridge, UK), diluted 1:200 in PBS, was applied for 1 h in darkness. Subse-
quently, slides were washed in PBS again and were mounted using a mounting medium
containing 4′6-diamidino-2-phenylindole (DAPI) (Vectashield Mounting Medium with
DAPI, catalog number: H-1200, BIOZOL Diagnostica Vertrieb GmbH, Eching, Germany) to
stain the cell nuclei. Tissue sections were viewed and photographed under a fluorescent
microscope (Nikon Eclipse E800) equipped with a digital SPOT camera (Nikon Inc., Tokyo,
Japan). DAPI- and Ki-67-labelled cells were counted through the entire thickness of the
corneal epithelium in a central zone of 880 µm width by a masked evaluator (A.M.) as
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previously described [50]. The rate of proliferating cells was defined as the percentage of
Ki-67-positive cells of all DAPI-positive cells. To determine the number of goblet cells in the
conjunctiva, cryosections of 10 µm thickness were cut and stained with periodic acid-Schiff
(PAS) reagent. Conjunctival goblet cell density was measured by a blinded evaluator (S.J.)
over 100 µm lengths on the palpebral conjunctiva and results were expressed as the number
of positive cells per 100 µm.

4.6. Quantification of Inflammatory and Prooxidant Redox Genes by Real-Time PCR

Messenger RNA levels for the inflammatory cytokines, TNF-α, INF-γ, IL-1β, IL-2,
IL-4, IL-6, IL-8, IL-10, IL-12, IL-17 and MMP-9, and for the prooxidant redox enzymes,
NOX1, NOX2 and NOX4, were determined in corneal and conjunctival epithelium from
the 15-month-old wild-type and the M3R−/− mice by real-time PCR. After the euthanasia
of mice by CO2 exposure, one eye per mouse was immediately excised and transferred into
cooled PBS (Invitrogen, Karlsruhe, Germany) to excise the cornea and conjunctiva under a
dissecting microscope. The corneal epithelium was scraped off from the stroma by using
fine-point tweezers to obtain corneal epithelial cells. After excision of the conjunctiva, the
subepithelial conjunctival tissue was thoroughly removed by Vannas scissors. The isolated
epithelia were transferred into 1.5 mL plastic tubes, rapidly frozen in liquid nitrogen and
stored at −80 ◦C. Later, tissue samples were homogenized (FastPrep; MP Biomedicals,
Illkirch, France), and the expression of genes was measured by SYBR Green-based quan-
titative real-time PCR, as previously described [51]. RNA was isolated using peqGOLD
TriFast™ (PEQLAB) and cDNA was generated with the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Darmstadt, Germany). Real-time PCR reactions
were performed on a StepOnePlus™ Real-Time PCR System (Applied Biosystems) using
SYBR® Green JumpStart™ Taq ReadyMix™ (Sigma-Aldrich, Steinheim, Germany) and 20
ng cDNA. The relative mRNA levels of target genes were quantified using comparative
threshold (CT) normalized to the TATA-binding protein (TBP) housekeeping gene. Mes-
senger RNA expression is presented as the fold-change in the M3R−/− mice versus the
wild-type mice. The PCR primer sequences are listed in Table 1.

Table 1. Primer sequences used for quantitative PCR analysis.

Gene Forward Reverse

TNF-α GCC TCT TCT CAT TCC TGC TTG CTG ATG AGA GGG AGG CCA TT

IFN-γ AGC GGC TGA CTG AAC TCA GAT TGT AG GTC ACA GTT TTC AGC TGT ATA GGG

IL-1β AAG GAG AAC CAA GCA ACG ACA AAA TGG GGA ACT CTG CAG ACT CAA ACT

IL-2 CAA GTC CTG CAG GCA TGT ACA CTG TTG ACA AGG AGC ACA AGT GT

IL-4 CGCCATGCACGGAGATG CGAGCTCACTCTCTGTGGTGTT

IL-6 ACA ACC ACG GCC TTC CCT ACT T CAC GAT TTC CCA GAG AAC ATG TG

IL-8 ACGGACATGGCTGCTCAAG GGACGAAGATGCCTAGGTTAAGG

IL-10 CAT GGG TCT TGG GAA GAG AA AAC TGG CCA CAG TTT TCA GG

IL-12 CAT CCA GCA GCT CCT CTC AGT GCA AGG GTG GCC AAA AAG A

IL-17 CCT CAC ACG AGG CAC AAG TG TCT CCC TGG ACT CAT GTT TGC

MMP-9 AAAGACCTGAAAACCTCCAACCT GCCCGGGTGTAACCATAGC

NOX1 GGAGGAATTAGGCAAAATGGATT GCTGCATGACCAGCAATGTT

NOX2 CCAACTGGGATAACGAGTTCA GAGAGTTTCAGCCAAGGCTTC

NOX4 TGTAACAGAGGGAAAACAGTTGGA GTTCCGGTTACTCAAACTATGAAGAGT

TBP CTT CGT GCA AGA AAT GCT GAA T CAG TTG TCC GTG GCT CTC TTA TT

4.7. Quantification of Reactive Oxygen Species

ROS formation was determined in 10 µm cryosections of eye globes by dihydroethid-
ium (DHE, 1 µM)-derived fluorescence. In the corneal and conjunctival epithelium, the fluo-
rescence (518 nm/605 nm excitation/emission) was measured as previously described [52].
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Moreover, immunostainings for malondialdehyde (MDA), a highly reactive three carbon
dialdehyde, which is a marker for oxidative stress, have been performed. Briefly, frozen
sections of 10 µm thickness were cut and fixed in 4% paraformaldehyde solution for 20 min.
Next, slides were rinsed with PBS and incubated at room temperature with blocking solu-
tion containing 1% bovine serum albumin for 30 min. Next, the primary antibody directed
against MDA (ALX-210-879, rabbit, polyclonal, Enzo Life Sciences, Inc., Farmingdale, NY,
U.S.) was diluted (1:500) in blocking solution and incubated for 2 h at room temperature.
Thereafter, each slide was washed in PBS three times for 5 min and incubated for 1 h at
room temperature with a Rhodamine Red-X-coupled secondary antibody (111-295-003,
goat anti-rabbit, polyclonal, dilution: 1:200, Dianova GmbH, Hamburg, Germany). Neg-
ative control sections were incubated with a blocking medium and the secondary an-
tibody. Finally, slides were washed in PBS (3 × 5 min) and were mounted by using
VECTASHIELD® Mounting Medium with DAPI (BIOZOL Diagnostica Vertrieb GmbH,
Eching, Germany) and cover-slipped. Subsequently, the fluorescence was measured in the
corneal and conjunctival epithelium by using Image J (NIH, http://rsb.info.nih.gov/ij/
(accessed on 11 March 2019).

4.8. Statistics

Data are presented as mean ± SE, and n represents the number of mice per group.
Normality was tested by the D’Agostino & Pearson omnibus normality test. Since values
were normally distributed, one-way ANOVA with the Tukey’s multiple comparisons test
(comparison of more than two groups) or an unpaired t-test (comparison of two groups)
was used. The level of significance was set at 0.05.
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